
Quantum Field Theory

Set 11: solutions

Exercise 1

Let us start from the matrix element squared

|M|2 = λ4

[
1

s−m2
+

1

t−m2
+

1

u−m2

]2
.

Making use of the 2-body phase space in the case of final state particles with equal masses, we have

dσ =
1

4
√
(pa · pb)2 −m4

|M|2β d cos θdφ
64π2

,

where β ≡
√
1− 4m2

s is the velocity of the incoming particles in the center of mass frame. We have put 64 instead

of 32 as a factor accounting for the identity of the two final state particles: thus we will integrate over all the
phase space. Since we consider four identical masses we can further simplify the previous expression, because the
flux factor is proportional to 1/β:

dσ = |M|2 d cos θdφ
128π2s

.

Hence
dσ

d cos θ
=

λ4

64πs

[
1

s−m2
+

1

t−m2
+

1

u−m2

]2
, (1)

where we have integrated in dφ because nothing depends on the azimuthal angle. Indeed one can show that,
parametrizing momenta as

pa =

√
s

2
(1, 0, 0, β),

pb =

√
s

2
(1, 0, 0,−β),

pc =

√
s

2
(1, 0, β sin θ, β cos θ),

pd =

√
s

2
(1, 0,−β sin θ,−β cos θ),

the independent Mandelstam invariants are simply

t ≡ (pa − pc)
2 = −sβ2

2
(1− cos θ) = −2

(s
4
−m2

)
(1− cos θ),

u ≡ (pa − pd)
2 = −sβ2

2
(1 + cos θ) = −2

(s
4
−m2

)
(1 + cos θ).

Therefore the l.h.s of the differential cross section dσ
d cos θ is only a function of θ.

Before performing the integration let us consider the high energy limit s ≫ m2. In this limit one would expect
the total cross section not to depend on masses, and therefore, by dimensional analysis,

σ ≃ λ4

s3
.

This behavior is wrong or, to say better, is not the dominant one in this limit. To see this, one can indeed expand
the differential cross section in powers of m2/s. Note that the mass acts as a regulator of the integral in d cos θ (in
the strict massless case there are non integrable singularities at cos θ = ±1 coming from the t− and u−channels).



Therefore the expansion in powers of m2/s at leading order takes place neglecting the mass for the s−channel
(never singular) and in the definitions of t and u, but retaining it in the denominators of the t− and u−channels.
This yields

σ ≃ λ4

64πs

∫ 1

−1

d cos θ

[
1

s
− 2

s(1− cos θ) + 2m2
− 2

s(1 + cos θ) + 2m2

]2
(2)

To perform the above integration we can notice that in the massless limit the square of the first piece is finite, the
interference terms of the s−channel with the others has a single pole, and the interference between the t− and
u−channels has two single poles: all these terms will diverge at most as log(m) in the small mass limit. Conversely,
the squares of the t− and u−channels have double poles, thus they will result in a m−2 dependence. By changing
variable y → −y in one of the two contributions, it is immediate to notice that they are equal, so that the main
contribution to the cross section will be

σ ≃ λ4

64πs
2

∫ 1

−1

d cos θ

[
2

s(1 + cos θ) + 2m2

]2
=

λ4

64πs

[
4

m2s

]
.

The leading behavior has a different power with respect to what we guessed by dimensional analysis.
One can understand this behavior in the following way: if we put the mass to zero the cross section diverges.
This is because a massless particle can mediate long range (actually infinite range) interaction and therefore two
particles interact even if they are far apart.

Now, we instead consider scattering at large angles θ ≃ π/2. We are still in the relativistic limit, so we can still
use the estimate (2), integrating on θ ∈ (π3 ,

2π
3 ). These bounds are arbitrary, we just need to consider a range

of angles close to the perpendicular. Thus we make the estimate cos θ ≃ 0, and we can neglect the mass in the
denominators. We get

σ ≃ λ4

64πs

∫ 1/2

−1/2

d cos θ

[
3

s

]2
=

9λ4

64πs3
.

Here we have the result we guessed by numerical analysis. Indeed, this is the case of hard scattering, where the
transverse momentum is large p2⊥ ∼ s ≫ m2. This correspond to short distance interactions. In this regime, the
mass can be totally neglected and plays no role as we have seen. This explains why this contribution matches the
result of dimensional analysis.

In the opposite limit, the non-relativistic one, the differential cross section is perfectly finite over all the phase
space, so it is possible to expand the integrand in Taylor series without any particular treatment (in the ultra
relativistic limit we had to retain the mass in the propagators). At zeroth order in s − 4m2 one has t = u = 0,
thus

dσ

d cos θ
≃ λ4

64π 4m2

[
1

4m2 −m2
+

1

−m2
+

1

−m2

]2
=

25

9
× λ4

256πm6
,

and

σ ≃ 25

18
× λ4

64πm6
.

It is useful to slightly rewrite this expression. In order to do this, notice that a free non relativistic particle evolves
with a dynamical phase factor eimt, i.e. with frequency m; the associated wave-length is

λC =
2π

m
,

which is called the Compton length. The Compton length corresponds heuristically with the spatial extension of
the wave-function of a single particle.It is then natural to define the geometrical cross-section as:

σgeom = πλ2
C =

4π3

m2
.

Then the physical cross section is written in terms of the geometrical one as:

σ =
25

18
× σgeom ×

(
λ

4πm

)4

.
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Besides an O(1) numerical factor, this expression shows explicitly that the process is perturbative as long as

λ ≪ 4πm.

This is the correct regime of validity of pertubation theory, which is better by an O(10) factor with respect to the
naive expectation λ ≪ m from dimensional analysis. The appearence of 4π factors in perturbation theory is very

common; for instance the perturbative regime of QED is α/4π ≪ 1 (where α = e2

4π ).

For completeness, we give the result for the total cross section without approximations (from which one can deduce
that the limits presented above are indeed correct), namely

σ =
λ4

64πs

 4

m2 (s− 3m2)
+

2

(m2 − s)
2 +

4 log
(

m2

s−3m2

)
4m4 − 5m2s+ s2

+
4s log

(
s

m2 − 3
)

−8m6 + 14m4s− 7m2s2 + s3

 ,

and we show its behavior as a function of s (in GeV2) for λ = m = 1 GeV. The plot on the left displays 2σ in the
limit of small masses, which correctly tends to 25

576πGeV−2 for this choice of parameters. The plot on the right
shows the observable 2s2 × σ in the high energy region. The asymptotic flatness of the plot underlines the s−2

behavior of the cross section, and the value of the plotted quantity at s → ∞ is 1
8πGeV−2.
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You can refer to the Mathematica notebook to check this yourself.

Application

Suppose a particle with ultra-relativistic energy E ≫ m2 hits a box of targets of length ℓ. By definition of cross-
section, the probability that a scattering event where the particle loses energy ∆E happens when the particle hits
a target of thickness dx is given by:

dP

d∆E
=

dσ

d∆E
ρdx,

where ρ is the density of target particles. It follows that the mean energy loss per crossed length is:

d⟨∆E⟩
dx

=

∫
dP

dx d∆E
∆Ed∆E =

∫
ρ

dσ

d∆E
∆Ed∆E.

To compute this in the relativistic regime, we just need to rewrite (1) in the Lab frame. In order to do this, notice
that from the explicit expression of t, it follows:

dσ

dt
=

2

s

dσ

d cos θ∗
,

where θ∗ is the angle we considered so far in the center of mass frame. Once the cross section is written in terms
of Mandelstam invariants, we can just evaluate them in the Lab frame, where momenta are parametrized as

pa = (E, 0, 0, p),

pb = (m, 0, 0, 0),

pc = (Ec, 0, pc sin θ, pc cos θ),

pd = (Ed, 0,−pd sinϕ, pd cosϕ);
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=⇒ t = (pa − pc)
2 = (pd − pb)

2 = 2m2 − 2mEd = 2m(E − Ec) = 2m∆E,

where we have used conservation of energy Ea +m = Ec + Ed. Thus we conclude

⟨∆E⟩ = ⟨t⟩
2m

.

Supposing the target particles to be distinguishable from the incoming ones, we can neglect the s-channel and
u-channel contributions in (1). Indeed we are assuming scattering with little energy difference and small angles
θ ∼ 0, so one of the outgoing particles can be considered as the inital moving particle, being slightly deflected.
As we discussed, the leading contribution in the θ ∼ 0 regime comes from the t-channel. Having distinguishable
particles also means the phase space has to be multiplied by a factor of 2. As we argued before then, we can
approximate the cross section with:

dσ

dt
≈

[
1

t−m2

]2
λ4

16πs2
.

As shown from the CM expression −s+ 2m2 ≤ t ≤ 0, then we find:

d⟨∆E⟩
dx

=
ρ

2m

∫
dt t

dσ

dt
≈ ρ

2m
× λ4

16πs2

∫ 0

−s

dt t

[
1

t−m2

]2
=

ρ

2m
× λ4

16πs2
×
[

s

s+m2
− log

m2 + s

m2

]
≈ − ρ

2m
× λ4

16πs2
× log

s

m2
.

In general to compute the total energy loss for a particle which crosses the whole box might be difficult, since due
to scattering the particle can deviate from a straight trajectory. However our result on the cross-section suggests
that scattering events at small angle dominate the process, so that we can suppose that the particle travels on a
stright line. Indeed, the mean energy loss per collision is given by:

1

σtot

∫
dt

t

2m

dσ

dt
≈ m

2
log

s

m2
≪ E,

which confirms that events with low transferred energy dominate the process. We also suppose that ℓ is small
enough so that we can neglect the dependence in s, i.e. in the energy on the particle, on the travelled distance x.
We conclude that the total energy loss can be approximated as:

⟨∆E⟩ ≈ −ℓ× ρ

2m
× λ4

16πs2
× log

s

m2
.

Exercise 2

Recalling the anticommutation relation of the Dirac matrices {γµ , γν} = 2ηµν , and using the cyclic property of
the trace, we have:

Tr[γµγν ] = Tr[γνγµ] =
1

2
Tr[{γµ, γν}] = ηµνTr[1] = 4ηµν ,

Tr[γµγνγργσ] = 2ηµνTr[γργσ]− Tr[γνγµγργσ] = 8ηµνηρσ − Tr[γνγµγργσ]

= 8ηµνηρσ − 8ηµρηνσ +Tr[γνγργµγσ]

= 8ηµνηρσ − 8ηµρηνσ + 8ηµσηρν − Tr[γνγργσγµ].

Using the cyclicity of the trace we have:

Tr[γνγργσγµ] = Tr[γµγνγργσ] =⇒ Tr[γµγνγργσ] = 4(ηµνηρσ − ηµρηνσ + ηµσηρν).

Recalling the anticommutation relation {γµ , γ5} = 0 we can consider the trace of an odd number of γ matrices
and insert γ5γ5 = 1:

Tr[γµ1 ...γµ2n+1 ] = Tr[γ5γ5 γµ1 ...γµ2n+1 ].

Using the cyclicity we have
Tr[γ5γ5 γµ1 ...γµ2n+1 ] = Tr[γ5 γµ1 ...γµ2n+1γ5],
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while if we were to pass γ5 through all the other matrices we would get a minus sign for each anticommutation:

Tr[γ5γ5 γµ1 ...γµ2n+1 ] = (−1)2n+1Tr[γ5 γµ1 ...γµ2n+1γ5],

so that
Tr[γ5γ5 γµ1 ...γµ2n+1 ] = −Tr[γ5γ5 γµ1 ...γµ2n+1 ] = 0.

From this results it follows straightforwardly that

Tr[γ5 · (odd number of γ’s)] = Tr[(odd number of γ’s)] = 0,

since γ5 can be written as the product of 4 Dirac matrices and hence the total number is still odd.

We now show that Tr[γ5γµγν ] = 0. Let’s insert the factor 1 = ηρργργρ, (not summed over ρ), where ρ ̸= µ, ρ ̸= ν:

Tr[γ5γµγν ] = ηρρTr[γργργ5γµγν ] = −ηρρTr[γργ5γµγνγρ] = −ηρρTr[γργργ5γµγν ] = 0,

where we have anticommuted γρ and used then cyclicity.

Finally let us consider

Tr[γ5γµγνγργσ].

First of all we notice that whenever two Lorentz indices are equal, this expression vanishes since it becomes propor-
tional to Tr[γ5γγ]. Moreover, because all indices are different, one gets a minus sign after every anticommutation
of two Dirac matrices. Thus this object is completely antisymmetric in its Lorentz indices and cannot but be
proportional to the Levi-Civita tensor:

Tr[γ5γµγνγργσ] = kϵµνρσ.

To work out the coefficient it is convenient to consider the particular case {µ, ν, ρ, σ} = {3, 2, 1, 0} and use the
definition γ5 = iγ0γ1γ2γ3, to get

Tr[iγ0γ1γ2γ3γ3γ2γ1γ0] = kϵ3210 =⇒ −4i = k.

Thus

Tr[γ5γµγνγργσ] = −4iϵµνρσ.
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