Quantum Field Theory
Set 7

Exercise 1: Charge conjugation of Dirac Lagrangian

Recalling the transformation properties of Weyl fermions under charge conjugation

CTx1 C =nrexp,
C'xrC = nrexi,

show that the Dirac action
S = /d4x (zXTL a0, xr + ixka“aupr — m(X}%XL + XEXR))

is invariant only for the choice njnr = —1. Derive the matrix Uc that describes the transformation properties of
a Dirac fermion according to the following formula:

CTyC=ncUcy”, ¢=<XL>.
XR

Show that Ug = i7%42.

Exercise 2: Charge conjugation properties of a particle-antiparticle system

Consider a scalar particle-antiparticle pair in the center of mass frame. Assume that their total angular momentum
is [. Hence this state can be written as

@) = / i f(7, P @b} (=7)[0).

Recalling the symmetry properties of a state with angular momentum [, namely f;(p, —p) = (—=1)"f;(—p, p), and
the action of charge conjugation on scalars

Cal(k)C = nebl(k),  Obf(k)C = neal(k),

find the transformation properties of the state |®;) under C.
Consider now a generic state composed of a fermionic particle-antiparticle pair with angular momentum [ and
total spin S:

Wis) = 3 [ d 7.~ xs(r. OV (r (-0

r,t=1

where df(t,—p) = df (t/, —p)e'™’. The action of charge conjugation is defined as
Cbl (r,k)C = —ndi(r k), Cdi(r,k)C = ncb'(r,k),
and the wave functions satisfy
fm =) = D' fRD),  xs(rt) = (=) s (7).

Find the transformation properties of the state |¥; g) under C.



Exercise 3: Transformation properties of fermionic bilinears

Knowing the transformation properties of a Dirac fermion v under charge conjugation,
Clip(t, Z)C = —incy*y*(t, ),
deduce the transformation properties of all the bilinears of the form 1T, where T is an element of the usual basis

T = {14,7°,¥*,v"9°,+*}.

Exercise 4: local interactions and superposition principle

Consider a free Klein Gordon theory ¢(z). Given an operator O, define its normal ordered form, denoted by : O :,
as the operator obtained writing by hand all creation operators to the left of all destruction operators. Thus for
instance : apaj, = a;;ap. Similarly, writing () as a sum of the positive and the negative frequency part:

p(x) = pi(z) + o—(2),

pla) = [ deMal, p-(a) = [ e,
we get:
p(2)? =0t + 92 + 2010,
(@)t =0 + 40t o + 60507 + 4000 + ol

e Consider an orthonormalized one particle state |¥U) = [ dQyf(k)al|0) and define f(z) = [ dQyf(k)e ™.
Compute the expectation value (¥ : p(z)? : |¥)

e Consider now an orthonormalized two particle state |¥) = fdQlngfl (kl)fg(kg)alla,TEzJO). Work in the
asymptotic limit where f; and fo are spacially separated (for instance fi(k) = fo(k)e!f* with |R| — o00).
Compute (U|W), (U] : p(x)? : |¥) and (V| : p(x)* : |[¥). Discuss the result.

e Now consider two wave-packets with width A centered in kg and —kj in momentum space meaning;:

2234 jk—kg)? ika
fl(k) = W@ QAS +ik: 7

2\/571'3/4 _ Ik+kq|? —i
fg(k) = W@ 2A2 ka7

2

consider the time evolution of these states and compute again (¥| : p(z)* : |¥). Comment your results.



