Exam
Quantum Field Theory 1

Exercise 1 Disclaimer: In the solution, for pedagogical reasons, we have presented almost every step of the
computations (see for instance eq. 5)). No need to be that detailed at the exam, as long as what you claim is
correct ©.

In this exercise, we use greek letters (a, j3...) for spinorial indices, the letters 4, j, k, ... for the indices of the triplet
representation of isospin SU(2) and letters a, b, ¢, ... for the indices doublet representation of isospin SU(2).

There are various ways to deal with the indices in the case when you have objects like the fermions ,, one
Lorentz, «, and one isospin, a. In class we basically always avoided writing the Lorentz indices for spinors, though
in part of section 5.2.3 of lecture notes we show how to set up a consistent convention for dealing with explicit
spinor indices. So we can equivalently write

(e ap A" [WXey] = (€0")ab A" ape® Vi

where in the left-hand side we did not display Lorentz indices and indicated the Lorentz invariant contraction of
spinors by [1/156%/11)]- We put a hat on the Lorentz € to distinguish it from the Isospin €, just to avoid confusion.

The isospin symmetry acts on the fields as (U;b = Uy, and U;bch = dac)

U, = Uy Uy, Ul = (U, (1)

with U an SU(2) matrix, which can be written as U = e=' 7 A transforms as a triplet (7 = 1) so with a matrix
R(U) € SO(3) that represents U:

Ai = RigAj, Ry = ("), (Tu)iy = —icai; (2)

e Notice that A; has dimension 1 and %, has dimension 3/2.

The only term of dimension 2 that we can write is just the mass term AT A = A; A;, which is already there
in the free theory.

With dimension 3, we don’t have any term that respect all the symmetries.

With dimension 4 we can write the term we already have, 1!5"9,1,, and also (A;A4;)%. Another term we
can write is

Ai(e0i)ap [ty €] (3)

Under Lorentz transformations, the combination [t/ éy] is invariant since, in matrix notation the spinors
transform as ¢ — Dr(A), T — T Dp(A)T, so [T éy] transforms as

DL(A)Y'eDL(A) = éDr(A) DL (A) = ¢ (4)

Under SU(2) transformations we have that the term in eq. 3 is invariant

Ai(€0i)ap[tbn €bp] = R(U)i; A; (U €030 ) ge[ (907 aétbe] =
R(U)i; A (UTe  eaiU)ac[(97)aétpe] =
= R(U)i; A (U 03U ) ae[($7) aéthe] = (5)
R(U)ij AjR(U N pi(eon)ac[(¥7)aéte] =
A

T
e Ti iaseose! o _ _
where we used UT = 7175 = ei®icvic " = ¢ei®i%i¢~l = UTe~! (remember 0! = —eo;e™!). We have also

used that (see Set 8) UTo;U = R(U)yo; = R(UV)j01, and R(U)R(UT) = 1 (and also R(UT) = R(U)7, as
these are just the usual orthogonal matrices of SO(3)).



e The infinitesimal SU(2) transformations are

U, W, — W%wb =T, + Al 0

_ (6)
A = A+ it (T Aj = A + aeqijAj = Ai + AY ot
So the Noether current is iy ar
Jh= AL A =
(9,40~ T 99, A7) " (7)
_ (wa)fau (U;)abwb + (8HAj)€ijkAk
and the charge is ([ - -] indicates Lorentz contracted spinor indices)
/ P J? = / P ( T0)ab ] + e (804, )Ak) (8)
e In the quantized theory the fields obey the standard (anti)commutation relations
{ta(z),¥u(y)} =0,  [Ai(Z,1),4;(7,8)] =0 )
(Y} = 68D (@ =), [mi(@.1), A;(5.8)] = i858 (% — ),
with m;(z) = (80A y = A A;.
e Putting 9* =0 (a = 1,2) we compute (for simplicity here we denote x = (Z, ) and the same for y)
@] = [ @ [ @y (+eameul @A™ (), 4°()0° 2 ) =
= [ @ [ @y (mesund!(2)0°A™ (@), A°W)0° A ) + A (A (0), P APA () = (10)

/ (—iA7 (2)0° A () + 1A' (2)0° A (2)) = iy, / B3 iegm Al (2)0° A™ () = i€k Qr

where we have used the commutation relations and the property €im€jom = 0:i01q — 0ia0;. The SU(2)
algebra is correctly reproduced.

o Setting A; = 0 we have
- o o (2
- / o [y ”;% (wwwa(m),wwy)wd(y)] FRM@), 6P ) @) =
= [ [y 12 Ot gty a), 710 ) — 0 ) 0 )00 ) =

:/ds (U;ﬁ( )bdQ/JTaﬁ’d @( )Ca¢Tcwb /de ([%7%])ab¢mﬂ)b=i€ijk@k

cd 1o >wb<x>,w*6<y>w<y>1) -

(11)

where we have used [A, BC] = {4, B}C — B{A,C} and 0,0; = §;; + i€;j,05. The SU(2) algebra is also
satisfied in this case.

Exercise 2 In this exercise we are using the Euclidean metric such that L? = L;.

e In the first point we have to prove that J [¢)) = [ dQ1dQs {[L(k1) + L(ko)] f(k1,k2)} a'(k1)a' (ko) |0), where,

d3k
dQp = ————. 12
M7 (2r)32E, (12)
We can easily prove it using the commutation relations,
[a(k), a' (p)] = (27)°2E,5%(k - p), (13)



and
Ji = —j / dQa’ (k) (K07 — k;0;)a(k), (14)

and J* = ¥ J% . With this,
J ) = /koaT(k)L(k)a(k)/dQldQQf(kl,kg)aT(kl)aT(kg) |0)
= / dQdQ1dQs f(k1, k2 )a' (k)L(k)a(k)a (k1 )a' (ko) [0) (15)
= [ 40d9. (IL0a) + L)l ) af ()l () 0]

where we have used the commutation relations,

a(k)a' (ki)a' (ko) |0) = (27)32E), (6% (ki — k)a' (k2) + 6% (ks — k)a' (k1)) |0), (16)
the fact that a(k)|0) = 0, then we used that 3?& 3k —p) = _B(Z'i §3(k — p), afterwards we evaluated the

delta function and then we integrated by parts each of the terms.

Now we go to the center of mass frame where f(k;, ko) = 6@ (k; + ko)g(k;). Notice that (L(k;) +
L(k2))5%(k; + ko) = 0. In this frame,

1
Wew = [ 0 gmzralal (9l (<1 10). a7
With this, evaluating the ko integration we have,
1
310) = [ a9 G Lk el ()l (k) ). (18)

Notice that since Ey = f(k?), it commutes with the angular momentum.

Now we take k; = |k1|(sinf cos ¢,sinfsin ¢, cos¢). We are working in the center of mass frame with
g(ky) = (27)6(|k1|—k) sin(#)e~*. We should compute L3(ki)g(ky). After an explicit computation we can see
that L?(k;)g(k;) = —g(ki). This is expected because the wave function that we are given g(k1) o< Y7 (6, ¢).
With this, J3 [¢) = — |4).

In order to compute the angular momentum we should of course compute J 2 |1). We have two ways to do
it, computing J* [¢)) explicitly we get J*|¢)) = 2|¢)). Then the angular momentum of the state is [ = 1.
Again this is what we expected since g(k;) o< Y, *(0,6). We can also check that J~ |¢)) = 0, and since
J3 b)) = — |b) with our knowledge of group theory for the angular momentum, our state must have [ = 1.

It is easy to guess looking at the computation we did before,
J ) = /dﬁldﬁz...dﬁn {[L(k1) + L(ko) + .. + L(ky)] f (ki1 Ko, oo ki) ol (k)T (ko) ..a () [0) (19)
where we just used that the n-particle state has the form:

1) = /dQldQQ...dQn fki, ko, ...k, )al (ky)al (ko)...af (k,) |0) . (20)

In the lecture we saw that the angular momentum for particles with spin 1/2 reads,

Jy, = /di”xﬁ/ﬂ [;zx (—iV) +§ Y, (21)
with
< (3 0
X = (0 &.) (22)

As we can see, in this case we will have to consider orbital angular momentum and spin. Also we should
take into account that when acting on an n-particles state, the a and a' satisfy anticommutation relations.
Look at section 5.5.6 (Angular momentum and boosts) of the lecture notes.



