
Exam

Quantum Field Theory I

Exercise 1 Disclaimer: In the solution, for pedagogical reasons, we have presented almost every step of the
computations (see for instance eq. 5)). No need to be that detailed at the exam, as long as what you claim is
correct ,.

In this exercise, we use greek letters (α, β...) for spinorial indices, the letters i, j, k, ... for the indices of the triplet
representation of isospin SU(2) and letters a, b, c, ... for the indices doublet representation of isospin SU(2).

There are various ways to deal with the indices in the case when you have objects like the fermions ψaα one
Lorentz, α, and one isospin, a. In class we basically always avoided writing the Lorentz indices for spinors, though
in part of section 5.2.3 of lecture notes we show how to set up a consistent convention for dealing with explicit
spinor indices. So we can equivalently write

(ϵσi)abA
i
[
ψT
a ϵ̂ψb

]
= (ϵσi)abA

i ψaβ ϵ̂
βαψbα

where in the left-hand side we did not display Lorentz indices and indicated the Lorentz invariant contraction of
spinors by

[
ψT
a ϵ̂ψb

]
. We put a hat on the Lorentz ϵ to distinguish it from the Isospin ϵ, just to avoid confusion.

The isospin symmetry acts on the fields as (U†
ab = U∗

ba and U†
abUbc = δac)

Ψa → Uab Ψb , Ψ†
a → Ψ†

b(U
†)ba (1)

with U an SU(2) matrix, which can be written as U = e−iαi σi

2 . A⃗ transforms as a triplet (j = 1) so with a matrix
R(U) ∈ SO(3) that represents U :

Ai → RijAj , Rij = (eiα
aTa

)ij , (Ta)ij = −iϵaij (2)

• Notice that Ai has dimension 1 and ψa has dimension 3/2.

The only term of dimension 2 that we can write is just the mass term ATA = AiAi, which is already there
in the free theory.

With dimension 3, we don’t have any term that respect all the symmetries.

With dimension 4 we can write the term we already have, ψ†
aσ̄

µ∂µψa, and also (AiAi)
2. Another term we

can write is
Ai(ϵσi)ab[ψ

T
a ϵ̂ψb] (3)

Under Lorentz transformations, the combination [ψT ϵ̂ψ] is invariant since, in matrix notation the spinors
transform as ψ → DL(Λ)ψ,ψ

T → ψTDL(Λ)
T , so [ψT ϵ̂ψ] transforms as

DL(Λ)
T ϵ̂DL(Λ) = ϵ̂DR(Λ)

†DL(Λ) = ϵ̂ (4)

Under SU(2) transformations we have that the term in eq. 3 is invariant

Ai(ϵσi)ab[ψ
T
a ϵ̂ψb] →R(U)ijAj(U

T ϵσiU)de[(ψ
T )dϵ̂ψe] =

= R(U)ijAj(ϵU
†ϵ−1ϵσiU)de[(ψ

T )dϵ̂ψe] =

= R(U)ijAj(ϵU
†σiU)de[(ψ

T )dϵ̂ψe] =

= R(U)ijAjR(U
†)ki(ϵσk)de[(ψ

T )dϵ̂ψe] =

= Aj(ϵσj)de[(ψ
T )dϵ̂ψe]

(5)

where we used UT = e−iαi
σT
i
2 = eiαiϵσiϵ

−1

= ϵeiαiσiϵ−1 = ϵU†ϵ−1 (remember σT
i = −ϵσiϵ−1). We have also

used that (see Set 8) U†σiU = R(U)ilσl = R(U†)liσl, and R(U)R(U†) = 1 (and also R(U†) = R(U)T , as
these are just the usual orthogonal matrices of SO(3)).



• The infinitesimal SU(2) transformations are

Ψa → Ψa − iαi (σ
i) b

a

2
Ψb = Ψa +∆i

Ψ,aα
i ,

Ai → Ai + iαa(T a) j
i Aj = Ai + αaϵaijAj = Ai +∆a

A,iα
a

(6)

So the Noether current is

Jµ
i =

∂L
∂(∂µψa)

∆i
Ψ,a +

∂L
∂(∂µAj)

∆i
A,j =

= (ψa)†σ̄µ (σi)ab
2

ψb + (∂µAj)ϵijkAk

(7)

and the charge is ([· · · ] indicates Lorentz contracted spinor indices)

Qi =

∫
d3x J0

i =

∫
d3x

(
(σi)ab

2
[ψ†

aψb] + ϵijk(∂
0Aj)Ak

)
(8)

• In the quantized theory the fields obey the standard (anti)commutation relations

{ψa(x), ψb(y)} = 0, [Ai(x⃗, t), Aj(y⃗, t)] = 0

{ψa, ψ
†
b} = δabδ

(3)(x⃗− y⃗), [πi(x⃗, t), Aj(y⃗, t)] = −iδijδ(3)(x⃗− y⃗),
(9)

with πi(x) =
∂L

∂(∂0Ai)
= ∂0Ai.

• Putting ψa = 0 (a = 1, 2) we compute (for simplicity here we denote x = (x⃗, t) and the same for y)

[Qi, Qj ] =

∫
d3x

∫
d3y

(
+ϵilmϵjab[A

l(x)∂0Am(x), Aa(y)∂0Ab(y)]
)
=

=

∫
d3x

∫
d3y

(
ϵilmϵjabA

l(x)[∂0Am(x), Aa(y)]∂0Ab(y) +Aa(y)[Al(x), ∂0Ab(y)]∂0Am(x)
)
=

=

∫
d3x

(
−iAj(x)∂0Ai(x) + iAi(x)∂0Aj(x)

)
= iϵijk

∫
d3x iϵklmA

l(x)∂0Am(x) = iϵijkQk

(10)

where we have used the commutation relations and the property ϵilmϵjam = δijδla − δiaδlj . The SU(2)
algebra is correctly reproduced.

• Setting Ai = 0 we have

[Qi, Qj ] =

∫
d3x

∫
d3y

(
(σi)ab

2

(σj)cd
2

[ψ†a(x)ψb(x), ψ†c(y)ψd(y)]

)
=

=

∫
d3x

∫
d3y

(σi)ab
2

(σj)cd
2

(
ψ†a(x)[ψb(x), ψ†c(y)ψd(y)] + [ψ†a(x), ψ†cψd(y)]ψb(x)

)
=

=

∫
d3x

∫
d3y

(σi)ab
2

(σj)cd
2

(
ψ†a(x){ψb(x), ψ†c(y)}ψd(y)− ψ†c(y){ψ†a(x), ψd(y)}ψb(x)

)
=

=

∫
d3x

(σi)ab
2

(σj)bd
2

ψ†aψd − (σi)ab
2

(σj)ca
2

ψ†cψb =

∫
d3x ([

σi
2
,
σj
2
])abψ

†aψb = iϵijkQk

(11)

where we have used [A,BC] = {A,B}C − B{A,C} and σiσj = δij + iϵijkσk. The SU(2) algebra is also
satisfied in this case.

Exercise 2 In this exercise we are using the Euclidean metric such that Li = Li.

• In the first point we have to prove that J |ψ⟩ =
∫
dΩ1dΩ2 {[L(k1) + L(k2)]f(k1,k2)} a†(k1)a

†(k2) |0⟩, where,

dΩk =
d3k

(2π)32Ek
. (12)

We can easily prove it using the commutation relations,[
a(k), a†(p)

]
= (2π)32Ekδ

3(k− p), (13)
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and

J ij = −i
∫
dΩka

†(k)(ki∂j − kj∂i)a(k), (14)

and Jk = εkijJ ij . With this,

J |ψ⟩ =
∫
dΩka

†(k)L(k)a(k)

∫
dΩ1dΩ2f(k1,k2)a

†(k1)a
†(k2) |0⟩

=

∫
dΩkdΩ1dΩ2f(k1,k2)a

†(k)L(k)a(k)a†(k1)a
†(k2) |0⟩

=

∫
dΩ1dΩ2 {[L(k1) + L(k2)]f(k1,k2)} a†(k1)a

†(k2) |0⟩ ,

(15)

where we have used the commutation relations,

a(k)a†(k1)a
†(k2) |0⟩ = (2π)32Ek

(
δ3(k1 − k)a†(k2) + δ3(k2 − k)a†(k1)

)
|0⟩ , (16)

the fact that a(k) |0⟩ = 0, then we used that ∂
∂ki δ

3(k − p) = − ∂
∂pi δ

3(k − p), afterwards we evaluated the
delta function and then we integrated by parts each of the terms.

• Now we go to the center of mass frame where f(k1,k2) = δ(3)(k1 + k2)g(k1). Notice that (L(k1) +
L(k2))δ

3(k1 + k2) = 0. In this frame,

|ψ⟩CM =

∫
dΩk

1

(2π)32Ek
g(k)a†(k)a†(−k) |0⟩ , (17)

With this, evaluating the k2 integration we have,

J |ψ⟩ =
∫
dΩ1

1

(2π)32Ek1

L(k1)g(k1)a
†(k1)a

†(−k1) |0⟩ . (18)

Notice that since Ek = f(k2), it commutes with the angular momentum.

• Now we take k1 = |k1|(sin θ cosϕ, sin θ sinϕ, cosϕ). We are working in the center of mass frame with
g(k1) = (2π)δ(|k1|−k) sin(θ)e−iϕ. We should compute L3(k1)g(k1). After an explicit computation we can see
that L3(k1)g(k1) = −g(k1). This is expected because the wave function that we are given g(k1) ∝ Y −1

1 (θ, ϕ).
With this, J3 |ψ⟩ = − |ψ⟩.

• In order to compute the angular momentum we should of course compute J2 |ψ⟩. We have two ways to do
it, computing J2 |ψ⟩ explicitly we get J2 |ψ⟩ = 2 |ψ⟩. Then the angular momentum of the state is l = 1.
Again this is what we expected since g(k1) ∝ Y −1

1 (θ, ϕ). We can also check that J− |ψ⟩ = 0, and since
J3 |ψ⟩ = − |ψ⟩ with our knowledge of group theory for the angular momentum, our state must have l = 1.

• It is easy to guess looking at the computation we did before,

J |ψ⟩ =
∫
dΩ1dΩ2...dΩn {[L(k1) + L(k2) + ...+ L(kn)]f(k1,k2, ...,kn)} a†(k1)a

†(k2)...a
†(kn) |0⟩ (19)

where we just used that the n-particle state has the form:

|ψn⟩ =
∫
dΩ1dΩ2...dΩn f(k1,k2, ...,kn)a

†(k1)a
†(k2)...a

†(kn) |0⟩ . (20)

• In the lecture we saw that the angular momentum for particles with spin 1/2 reads,

Jk =

∫
d3x⃗ψ†

[
x⃗× (−i∇⃗) +

Σ⃗

2

]
ψ, (21)

with

Σ⃗ =

(
σ⃗ 0
0 σ⃗.

)
(22)

As we can see, in this case we will have to consider orbital angular momentum and spin. Also we should
take into account that when acting on an n-particles state, the a and a† satisfy anticommutation relations.
Look at section 5.5.6 (Angular momentum and boosts) of the lecture notes.
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