
Exercises in preparation for the exam

A typical exam exercise may contain two or three questions (bullet points)
of this kind.

Exercise 1: consider a Dirac field triplet ψi and a scalar triplet ϕi.

• Write the most general relativistic Lagrangian invariant under SO(3)
up to terms with dimension d ≤ 4. Does it change if we require invari-
ance under O(3)?

Exercise 2: Consider a real neutral scalar field. The ladder operators
satisfy:

[a(k), a†(p)] = (2π)32Ekδ
3(k− p) .

Given the following state,

|ψ⟩ =
∫
dϕdθ sin θ

(
e2iϕ sin2 θ a†(kθ,ϕ)|0⟩

)
,

where kθ,ϕ = |k|(sin θ cosϕ, sin θ sinϕ, cosϕ),

• show that

J3|ψ⟩ = 2|ψ⟩ and J iJ i|ψ⟩ = 6|ψ⟩ ,

where J i = 1
2
ϵijkJ jk is the angular momentum operator:

J ij = −i
∫
dΩk

[
a†(k)

(
ki

∂

∂kj
− kj

∂

∂ki

)
a(k)

]
.

Hint: Notice that eiϕ sin θ = (k1 + ik2)/|k|.

Exercise 3: Given T i = 1
2
a†ασ

i
αβaβ with the commutation relations

[aα, a
†
β] = δαβ, [aα, aβ] = 0

• Prove that [T i, T j] = iϵijkT k

Given Si = 1
2
b†ασ

i
αβbβ with the anticommutation relations

{bα, b†β} = δαβ, {bα, bβ} = 0

• Prove that [Si, Sj] = iϵijkSk



Exercise 4: Consider a SU(2) scalar doublet ϕα (α = 1, 2) with Lagrangian

L = ∂µϕ
†
α∂

µϕα − V
(
ϕ†
αϕα
)
.

The SU(2) charges are given by

Qk = −i
∫
d3x

[(
∂0ϕ

†
α

) σkαβ
2
ϕβ − ϕ†

α

σkαβ
2
∂0ϕβ

]
, k = 1, 2, 3 .

• Compute the commutator [Qi, ϕα].

• Bonus question: use the Jacobi identities to compute [Qi, Qj].

Exercise 5: Consider four different scalars ϕ1, ϕ2, ϕ3 and ϕ4.

• Prove that εµνρσ∂µϕ1∂νϕ2∂ρϕ3∂σϕ4 is a total derivative.

• Write a Lorentz invariant term involving a the Levi-civita tensor εµνρσ
which is not a total derivative.

Exercise 6: Consider the following Lagrangian for a Dirac fermion ψ:

L = iZψ̄γµ∂µψ −Mψ̄ψ − iM̃ψ̄γ5ψ.

• Find the equations of motion. What is the mass of the Dirac particle?

• Prove that the above Lagrangian can be recast in the standard Dirac
form via a field redefintion of the kind ψ → eα+iβγ5ψ with α, β ∈ R.

Exercise 7: consider the following Lagrangian for a scalar field ϕ:

L =
1

2
(∂ϕ)2 − λ(∂ϕ)2□ϕ

• What is the dimensionality of λ?

• Find the equations of motion. Can you identify the symmetries of the
equations of motion?

Exercise 8: consider two scalars ψI and ϕI , I = 1, 2, 3 transforming as
triplets under an internal SU(2), called Isospin.

• Decompose the product ψIϕJ into irreducible representations of SU(2).

• Given a third scalar χIJ , what constraint should it satisfy for it to
correspond to Isospin 2?

• Write the most general Lagrangian for ϕI , ψI and χIJ (satisfying the
above constraints) involving only terms with dimension d ≤ 4.



Exercise 9: ConsiderN left-handed fermions ψaL andN right-handed fermions
ψaR, a = 1, . . . , N with Majorana and Dirac mass matrix

L = i(ψaL)
†σ̄µ∂µψ

a
L + i(ψaR)

†σµ∂µψ
a
R

−
[
(ψaL)

†mabψ
b
R + h.c.

]
− 1

2

[
(ψaR)

T iσ2Mabψ
b
R + h.c.

]
• Show that the Lagrangian is Lorentz invariant

• For the last term to be non-vanishing, should Mab be symmetric or
anti-symmetric?

• Find the equations of motion. What happens if mab = 0?

Remark: when deriving the the equations of motion you should consider
the fields and their variation as anticommuting variables. For instance given
two anti commuting variables χ1 and χ2 we have δ(χ1χ2) = δχ1χ2+χ1δχ2 =
δχ1χ2 − δχ2χ1.

Exercise 10: Given two scalar fields Hα and ϕα both transforming as dou-
blet under an internal SU(2), prove that

• – H∗
αHα ≡ H†H

– ϕ∗
αϕα ≡ ϕ†ϕ

– H∗
αϕα ≡ H†ϕ

– Hαϵαβϕβ ≡ HT ϵϕ ϵ = iσ2

are SU(2) singlets,

• – H†σiH

– HT ϵσiH

are SU(2) triplets,

• finally decompose explicitly into irreducible representations the follow-
ing SU(2) tensors

– (H†σiH)(H†σjH) = 2⊕ 0

– (H†σiH)(ϕ†σjϕ) = 2⊕ 1⊕ 0

Exercise 11: Given a Dirac spinor field ψ,

• study the transformation properties of the following bilinears

ψ̄ψ , ψ̄γµψ , ψ̄γµγνψ

under the field tranformation ψ → eiα+iβγ5ψ, with α, β ∈ R.



Solutions

Exercise 1

• To build SO(3) singlet we use the two invariant tensors δij and ϵijk.
Other limitations in the construction are the Lorentz invariance of the
Lagrangian and the request d ≤ 4. We find

L =
1

2
∂µϕ

i∂µϕi−1

2
M2ϕiϕi+iψ̄i/∂ψi−mψ̄iψi+igϵijkψ̄iψjϕk+

λ

4
(ϕiϕi)(ϕjϕj) ,

where the factors in front of the operators are conventional and the i
in the fifth term is such that g is a real number (check it).

The fifth term is invariant under SO(3) transformations but not under
O(3) transformations, since the ϵ tensor would eventually give a fac-
tor equal to the determinant of the transformation. So the theory is
invariant under O(3) only if g = 0.

Exercise 2

• It is useful to notice immediately that

Lij(k)f(|k|) = 0 , Lij(k) = −i
(
ki

∂

∂kj
− kj

∂

∂ki

)
.

Indeed Lij(k) is the differential operator generating infinitesimal rota-
tions and an arbitrary function of |k| is invariant under rotations. This
result corresponds to the well known fact that when working in polar
coordinates the differential operator L̂ij only depends on the angles θ,
ϕ and their derivatives. Consequently, in order to integrate by parts
when considering the action of L̂ij, it is sufficient to just integrate over
the angles.
Consider now a state

|Ψ⟩ =
∫
d cos θdϕf(kθ,ϕ)a

†(kθ,ϕ) |0⟩

with f(k) an arbitrary function and kθ,ϕ defined as previously. Using

a(p) |0⟩ = 0 and the commutation relations (recalling dΩp =
d3p

(2π)32Ep
),

we have

J ij|Ψ⟩ =
∫
d cos θ dϕ dΩk

[
a†(p)Lij(p)

]
f(kθ,ϕ)

[
a(p), a†(kθ,ϕ)

]
|0⟩

=

∫
d cos θ dϕ

[
Lij(kθ,ϕ)f(kθ,ϕ)

]
a†(kθ,ϕ) |0⟩ ,



where we also used ∂
∂pi
δ3(k−p) = − ∂

∂ki
δ3(k−p) and then we integrated

by parts. In the case of interest we consider

f(k) = e2iϕ sin2 θ =
(k1 + ik2)2

|k|2

and we have (defining Li = 1
2
ϵijkLjk)

J i|ψ⟩ =
∫
dϕdθ sin θ

[
Li(kθ,ϕ)f(kθ,ϕ)

]
a†(kθ,ϕ)|0⟩ ,

J iJ i|ψ⟩ =
∫
dϕdθ sin θ

[
Li(kθ,ϕ)L

i(kθ,ϕ)f(kθ,ϕ)
]
a†(kθ,ϕ)|0⟩ ,

Recalling that the L(k)’s act trivially on functions of |k|, an explicit
computation gives: 1

L3(k)f(k) = 2f(k) , Li(k)Li(k)f(k) = 6f(k) ,

and consequently

J3|ψ⟩ = 2|ψ⟩ , J iJ i|ψ⟩ = 6|ψ⟩ .

Exercise 3

• using the first result in the solution of exercise 3 of set 14, we have

[T i, T j] =
1

4
a†α
[
σi, σj

]
αβ
aβ =

1

2
a†αiϵ

ijkσkαβaβ = iϵijkT k.

• The same steps can be used to show [Si, Sj] = iϵijkSk.

Exercise 4

• Remember the commutation relation

[ϕα(t,x), πβ(t,y)] = [ϕα(t,x), ∂0ϕ
†
β(t,y)] = iδ(3)(x− y)δαβ .

From this we find

[Qi, ϕα(t,x)] = −i
∫
d3y[∂0ϕ

†
β(t,y), ϕα(t,x)]

σiβγ
2
ϕγ(t,y) = −

σiαγ
2
ϕγ(t,x) .

1The following properties imply that the function e2iϕ sin2 θ is proportional to the
m = ℓ = 2 spherical harmonic.



• To find [Qi, Qj] consider the nested commutator [[Qi, Qj], ϕα(t,x)]. We
then use the Jacobi identity and the result of the previous calculation
to find

[[Qi, Qj], ϕα] = −[[Qj, ϕα], Qi]− [[ϕα, Qi], Qj]

=
σjαβ
2

[ϕβ, Qi]−
σiαβ
2

[ϕβ, Qj]

= −

(
σiαβ
2

σjβγ
2

−
σjαβ
2

σiβγ
2

)
ϕγ

= −iϵijk
σkαγ
2
ϕγ = iϵijk[Qk, ϕα] ,

where we have used [σi, σj] = 2iϵijkσk. We then see that the Noether
charges have the same algebra of the symmetry group of the theory
SU(2).

Exercise 5

• due to Schwarz theorem ϵµνρσ∂ρ∂σϕ = 0. Then

ϵµνρσ∂µϕ1∂νϕ2∂ρϕ3∂σϕ4 = ∂µ (ϵ
µνρσϕ1∂νϕ2∂ρϕ3∂σϕ4)

= ∂ν (ϵ
µνρσ∂µϕ1ϕ2∂ρϕ3∂σϕ4)

= ∂ρ (ϵ
µνρσ∂µϕ1∂νϕ2ϕ3∂σϕ4)

= ∂σ (ϵ
µνρσ∂µϕ1∂νϕ2∂ρϕ3ϕ4) .

• Notice that all terms of the kind

ϕn1
1 ϕ

n2
2 ϕ

n3
3 ϕ

n4
4 ϵ

µνρσ∂µϕ1∂νϕ2∂ρϕ3∂σϕ4

∝ ϵµνρσ∂µϕ
n1+1
1 ∂νϕ

n2+1
2 ∂ρϕ

n3+1
3 ∂σϕ

n4+1
4 ,

are total derivatives by the same steps above (to see it, it is enough
to rename ϕni+1

i → ϕi). In order to build a term which is not a total
derivative, we can for instance multiply ϵµνρσ∂µϕ1∂νϕ2∂ρϕ3∂σϕ4 by a
scalar which is different than ϕ1, ϕ2, ϕ3, ϕ4. The simplest possibility is
to use □ϕ1:

(□ϕ1) (ϵ
µνρσ∂µϕ1∂νϕ2∂ρϕ3∂σϕ4) .

One can also build other terms, e.g.

∂λϕ1 (ϵ
µνρσ∂µϕ1∂νϕ2∂ρϕ3∂λ∂σϕ4) .



Exercise 6

• We find the equations of motion for ψ with the usual procedure

(iZ /∂ −M − iγ5M̃)ψ = 0 .

To find the mass of ψ we multiply this equation by the complex conju-
gate of the operator in the equation

(−iZ /∂ −M + iγ5M̃)(iZ /∂ −M − iγ5M̃)ψ

=(Z2□+M2 + M̃2)ψ = 0 ,

where we have used the fact that /∂ /∂ = □ (prove it, it’s a simple
consequence of the Clifford algebra). We then see that ψ satisfies the
Klein-Gordon equation with squared mass m2

ψ = (M2 + M̃2)/Z2.

• The parameters Z, M and M̃ are redundant and two of them can be
eliminated through a field redefinition. In particular we can first rescale
the field

ψ → ψ/
√
Z

so that the Lagrangian becomes

L = iψ̄ /∂ψ − M

Z
ψ̄ψ − i

M̃

Z
ψ̄γ5ψ .

To see how to further eliminate one paramegter from the mass term it
is easier to work with the left- and right-handed components of ψ

ψ =

(
ψL
ψR

)
.

In this notation the mass terms become

−(M + iM̃)ψ̄LψR − (M − iM̃)ψ̄RψL = −meiθψ̄LψR −me−iθψ̄RψL

with
m ≡

√
M2 + M̃2 and θ ≡ arctan(M̃/M) .

In this form we see that we can eliminate the θ phase with a field
redefinition like

ψL → eiθ/2ψL, ψR → e−iθ/2ψR

that in terms of the full Dirac spinor ψ would be written as ψ →
e−iγ

5θ/2ψ. With this redefinitions we find the usual Dirac Lagrangian
where the mass of the particle is given by

mψ =

√
M2 + M̃2

Z
,

consistently with what we found before.



Exercise 7

• we have [L] = 4, [∂] = [ϕ] = 1, hence

[L] = [λ] + 4[∂] + 3[ϕ] = 0 =⇒ [λ] = −3 .

• the variation of the action is

δS =

∫
d4x

[
∂µϕ∂

µδϕ− 2λ (∂µϕ∂
µδϕ)□ϕ− λ (∂ϕ)2□δϕ

]
=

∫
d4x δϕ

[
−□ϕ+ 2λ∂µ (∂µϕ□ϕ)− λ□ (∂ϕ)2

]
=

∫
d4x δϕ

[
−□ϕ+ 2λ (□ϕ)2 − 2λ∂µ∂νϕ∂

µ∂νϕ
]
,

where we integrated by parts after the first line. The EOM then is

δS

δϕ
= −□ϕ+ 2λ (□ϕ)2 − 2λ∂µ∂νϕ∂

µ∂νϕ = 0.

The EOM is manifestly invariant under Poincaré transformations. No-
tice also that ϕ always appears with two derivatives acting on it. Then,
since ∂µ∂νx

ρ = 0, another symmetry is

ϕ→ ϕ+ bµxµ ,

where bµ is an arbitrary (constant) four-vector. 2

Exercise 8

• We have already decomposed the product of two spin-1 representations
of SU(2) in Problem Set 7 Exercise 2, where we found

1⊗ 1 = 0⊕ 1⊕ 2 ,

where the three irreducible representations of the decomposition are
respectively the trace, the antisymmetrization and the traceless sym-
metrization of the product. Explicitly

ψIϕJ =
1

3
ψKϕKδIJ +

1

2
(ψIϕJ − ψJϕI) +

1

2
(ψIϕJ + ψJϕI −

2

3
ψKϕKδIJ)

• From this we see that a two-index tensor field χIJ corresponds to an
Isospin-2 representation when

χIJ = χJI and δIJχIJ = 0 .

2Under this transformation the Lagrangian is invariant only up to a total derivative.



• The most general Lagrangian containing all three fields is

L =
1

2
∂µϕI∂

µϕI +
1

2
∂µψI∂

µψI +
1

2
∂µχIJ∂

µχIJ

− 1

2
m2
ϕϕIϕI −

1

2
m2
ψψIψI −

1

2
m2
χχIJχIJ

+ g1(ϕIϕJχIJ) + g2(ψIψJχIJ) + g3(ϕIψJχIJ)

+ µ1(ϵIJKϕIψJχKLϕL) + µ2(ϵIJKϕIψJχKLψL)

+ λ1(ϕIϕI)(ϕJϕJ) + λ2(ψIψI)(ψJψJ)

+ λ3(ϕIϕI)(ψJψJ) + λ4(χIJχIJ)(χKLχKL)

+ λ5(χIJχIJ)(ϕKϕK) + λ6(χIJχIJ)(ψKψK)

+ λ7(χIJχIJ)(ϕKψK) + λ8(χIJχJKχKLχLI) .

Exercise 9

• A Lorentz transformation on spacetime coordinates and on the spinor
fields is defined by

x′µ = Λµνx
ν ∂µ = Λ ν

µ ∂ν ΛµρΛ
ρ
ν = δµν

ψ′
L(x

′) = ΛLψL(x) ψ′
R(x

′) = ΛRψR(x) Λ−1
L = Λ†

R

where Λ, ΛL and ΛR furnish the same Lorentz transformation in re-
spectively the (1/2, 1/2), (1/2, 0) and (0, 1/2) representation. In line
with the discussion in class we have not explicitly shown the spinor in-
dices (an approach using the indices is outlined below following section
5.3 of the lecture notes, but it is strictly not necessary). In class we
furthermore showed that

ΛLσ
µΛ†

L = σνΛµ
ν ΛRσ̄

µΛ†
R = σ̄νΛµ

ν

so that from the above results we have

σµ∂′µ = ΛLσ
µ∂µΛ

†
L σ̄µ∂′µ = ΛRσ̄

µ∂µΛ
†
R

σ̄µ∂′µψ
′
L(x

′) = ΛRσ̄
µ∂µψL(x) σµ∂′µψ

′
R(x

′) = ΛLσ
µ∂µψR(x) .

The last two equations, together with Λ−1
L = Λ†

R, immediately imply
the Lorentz invariance of the first three terms in the action. Invariance
of the fourth term follows from ΛTRϵΛR = ϵ which was also derived in
class.

Alternatively we could follow the index notation discussed in section
5.3 of the lecture notes. A quick way to check Lorentz invariance is
to write explicitly primed and unprimed indices. In the notation of



chapter of 5 of the lecture notes, using iσ2 = ϵ = −ϵ−1, the Lagrangian
is written as

L = i[(ψaL)
∗]A

′
(σ̄µ∂µ)A′A(ψ

a
L)
A + i[(ψaR)

∗]A(σ
µ∂µ)

AA′
(ψaR)A′

−
{
[(ψaL)

∗]A
′
mab(ψ

b
R)A′ + h.c.

}
− 1

2

[
(ψaR)A′ϵA

′B′
Mab(ψ

b
R)B′ + h.c.

]
.

As all lower primed (unprimed) indices are contracted with upper
primed (unprimed) indices, the Lagrangian is Lorentz invariant.

• Since the fields are anticommuting variables, using ϵAB = −ϵBA, we
find

(ψaR)
T iσ2Mab(ψ

b
R) = (ψaR)A′ϵA

′B′
Mab(ψ

b
R)B′ = −(ψbR)B′ϵA

′B′
Mab(ψ

a
R)A′

= (ψbR)B′ϵB
′A′
Mab(ψ

a
R)A′ = (ψaR)B′ϵB

′A′
Mba(ψ

b
R)A′

= (ψaR)
T iσ2 (M)ba (ψ

b
R)

which implies Mab =Mba, hence M should be symmetric.

• To derive the EOMs, it is useful to write the Lagrangian explicitly: 3

L = i(ψaL)
†σ̄µ∂µψ

a
L + i(ψaR)

†σµ∂µψ
a
R

−
[
(ψaL)

†mabψ
b
R + (ψaR)

†m†
abψ

b
L

]
− 1

2

{
(ψaR)

T iσ2Mabψ
b
R − (ψaR)

†iσ2M
†
ab[(ψ

b
R)

†]T
}
.

Then, as the Lagrangian does not contain derivatives of (ψaL)
†, one

equation of motion is

∂L
∂(ψaL)

† = iσ̄µ∂µψ
a
L −mabψ

b
R = 0 .

To find the other EOM, it is convenient to restore indices and vary the
Lagrangian with respect to [(ψaR)

∗]A:

δL = i[(δψaR)
∗]A[σ

µ∂µψ
a
R]
A − [(δψaR)

∗]Am
†
ab(ψ

b
L)
A

− 1

2

{
[(δψaR)

∗]Aϵ
ABM †

ab[(ψ
b
R)

∗]B + [(ψaR)
∗]Aϵ

ABM †
ab[(δψ

b
R)

∗]B

}
= [(δψaR)

∗]A

{
[iσµ∂µψ

a
R]
A −m†

ab(ψ
b
L)
A − 1

2
ϵAB(M †

ab +M †
ba)[(ψ

b
R)

∗]B

}
where we used that (ψaR)

∗ and (δψbR)
∗ anti-commute and the antisym-

metry of ϵAB. Assuming M to be symmetric, we get

δS

δ(ψaR)
∗ = iσµ∂µψ

a
R −m†

abψ
b
L +M †

abiσ
2(ψbR)

∗ = 0 .

For mab = 0, the EOMs for ψL and ψR become independent.
3Recall that for two Grassmanian variables (χ1χ2)

∗ = χ∗
2χ

∗
1 (see problem set 12 ex. 3).



Exercise 10

• For this exercise we need a few relations that we proved during the
semester. In particular we need the fact that ϵ = iσ2 is an invariant
tensor of SU(2) (Problem Set 9 Exercise 2)

UϵUT = ϵ, U ∈ SU(2)

and the fact that the fundamental representation of SO(3) is the adjoint
representation of SU(2) (Problem Set 5 Exercise 3)

U †σiU = Ri
jσ

j R ∈ SO(3), .

• Given these relations is immediate to prove all the results of the first
two point of the exercise:

H†H → H†U †UH = H†H

ϕ†ϕ→ ϕ†U †Uϕ = ϕ†ϕ

H†ϕ→ H†U †Uϕ = H†ϕ

HT ϵϕ→ HTUT ϵUϕ→ HT ϵϕ

are all singlets while

H†σiH → H†U †σiUH = Ri
jH

†σjH

HT ϵσiH → HTUT ϵσiUH = HT ϵU †σiUH = Ri
jH

T ϵσjH

are triplets.

• Since they are triplet we can use the decomposition of Exercise 10 of
this sheet to get

(H†σiH)(H†σjH) =
1

3
(H†σkH)(H†σkH)δij

+
1

2

[
(H†σiH)(H†σjH) + (H†σjH)(H†σiH)

−2

3
(H†σkH)(H†σkH)δij

]
and

(H†σiH)(ϕ†σjϕ) =
1

3
(H†σkH)(ϕ†σkϕ)δij

+
1

2

[
(H†σiH)(ϕ†σjϕ)− (H†σjH)(ϕ†σiϕ)

]
+

1

2

[
(H†σiH)(ϕ†σjϕ) + (H†σjH)(ϕ†σiϕ)

−2

3
(H†σkH)(ϕ†σkϕ)δij

]
.

In the first case the antisymmetric part of course vanishes.



Exercise 11

• The thing to remember is that γ5 anticommutes with all the gamma
matrices. This means that eiαγµ = γµ eiα, but eiαγ

5
γµ = γµ e−iαγ

5
. We

have

ψ → eiα+iβγ
5

ψ

ψ̄ → ψ̄e−iα+iβγ
5

.

We will also need the following result

eiβγ5 = cos β + i sin βγ5

that can be easily proven by Taylor expanding the exponential and
using (γ5)2 = 1. With these results we find

ψ̄ψ → ψ̄ei2βγ
5

ψ = cos 2β ψ̄ψ + i sin 2β ψ̄γ5ψ

ψ̄γµψ → ψ̄γµψ

ψ̄γµγνψ → ψ̄γµγνei2βγ
5

ψ = cos 2β ψ̄γµγνψ + i sin 2β ψ̄γµγνγ5ψ


