Exercises in preparation for the exam

A typical exam exercise may contain two or three questions (bullet points)

of this kind.

Exercise 1: consider a Dirac field triplet v; and a scalar triplet ¢;.

e Write the most general relativistic Lagrangian invariant under SO(3)
up to terms with dimension d < 4. Does it change if we require invari-
ance under O(3)7

Exercise 2: Consider a real neutral scalar field. The ladder operators
satisfy:
la(k), a(p)] = (27)°2E36°(k — p) .

Given the following state,

) = /dgf)d@ sin @ (e*?sin® 6 a'(kg,»)[0)) ,

where kg , = |k|(sin 6 cos ¢, sin 0 sin ¢, cos ¢),

e show that

Jl)y=2[¢)  and  JU') = 6[v),

where J' = %eijkﬂk is the angular momentum operator:

Ji = —j / dQy, {af(k) (ki% — K ai@) a(k)} :

Hint: Notice that e sin6 = (k! + ik?)/|k|.

Exercise 3: Given T" = %agafwaﬁ with the commutation relations
[ ag] = 03, [aa,ap] =0
e Prove that [T%, T7] = ie"*T*

Given S* = $bl07 305 with the anticommutation relations

{ba: b} =0as, {basbs} =0

e Prove that [S¢) S7] = jetiF Sk



Exercise 4: Consider a SU(2) scalar doublet ¢, (a = 1,2) with Lagrangian
L=0,010"ba —V (¢L0a) -
The SU(2) charges are given by

Uk Uk
Qu=—i / d’x [(amb;) b5 = 0L 0da| . k=123

e Compute the commutator [Q;, ¢a].

e Bonus question: use the Jacobi identities to compute [Q;, Q;].

Exercise 5: Consider four different scalars ¢1, @2, ¢3 and ¢4.

e Prove that e"7?0,010,020,¢30,¢4 is a total derivative.

e Write a Lorentz invariant term involving a the Levi-civita tensor €, ),
which is not a total derivative.

Exercise 6: Consider the following Lagrangian for a Dirac fermion 1):
L = iZpy"01) — Mipp — iMipysy.
e Find the equations of motion. What is the mass of the Dirac particle?

e Prove that the above Lagrangian can be recast in the standard Dirac
form via a field redefintion of the kind v — e®T#%¢) with o, 3 € R.

Exercise 7: consider the following Lagrangian for a scalar field ¢:
1
L= 5(09)" = M99)°0¢

e What is the dimensionality of A7

e Find the equations of motion. Can you identify the symmetries of the
equations of motion?

Exercise 8: consider two scalars ¢; and ¢;, I = 1,2,3 transforming as
triplets under an internal SU(2), called Isospin.

e Decompose the product ¥;¢; into irreducible representations of SU(2).

e Given a third scalar yr;, what constraint should it satisfy for it to
correspond to Isospin 27

e Write the most general Lagrangian for ¢, ¢; and x;; (satisfying the
above constraints) involving only terms with dimension d < 4.



Exercise 9: Consider NV left-handed fermions ¢¢ and N right-handed fermions
Y%, a=1,..., N with Majorana and Dirac mass matrix

L = i) e" 08 +i(vg) " 005
1

- [(Q/JZ)T mat + h.cl ~3 (V%) ioo Mapthy, + h.c.]

e Show that the Lagrangian is Lorentz invariant

e For the last term to be non-vanishing, should M,, be symmetric or
anti-symmetric?

e Find the equations of motion. What happens if mg, = 07

Remark: when deriving the the equations of motion you should consider
the fields and their variation as anticommuting variables. For instance given
two anti commuting variables x; and y2 we have d(x1x2) = dx1x2+X10X2 =

Ox1X2 — OX2X1-

Exercise 10: Given two scalar fields H, and ¢, both transforming as dou-
blet under an internal SU(2), prove that

e - H'H,=H'H
— Ghda =010
o H;¢a = HT¢
— Hyeaptp = HTed € = 109

are SU(2) singlets,

o — Hio'H
— HTeo'H
are SU(2) triplets,

e finally decompose explicitly into irreducible representations the follow-
ing SU(2) tensors

— (H'o'H)(H'0'H) =2®0
— (H'o'H)(¢'0ip) =201 00
Exercise 11: Given a Dirac spinor field v,
e study the transformation properties of the following bilinears
o U e o G
under the field tranformation ¢ — e+, with a, 5 € R.



Solutions
Exercise 1

e To build SO(3) singlet we use the two invariant tensors d;; and €;y.
Other limitations in the construction are the Lorentz invariance of the
Lagrangian and the request d < 4. We find

o o A W
£ = S0,60" 6~ S MGG i B i viged W6+ (66 (0),

where the factors in front of the operators are conventional and the ¢
in the fifth term is such that g is a real number (check it).

The fifth term is invariant under SO(3) transformations but not under
O(3) transformations, since the € tensor would eventually give a fac-
tor equal to the determinant of the transformation. So the theory is
invariant under O(3) only if g = 0.

Exercise 2

e [t is useful to notice immediately that

ij — ] - Zi _ L 0
LY(k)f(k]) =0, LY(k)=—i (k; o k 81@") :

Indeed L% (k) is the differential operator generating infinitesimal rota-
tions and an arbitrary function of |k| is invariant under rotations. This
result corresponds to the well known fact that when working in polar
coordinates the differential operator L¥ only depends on the angles 6,
¢ and their derivatives. Consequently, in order to integrate by parts
when considering the action of L it is sufficient to just integrate over
the angles.

Consider now a state

|T) = / dcosOdg f(kgg)a' (kgg)|0)

with f(k) an arbitrary function and kg, defined as previously. Using

a(p)|0) = 0 and the commutation relations (recalling d2, = %),

we have
9|0y = / dcos 8 d Ay, [al (p) LY (p)] £ (k) [a(p), al (kos)] 0)

= /dcos@dqﬁ [Lij (ke,¢)f(k9,¢>)] al(kgs)|0),



where we also used 8‘21- 5 (k—p) = —%6*(k—p) and then we integrated

by parts. In the case of interest we consider

(k' + ik?)?

f(k) = e*sin? = kP

and we have (defining L’ = €% L)

Ty = / 066 sin 6 [L(ko.g) f (ko.5)] af (ko.o)|0)
JU T ) = / dodf sin 0 [L'(kg,s) L (ko,p) f (Ko,)] a'(kg)|0),

Recalling that the L(k)’s act trivially on functions of |k|, an explicit
computation gives: !

L(k)f(k) =2f(k),  L'(k)L'(k)f(k) = 6f(k),
and consequently
Ply)y =2l¢)y,  J T ) =6[y).
Exercise 3

e using the first result in the solution of exercise 3 of set 14, we have

g L ; 1, . B
[Tl,T‘]] = ZCLL |:0'7‘70'J:| of ag = Eagieljko_gﬂaﬁ — ?:ez]ka'

e The same steps can be used to show [S?, S| = ie* Sk,

Exercise 4

e Remember the commutation relation

[@a(t,x), m5(t,¥)] = [Galt, ), Dogly(t, y)] = i6®) (x = ¥)das

From this we find

)

Qi balt, )] = —i / Pylaosh(t3), bt ) 20 (0y) = — 206 (1, %).

2 2

IThe following properties imply that the function e?sin?6 is proportional to the
m = { = 2 spherical harmonic.




e To find [Q;, @] consider the nested commutator [[Q;, Q;], P (t, x)]. We
then use the Jacobi identity and the result of the previous calculation
to find

[[Qz; Qj]a gba] - _[[Qj’ gba]? Qz] - [[¢aa Qz]7 QJ]

— 22065, Qi) - 22165, Q))

2
i J J i
= Zes %8y _Zas T8y,
2 2 2 2 7
k
= —Z'EijkT’yQﬁy = ieijk [Qka ¢a] )

where we have used [0¢, 07] = 2ie*o*. We then see that the Noether
charges have the same algebra of the symmetry group of the theory
SU(2).
Exercise 5
e due to Schwarz theorem €**?0,0,¢ = 0. Then

"7 0,010,020,030,01 = 0 (€' 910,020,030, ¢4)
= 0, (Euypaau¢l¢289¢3ao¢4)
( )
( )

ap Ewpgau%@u(bz%aa%
= 05 (70,010, 020,0304) -

e Notice that all terms of the kind

102 05° Oy 7 0,010, 020,0305 ¢4

pvpo ni+1 na+1 ng+1 ng+1
o P70, 7 T 003 0,05 Oyt

are total derivatives by the same steps above (to see it, it is enough
to rename ¢! — ¢;). In order to build a term which is not a total
derivative, we can for instance multiply €7?0,¢10,¢020,¢30,¢04 by a
scalar which is different than ¢1, @2, @3, @4. The simplest possibility is
to use Lloy:

(H61) (770,10, $20p 0305 P4) -

One can also build other terms, e.g.

8A¢1 (E'uupoa,ugbl8V¢28p¢3a)\80¢4> .



Exercise 6
e We find the equations of motion for 1) with the usual procedure
(iZJ— M — i M)y =0.

To find the mass of ¥ we multiply this equation by the complex conju-
gate of the operator in the equation

(—iZd — M + iy M)(GZP — M — ir° M)t
—(Z°0+ M*+ M?*)y =0,
where we have used the fact that @@ = O (prove it, it’s a simple

consequence of the Clifford algebra). We then see that 1 satisfies the
Klein-Gordon equation with squared mass m?, = (M? + M?)/Z>.

e The parameters Z, M and M are redundant and two of them can be
eliminated through a field redefinition. In particular we can first rescale
the field

= N7

so that the Lagrangian becomes

_ M - M -
L =ipdy — 7¢¢ - if@ﬂ%-

To see how to further eliminate one paramegter from the mass term it
is easier to work with the left- and right-handed components of

_( ¥z
w‘(wR '
In this notation the mass terms become
—(M +iM)pppr — (M — iM)pipy, = —medrpr — me % hgiby,
with _ )
m=VM?+ M? and 0 = arctan(M /M) .

In this form we see that we can eliminate the # phase with a field
redefinition like

W, — %y, Vg — e g

that in terms of the full Dirac spinor 1 would be written as ¢ —
e~"0/2)) With this redefinitions we find the usual Dirac Lagrangian
where the mass of the particle is given by

vV M2+ M?
Z Y

consistently with what we found before.

mw:



Exercise 7
e we have [£] =4, [0] = [¢] = 1, hence

L] =[N +4[0] +3[¢] =0 = [\ =-3.
e the variation of the action is
5S = / d'z [0,00"5¢ — 2 (9,00"5¢) Op — X (36)* 05¢]
= / d*z 0¢ [~0¢ + 200" (9,00¢) — A0 (9¢)?]
= / d'z ¢ [~0¢ + 2 (0¢)? — 220,0,¢00"9"¢] |,

where we integrated by parts after the first line. The EOM then is
) 9 ,
7 = —0¢ 42X (0¢)" — 2X9,,0,¢0"0" ¢ = 0.

The EOM is manifestly invariant under Poincaré transformations. No-
tice also that ¢ always appears with two derivatives acting on it. Then,
since 0,0,2” = 0, another symmetry is

o — o +bz,,

where b* is an arbitrary (constant) four-vector. 2

Exercise 8

e We have already decomposed the product of two spin-1 representations
of SU(2) in Problem Set 7 Exercise 2, where we found

191=04162,

where the three irreducible representations of the decomposition are
respectively the trace, the antisymmetrization and the traceless sym-
metrization of the product. Explicitly

Vrbs = 3xbrbLs + 5 (Wrds — Vsn) + 5 (Wrds + s — xbii)

e From this we see that a two-index tensor field x;; corresponds to an
Isospin-2 representation when

X1J = XJI and Orsxrs =0.

2Under this transformation the Lagrangian is invariant only up to a total derivative.



e The most general Lagrangian containing all three fields is

1 1 1
L =3 L Pr0" o1 + §au¢fa“¢1 + §3uX1J3”X1J

- %mi@@ — §m12/,¢ﬂ/11 - %miXIJXIJ

+ 91(d1905X17) + G2(Ursxis) + 93(rsXrs)
+ p1(ergr drvsxxrLdrL) + po(erikdrbsxxrvr)
+ M (@101)(050.7) + A (V1hr) (Yrts)

+ X3(b101)(Vribs) + Ma(xroxrs) (XxLXkL)

+ As(xroxr) (Px o) + Xe(Xrox1s) (VkVK)

+ M (X1ox15)(@r¥K) + As(XroX sk XKLXLI) -

Exercise 9

e A Lorentz transformation on spacetime coordinates and on the spinor

fields is defined by
= ANV;L'V ), = A#V@V AMPAVP — 55
Yp () = Apvp(z)  YR() = Apvr(z) A=A

where A, A; and Ag furnish the same Lorentz transformation in re-
spectively the (1/2,1/2), (1/2,0) and (0,1/2) representation. In line
with the discussion in class we have not explicitly shown the spinor in-
dices (an approach using the indices is outlined below following section
5.3 of the lecture notes, but it is strictly not necessary). In class we
furthermore showed that

ApotAl = VAP ApatAL = GVAF
so that from the above results we have

ohdl, = Apotd, Al 640, = A0, AL,
5’“8;1/}2(33,) = ARa'“aqu(x) U“&Lw}z(.%/) = ALO'ManR(I) .

The last two equations, together with Azl = AE, immediately imply
the Lorentz invariance of the first three terms in the action. Invariance
of the fourth term follows from A%LeAr = e which was also derived in
class.

Alternatively we could follow the index notation discussed in section
5.3 of the lecture notes. A quick way to check Lorentz invariance is
to write explicitly primed and unprimed indices. In the notation of



chapter of 5 of the lecture notes, using ioy = € = —e !, the Lagrangian
is written as

L= i) (6" ) aai)® +il(W5) (0" ) (Vi) ar

- {[(wi)*]A/mab(w%)A’ + h-C-} - % [W%)A/EA/B/MabW%)Bf + h.c.] )

As all lower primed (unprimed) indices are contracted with upper
primed (unprimed) indices, the Lagrangian is Lorentz invariant.

e Since the fields are anticommuting variables, using e*? = —B4, we

find

(Vi) 10 Map (V) = (VR) €™ Moy (V3) 3 = — () 5™ Map (1) ar
= (UR) ™ " Map (V) ar = (Uh) ™ Myo (1) ar
= (vg)"io® (M), (V)

which implies M, = M,,, hence M should be symmetric.

e To derive the EOMs, it is useful to write the Lagrangian explicitly: *
L = i(Wi)e" 9,07 +i(vg) " 0,05
— [@p) mavh + 05 Mt

S WRTioa Ml — ()i ML)}

Then, as the Lagrangian does not contain derivatives of (¢/¢)f, one
equation of motion is

oL
O(yy)!
To find the other EOM, it is convenient to restore indices and vary the
Lagrangian with respect to [(¢¥%)*]a:

0L = () alo Ol — [(003) Tamby (65)"
2 {I6vR T M) s + [5) T4 ML (603 ]

= [0 { i 0" — mly (01 — S0t + M) |

= i0"9% — mah% = 0.

where we used that (¥%)* and (§1%)* anti-commute and the antisym-
metry of €Z. Assuming M to be symmetric, we get

08
S(Yf)*
For mg, = 0, the EOMs for ¢, and ¥z become independent.

= Q0" 0, — mblh + Myio® (W) = 0.

3Recall that for two Grassmanian variables (x1x2)* = x3X} (see problem set 12 ex. 3).



Exercise 10
e For this exercise we need a few relations that we proved during the
semester. In particular we need the fact that € = i0? is an invariant

tensor of SU(2) (Problem Set 9 Exercise 2)
UeUT =, U e SU(2)
and the fact that the fundamental representation of SO(3) is the adjoint
representation of SU(2) (Problem Set 5 Exercise 3)
U'e'U =Rio?  ReSO3),.
Given these relations is immediate to prove all the results of the first
two point of the exercise:
H'H — H'U'UH = H'H
¢l = ¢'U UG = '
H'¢ - HUU¢ = H'¢p
HYe¢p - H'UTeU¢p — HTep
are all singlets while
H'o'H — H'U'v'UH = R:H'0’H
H"eo'H - H'U"eo'UH = H'eU'o'UH = RiH" co’H
are triplets.
Since they are triplet we can use the decomposition of Exercise 10 of

this sheet to get
) ) 1 .
(H'o'H)(H'0'H) = g(HTakH)(HTa’“H)é”

+ % (H'o'H)(H'o’H) + (H'o’H)(H'0'H)
—g(HTa’“H)(HT o H)§%

and
(H'o" H) (610" 9)5"

[(H'o'H)(¢'07¢) — (H'o'H)(¢0"0)]

Wl =

(H'o'H)(¢'o"9) =

+
WIN |~ =

+5 [(H'o'H)(¢'o?9) + (H'o H) (40" )
—L(H'e" H) (60" p)7 | .

In the first case the antisymmetric part of course vanishes.



Exercise 11

e The thing to remember is that v° anticommutes with all the gamma
matrices. This means that e @y# = ¥ ¢ but ¢ @7 1 =y ¢~ We
have

b — eia+iﬁ’Y5¢
1/—} N Qzefioﬂriﬁ'ﬁ .
We will also need the following result
e = cos f + isin fv°

that can be easily proven by Taylor expanding the exponential and
using (7°)? = 1. With these results we find

P — ﬁemﬁ"ﬁw = cos 2B Y1) + isin 28Uy
vy = Pyt
P = I e = cos 28 dyty )+ dsin 26 Py A Y



