

Test Exam

Quantum Field Theory I

Exercise 1: Consider a field theory with $SU(2)$ symmetry (Isospin) and the following field content: an Isospin doublet made of left-handed Weyl spinors and an Isospin triplet made of Lorentz scalars:

$$\Psi^a \equiv \begin{pmatrix} \psi^1 \\ \psi^2 \end{pmatrix} \quad A^i \equiv \begin{pmatrix} A^1 \\ A^2 \\ A^3 \end{pmatrix}$$

(notice: ψ_1 and ψ_2 are each a left-handed bi-spinor)

- The quadratic Lagrangian is (sum over repeated indices):

$$\mathcal{L} = \frac{1}{2} \partial_\mu A^i \partial^\mu A^i - \frac{m_A^2}{2} A^i A^i + i(\psi^a)^\dagger \sigma^\mu \partial_\mu \psi^a \quad (1)$$

Write down the interaction terms invariant under Poincaré and Isospin $SU(2)$ and with dimension ≤ 4 .

- **Theory Question:** Discuss succinctly (say half a page) the Noether theorem.
- Compute the Noether current associated to the $SU(2)$ symmetry. Show that the conserved charges are

$$Q_i = \int d^3x i \epsilon_{ijk} A^j \partial_0 A^k + \frac{(\sigma_i)_{ab}}{2} (\psi^a)^\dagger \psi^b \quad (2)$$

- Write the (anti)commutation relations for the quantized ψ^a and A^i ?
- Setting $\psi^1 = \psi^2 = 0$, compute the commutation relations $[Q_i, Q_j]$. Do they reproduce the $SU(2)$ algebra?
- Now instead, setting $A_i = 0$ and keeping $\psi^a \neq 0$, compute again $[Q_i, Q_j]$? Is the result different?

We recall the distributive properties of commutators:

$$[AB, C] = A[B, C] + [A, C]B \text{ and } [AB, C] = A\{B, C\} - \{A, C\}B.$$

Exercise 2: Consider a generic two-particle state for the massive Klein-Gordon field

$$|\psi\rangle = \int d\Omega_1 d\Omega_2 f(\mathbf{k}_1, \mathbf{k}_2) a^\dagger(\mathbf{k}_1) a^\dagger(\mathbf{k}_2) |0\rangle$$

and the angular momentum operator

$$\mathbf{J} = \int d\Omega_k a^\dagger(\mathbf{k}) \mathbf{L}(\mathbf{k}) a(\mathbf{k}), \quad \text{with} \quad \mathbf{L}(\mathbf{k}) = -i\mathbf{k} \times \nabla_k.$$

- Prove that $\mathbf{J} |\psi\rangle = \int d\Omega_1 d\Omega_2 \{[\mathbf{L}(\mathbf{k}_1) + \mathbf{L}(\mathbf{k}_2)] f(\mathbf{k}_1, \mathbf{k}_2)\} a^\dagger(\mathbf{k}_1) a^\dagger(\mathbf{k}_2) |0\rangle$.
- How does this simplify in the center of mass frame where

$$f(\mathbf{k}_1, \mathbf{k}_2) = \delta^{(3)}(\mathbf{k}_1 + \mathbf{k}_2) g(\mathbf{k}_1) ?$$

- Take $\mathbf{k}_1 = |\mathbf{k}_1|(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \phi)$, and choose the wavefunction to be

$$g(\mathbf{k}_1) = (2\pi) \delta(|\mathbf{k}_1| - k) \sin(\theta) e^{-i\phi}$$

where k is a positive real number. Compute the action of J^3 on $|\psi\rangle$.

- What is the total angular momentum of this state?

Hint: It might help to use the ladder operators $J^\pm = J^1 \pm iJ^2$.

- How would the action of the angular momentum operator \mathbf{J} on an arbitrary n -particle state look like?
- Bonus question: Can you comment on what changes if we replace the scalar field by a Dirac field?