RELATIVITY AND COSMOLOGY 1II

Solutions to Problem Set 9 18th April 2025

1. Freeze-out of pTe™ — nu,

1. In equilibrium, right before the decoupling of p*e~ — nuv,, we have

Pon = flp + fe — Hu- (1)

As shown in exercise 3 of Problem Set 7, the difference in concentrations of electrons
and positrons scales as
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where in the second equality the electric neutrality of the plasma was used. We see
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Since we assume that the lepton asymmetry is on the order of the baryon asymmetry,
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we have by the same reasoning
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From Eq. (1) it now follows that
Hn =2 fp. (7)
2. At the moment of nucleosynthesis
I o (8)
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where Z—”‘* = e 7+~ 7* s the ratio at the moment of freeze-out of pte™ — nu,, at
D

T* ~ 0.8 MeV. (This ratio approximately equals to 1/5 if the neutrinos’ chemical
potential is negligible.) Here, we used the notations for Q = m,, —m, ~ 1.3MeV,
the time of nucleosynthesis tyg &~ 4.5min, the neutron lifetime 7,, &~ 15min, and
we neglected the chemical potential . of the electron. The ratio Z—; determines the

abundance of *He:
Xigge = — 2 INS (9)
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The difference between the abundances for zero and non-zero p,, is

0X = X4He - X4He
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assuming the ratio p,, /7% is small. Here n,/n, is the ratio at the moment of
nucleosynthesis for zero chemical potential of neutrinos, i.e., Z—: ~ %
So that gives

T Ly
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32 T* (11)
Given that [6X| < 0.05X1y, ~ 1/80, we have for T* ~ 0.8 MeV
< 27 x 46 keV (12)
ve S —=T" ~ 46 keV.
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2. Variation of *He abundance

We know that the abundance of *He is
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where ) = m,, —m,,, T™ is the neutron freeze-out temperature, tyg is the time of nucle-

osynthesis, and 7, is the free neutron lifetime. This implies:
0Xage 1 dy _Toy
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(14)

1. First we want to see how the abundance Xuig, is affected when the number of the
relativistic degrees of freedom changes. To begin with, we would like to mention that
the number of relativistic degrees of freedom enters two quantities: the decoupling
temperature T and the time of the nucleosynthesis ¢yg5. Thus we get
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To find the change in the temperature, we use the fact that the reactions under
consideration decouple at a temperature very close to the neutrino decoupling tem-
perature, so

T*2 /%
G2T* ~ *g’ = T (¢9)Y". (16)
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To find the change in the time of nucleosynthesis, we should note that the temper-
ature of nucleosynthesis Tys ~ 70keV does not depend on ¢g* and is determined by
the deuterium binding energy. Then, the corresponding time can be expressed as

follows: -
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Plugging Eqs. (17) and (19) into Eq. (15) and then using Eq. (14), we get
0Xige 7 (1 1t d0g T (113 145\ dg* og*
Z2He D _Q_i__ﬁ g (222 2299 3729 (20)
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If we consider an additional massless neutrino (and its antiparticle), we find that

60X (2
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~ 0.06 = 6%. (21)

Thus, we get an upper limit on the number of massless neutrinos:
#rv < 4.

A more detailed calculation combined with the uncertainty for the experimental
measurements of Xap, confirms this result.

2. In complete analogy with the above, we can calculate how Xuiy, varies when we
change @)

OXome _ 70U TQOQ 4 9@ L 14— —14%. (22)
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3. Again, in the same way as in points 1 and 2, we can compute how Xuiy, is affected
by the change of neutron’s lifetime 7,,:
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where we used ‘iﬂ = —0.1, txs &~ 270s and 7,, = 881 s (the last two numbers come

n

from the lecture)

3.* Post-freezing antiprotons density

As we know from the lectures, the number density obeys the Boltzmann equation. Now we
are going to see what happens to the number density n of antiprotons. For simplicity we
will take into account only protons, antiprotons and photons as the temperature we will
find will be below pion mass. The number of antiprotons in a comoving volume changes



due to annihilations with protons and due to the inverse process of proton-antiproton pair
creation. The annihilation contributes
dn

E + 3H7_l - _Fann n ) (24)

where the rate of annihilation I',,,, is
Fann =0agnn VN, (25)

with n the number density of the target particles (in our case the protons), v the velocity
and o0,,, the annihilation cross section. It can be shown that for non-relativistic particles
Oann = 00/v. where oq is proportional to the square of the Compton wavelength of the
proton?

oo ~ A2~ 25 GeV ™2 (26)
The pair production contributes
Jn
d—? +3Hn =+ )00 07, (27)

where the rate of these interactions is
Lproa = 09 n1 . (28)

From the above equations the Boltzmann equation for antiproton is

dn

I +3Hn = —og[n n—n* n | (29)
where the first and second terms correspond to the annihilation and production processes,
respectively. The equation for proton can be written in the same manner.

The baryon number is conserved below T~ 100 GeV (see next lectures).

n—n

=n=const — n=n+nn,, (30)
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where 7 = 6 x 1071%. Substituting Eq. (30) to Eq. (29), the Boltzmann equation is

— 4+ 3Hn = —oonn,n+ ogn“n? —oyn”.

dt

Assuming that when all reactions freeze the particles are non-relativistic (" < m,,), their
(equilibrated) number densities are

3/2
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As the annihilation proceeds n < nn, below a temperature T*2. For such a temperature

region
3 3
nelncl = 4 (mpT) e—QmTp N nf ~ i (mpT) e_ZmTp, (33)
2m nny \ 27

(31)

'We remind that (I'y,, )~ is the time needed for an antiproton with cross section o4y, to meet one
proton.
2T* = 36 MeV is estimated numerically from 7 = 1 n,.
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and the last term in Eq. (31) can be neglected when 1 < nn.,. After removing this term,
Eq. (31) can be written as

i
d—? +3Hn =~ —ognn,(n —n), (34)
or .
n _ e
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where 77 = n/n,,.
Once Eq. (35) is rewritten as
1 dp
7= — il 36
T (36)
the iterative solution is | g
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The derivative of 7 in the second term is

it diedT [ 2m,
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where we used 2t = My/T? = H™' — dT/dt = —HT, and the condition for the second
term to be smaller than the first term is
2 1 < S o> ( m, ) 27 keV (39)
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where n, = (2¢(3)/7*)T?. It means for T < T; the abundance of antiproton deviates
from that in equilibrium. From (33) at this temperature T}

il &~ 7 x 1073710", (40)

After this moment we can neglect the second term in Eq. (35), and have

di ~
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It has a solution as
- 2(3)
n =~ 77’T1 eXp | —oo7 71_2 M()(Tl — T) y (42)

and the freeze-out temperature of antiproton is given by

2¢(3)

T2

-1
H(T) = oonn(Ty) — Ty~ (ow M0> ~4x1071° GeVx~04eV. (43)

For T' < T5 we have

2¢(3)

T2

Nlr<t, = 7|7, exp {—007] MOTl] ~ 4 x 1076x10", (44)

This means that the Universe practically contains no antiprotons because n/n, >~ n ~
10719,

We show the numerical solution of (31) in Fig. 1, where we can see the above estimation
is consistent with that.
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Figure 1: The horizontal and vertical axes are T' [GeV] and log,y(7/n.), respectively. Blue
line is the numerical solution and red line corresponds to equilibrium number density.



