
RELATIVITY AND COSMOLOGY II

Solutions to Problem Set 9 18th April 2025

1. Freeze-out of p+e− → nνe

1. In equilibrium, right before the decoupling of p+e− → nνe, we have

µn = µp + µe − µν . (1)

As shown in exercise 3 of Problem Set 7, the difference in concentrations of electrons
and positrons scales as

ne− − ne+ ∼ µeT
2, (2)

hence
µe

T
∼ ne− − ne+

T 3
=

np

T 3
∼ η ∼ 10−10, (3)

where in the second equality the electric neutrality of the plasma was used. We see
that

µe

T
∼ 10−9. (4)

Since we assume that the lepton asymmetry is on the order of the baryon asymmetry,

nν − nν̄

T 3
∼ η ∼ 10−9, (5)

we have by the same reasoning
µν

T
∼ η. (6)

From Eq. (1) it now follows that
µn ≈ µp. (7)

2. At the moment of nucleosynthesis

nn

np

∣∣∣∣
NS

≈ nn

np

∣∣∣∣
∗
e−

tNS
τn ≈ e−

Q
T∗−

µνe
T∗ − tNS

τn , (8)

where nn

np

∣∣
∗ = e−

Q
T∗−

µνe
T∗ is the ratio at the moment of freeze-out of p+e− → nνe, at

T ∗ ≈ 0.8MeV. (This ratio approximately equals to 1/5 if the neutrinos’ chemical
potential is negligible.) Here, we used the notations for Q = mn −mp ≈ 1.3MeV,
the time of nucleosynthesis tNS ≈ 4.5min, the neutron lifetime τn ≈ 15min, and
we neglected the chemical potential µe of the electron. The ratio

nn

np
determines the

abundance of 4He:

X4He =
2 nn

np

∣∣∣
NS

1 + nn

np

∣∣∣
NS

. (9)
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The difference between the abundances for zero and non-zero µνe is

δX ≡ X4He −X4He

∣∣∣
µνe=0

≈
2nn

np

(
1− µνe

T ∗

)
1 + nn

np

(
1− µνe

T ∗

) −
2nn

np

1 + nn

np

≈ −µνe

T ∗
2nn/np

(1 + nn/np)2
, (10)

assuming the ratio µνe/T
∗ is small. Here nn/np is the ratio at the moment of

nucleosynthesis for zero chemical potential of neutrinos, i.e., nn

np
≈ 1

7
.

So that gives

δX = − 7

32

µνe

T ∗ . (11)

Given that |δX| ≲ 0.05X4He ≈ 1/80, we have for T ∗ ≈ 0.8MeV

µνe ≲
2

35
T ∗ ≈ 46 keV. (12)

2. Variation of 4He abundance

We know that the abundance of 4He is

X4He =
2y

1 + y
, y ≡ nn

np

∣∣∣∣
NS

≈ exp

(
− Q

T ∗ − tNS

τn

)
, (13)

where Q = mn −mp, T
∗ is the neutron freeze-out temperature, tNS is the time of nucle-

osynthesis, and τn is the free neutron lifetime. This implies:

δX4He

X4He

=
1

1 + y

δy

y
≈ 7

8

δy

y
. (14)

1. First we want to see how the abundance X4He is affected when the number of the
relativistic degrees of freedom changes. To begin with, we would like to mention that
the number of relativistic degrees of freedom enters two quantities: the decoupling
temperature T ∗ and the time of the nucleosynthesis tNS. Thus we get

δy

y
=

Q

T ∗2 δT
∗ − 1

τn
δtNS . (15)

To find the change in the temperature, we use the fact that the reactions under
consideration decouple at a temperature very close to the neutrino decoupling tem-
perature, so

G2
FT

∗5 ∼ T ∗2√g∗

M̃
, ⇒ T ∗ ∝ (g∗)1/6 . (16)

Therefore,
δT ∗

T ∗ =
1

6

δg∗

g∗
. (17)
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To find the change in the time of nucleosynthesis, we should note that the temper-
ature of nucleosynthesis TNS ≈ 70 keV does not depend on g∗ and is determined by
the deuterium binding energy. Then, the corresponding time can be expressed as
follows:

tNS =
1

2HNS

=
M̃

T 2
NS

√
g∗

, ⇒ tNS ∝ (g∗)−1/2 . (18)

Thus,
δtNS

tNS

= −1

2

δg∗

g∗
. (19)

Plugging Eqs. (17) and (19) into Eq. (15) and then using Eq. (14), we get

δX4He

X4He

=
7

8

(
1

6

Q

T ∗ +
1

2

tNS

τn

)
δg∗

g∗
≃ 7

8

(
1

6

1.3

0.8
+

1

2

4.5

15

)
δg∗

g∗
≃ 0.37

δg∗

g∗
. (20)

If we consider an additional massless neutrino (and its antiparticle), we find that

δX4He

X4He

≃ 0.37
7
8
(2)

2 + 7
8
(4 + 6)

≃ 0.06 = 6%. (21)

Thus, we get an upper limit on the number of massless neutrinos:

#ν < 4 .

A more detailed calculation combined with the uncertainty for the experimental
measurements of X4He confirms this result.

2. In complete analogy with the above, we can calculate how X4He varies when we
change Q

δX4He

X4He

=
7

8

δy

y
= −7

8

Q

T ∗
δQ

Q
≃ −1.4

δQ

Q
≃ −0.14 = −14% . (22)

3. Again, in the same way as in points 1 and 2, we can compute how X4He is affected
by the change of neutron’s lifetime τn:

δX4He

X4He

=
7

8

δy

y
=

7

8

tNS

τn

δτn
τn

≃ 0.26
δτn
τn

≃ −0.026 = −2.6% , (23)

where we used δτn
τn

= −0.1, tNS ≈ 270 s and τn = 881 s (the last two numbers come
from the lecture).

3.* Post-freezing antiprotons density

As we know from the lectures, the number density obeys the Boltzmann equation. Now we
are going to see what happens to the number density n̄ of antiprotons. For simplicity we
will take into account only protons, antiprotons and photons as the temperature we will
find will be below pion mass. The number of antiprotons in a comoving volume changes
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due to annihilations with protons and due to the inverse process of proton-antiproton pair
creation. The annihilation contributes

dn̄

dt
+ 3Hn̄ = −Γann n̄ , (24)

where the rate of annihilation Γann is

Γann = σann v n , (25)

with n the number density of the target particles (in our case the protons), v the velocity
and σann the annihilation cross section. It can be shown that for non-relativistic particles
σann = σ0/v. where σ0 is proportional to the square of the Compton wavelength of the
proton1

σ0 ∼ λ2
p ∼ 25 GeV−2 . (26)

The pair production contributes

dn̄

dt
+ 3Hn̄ = +Γprod n̄eq , (27)

where the rate of these interactions is

Γprod = σ0 neq . (28)

From the above equations the Boltzmann equation for antiproton is

dn̄

dt
+ 3Hn̄ = −σ0 [n n̄− neq n̄eq] , (29)

where the first and second terms correspond to the annihilation and production processes,
respectively. The equation for proton can be written in the same manner.
The baryon number is conserved below T ≈ 100 GeV (see next lectures).

n− n̄

nγ

= η = const → n = n̄+ η nγ, (30)

where η = 6× 10−10. Substituting Eq. (30) to Eq. (29), the Boltzmann equation is

dn̄

dt
+ 3Hn̄ = −σ0 η nγn̄+ σ0 n

eq n̄eq − σ0 n̄
2. (31)

Assuming that when all reactions freeze the particles are non-relativistic (T ≪ mp), their
(equilibrated) number densities are

neq = 2

(
mpT

2π

)3/2

exp

(
−mp + µp

T

)
,

n̄eq = 2

(
mpT

2π

)3/2

exp

(
−mp − µp

T

)
.

(32)

As the annihilation proceeds n̄ ≲ η nγ below a temperature T ∗2. For such a temperature
region

n̄eq neq = 4

(
mpT

2π

)3

e−
2mp
T → n̄eq ≈ 4

η nγ

(
mpT

2π

)3

e−
2mp
T , (33)

1We remind that (Γann)
−1 is the time needed for an antiproton with cross section σann to meet one

proton.
2T ∗ = 36 MeV is estimated numerically from n̄eq = η nγ .
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and the last term in Eq. (31) can be neglected when n̄ ≪ η nγ. After removing this term,
Eq. (31) can be written as

dn̄

dt
+ 3Hn̄ ≈ −σ0 η nγ(n̄− n̄eq), (34)

or
dη̄

dt
≈ −σ0 η nγ(η̄ − η̄eq), (35)

where η̄ ≡ n̄/nγ.
Once Eq. (35) is rewritten as

η̄ = η̄eq − 1

σ0 η nγ

dη̄

dt
, (36)

the iterative solution is

η̄ = η̄eq − 1

σ0 η nγ

dη̄eq

dt
+ · · · . (37)

The derivative of η̄ in the second term is

dη̄eq

dt
=

dη̄eq

dT

dT

dt
≈ η̄eq

(
−2mp

T 2

)
HT, (38)

where we used 2t = M0/T
2 = H−1 → dT/dt = −HT , and the condition for the second

term to be smaller than the first term is

2mp

T1

H ≲ σ0 η nγ → T1 ≳

(
mp

σ0 ηM0

π2

ζ(3)

) 1
2

≈ 27 keV, (39)

where nγ = (2ζ(3)/π2)T 3. It means for T ≲ T1 the abundance of antiproton deviates
from that in equilibrium. From (33) at this temperature T1

η̄|T1 ≈ 7× 10−3×104 . (40)

After this moment we can neglect the second term in Eq. (35), and have

dη̄

dt
≈ −σ0 η nγ η̄. (41)

It has a solution as

η̄ ≈ η̄|T1 exp

[
−σ0 η

2ζ(3)

π2
M0(T1 − T )

]
, (42)

and the freeze-out temperature of antiproton is given by

H(T2) = σ0 η nγ(T2) → T2 ≈
(
σ0 η

2ζ(3)

π2
M0

)−1

≈ 4× 10−10 GeV ≈ 0.4 eV. (43)

For T < T2 we have

η̄|T<T2 ≈ η̄|T1 exp

[
−σ0 η

2ζ(3)

π2
M0T1

]
≈ 4× 10−6×104 . (44)

This means that the Universe practically contains no antiprotons because n/nγ ≃ η ∼
10−10.
We show the numerical solution of (31) in Fig. 1, where we can see the above estimation
is consistent with that.
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Figure 1: The horizontal and vertical axes are T [GeV] and log10(n̄/nγ), respectively. Blue
line is the numerical solution and red line corresponds to equilibrium number density.
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