
RELATIVITY AND COSMOLOGY II

Solutions to Problem Set 8 19th April 2024

1. Fraction of free protons

The Saha equation in thermal equilibrium reads as

nH = nenp

(
meT

2π

)−3/2

eI/T , (1)

where I = mp + me − mH = 13.6 eV is the binding energy of the hydrogen atom. For
an electrically neutral plasma, we have ne = np. Introducing the fraction of free protons
x ≡ np

nB
, where nB = np + nH is the number of baryons, we can write the above as

1− x

x2
= K, K = nB

(
meT

2π

)−3/2

eI/T =
2ζ(3)√

π
η

(
2T

me

)3/2

eI/T , (2)

where we used the relation nB = η nγ with the baryon-to-photon ratio

η ≡ nB

nγ

≈ 10−10 , (3)

and the photon number density

nγ =
2ζ(3)

π2
T 3 . (4)

Therefore, the fraction of free protons satisfies the quadratic equation

Kx2 + x− 1 = 0, (5)

whose solutions are

x1,2 =
−1±

√
1 + 4K

2K
. (6)

Since x must be in a range [0, 1], the only physical solution is that with a “plus” sign,
i.e.,

x =
−1 +

√
1 + 4K

2K
. (7)

Thus, for any given temperature T one gets a unique solution for x. In particular, for
T = Td = 0.25 eV, we have K ≈ 55 440 and

x =
−1 +

√
1 + 4K

2K
≈ 1√

K
≈ 4.2 × 10−3. (8)

Indeed, the fraction of free protons at that time is negligibly small.
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2. Decoupling and concentration

1. Just like in the lecture, the whole idea here is to use the conservation of entropy to
find out how the temperature changes. The difference is that now we have an extra
species ϕ, which decouples at Td ≈ 150MeV. Note that since the muon decoupling
temperature Td,µ ≈ mµ

40
≈ 2.5MeV, muons are still around in the plasma when ϕ

decouples1.

Therefore, we arrive at the following picture. In the beginning, we have a plasma
that contains the new species ϕ (with 1 d.o.f.), photons (2 d.o.f.), two charged
leptons (electron and muon, 4 d.o.f. each), and three neutrinos (2 d.o.f. each). So
then, when everything is still in equilibrium (forming a plasma), we have for the
entropy density

s =
2π2

45

(
2 + 1 +

7

8
(2 · 4 + 3 · 2)

)
︸ ︷︷ ︸

61/4

T 3, (9)

where T stands for the temperature of the whole plasma.

When the temperature has dropped to T = Td = 150MeV, the particle ϕ decouples
from the plasma. From then on we have

s = s1 + s2, s1 =
2π2

45

(
2 +

7

8
(2 · 4 + 3 · 2)

)
︸ ︷︷ ︸

57/4

T 3, s2 =
2π2

45
T 3
ϕ , (10)

and these two terms evolve independently, i.e., the entropies S1 = s1V and S2 = s2V
are conserved separately. Here T denotes the temperature of the plasma, and Tϕ

the temperature of particle ϕ. As long as nothing dramatic is happening, they are
still equal: they still fall off with the expansion of the universe. However, at one
point (around Td,µ ≃ 2.5MeV), the µ+ and µ− get annihilated (i.e., the reaction
µ+µ− ↔ 2γ goes out of equilibrium, because the temperature is too low now for the
production of a muon pair), and we are left with

s1 =
2π2

45

(
2 +

7

8
(1 · 4 + 3 · 2)

)
︸ ︷︷ ︸

43/4

T 3, s2 =
2π2

45
T 3
ϕ . (11)

At this moment, the effective number of degrees of freedom in subsystem “1” has
decreased by a factor of 43/57, which means that T 3 has to increase by a factor of
57/43, just to keep the entropy S1 = s1V constant. So this is the moment when the
temperature T of the plasma begins to differ from the temperature Tϕ of the species
ϕ.

Next comes the decoupling of the neutrinos, at temperature Td,ν ≈ 2MeV

s1 = s11 + s12, s11 =
2π2

45

(
2 +

7

8
(1 · 4)

)
︸ ︷︷ ︸

11/2

T 3, s12 =
2π2

45
· 7
8
(3 · 2)︸ ︷︷ ︸
21/4

T 3
ν . (12)

1For derivation of muon decoupling temperature, follow the notes of Lecture 7 – there is analogous
derivation for electrons.
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Starting from this point, the electron-positron-photon subsystem evolves indepen-
dently of the neutrino subsystem. The corresponding entropies S11 = s11V and
S12 = s12V are conserved separately. Finally, at Td,e ≃ 10 keV, electrons and
positrons annihilate each other:

s11 =
2π2

45
· 2 · T 3

γ , s12 =
2π2

45
· 7
8
(3 · 2)T 3

ν , s2 =
2π2

45
T 3
ϕ . (13)

From now on we only have photons left in the plasma, that’s why its temperature is
denoted as Tγ. Once again: at the moment of decoupling of electrons the effective
number of degrees of freedom in subsystem “11” goes down by a factor of 4/11, so
T 3 increases by a factor of 11/4.

Already from this schematic analysis, we may conclude that at muon-antimuon
annihilation the temperature of all particles which were in equilibrium with muons
increased in comparison to the temperature of species ϕ (already decoupled) by a
factor of (57/43)1/3. Later, at electron-positron annihilation, photons (as no other
particles were in equilibrium with electrons and positrons) were “heated up” again
by a factor of (11/4)1/3. Thus, in the end, the temperatures are related as follows:

Tϕ =

(
43

57
· 4

11

)1/3

Tγ. (14)

However, let us derive this relation in a more rigorous way. Let us choose three
moments in the thermal history: (1) temperature Tin (the same for all particles)
which is below the decoupling temperature Td = 150MeV and above the muon-
antimuon annihilation freeze-out temperature 2.5 MeV; (2) temperature Tmid (dif-
ferent for species ϕ and all other particles) somewhere below the neutrino decoupling
Td,ν = 2MeV and above the electron-positron annihilation freeze-out temperature
10 keV; (3) temperature Tout (different for ϕ, ν, and γ) below 10 keV. We know that
between (1) and (3) entropies S1 and S2 are conserved separately while between (2)
and (3) entropies S11 and S12 are conserved separately. Taking into account that
S = sV , V ∝ a3, we have the following equations:

S1,in = S1,out ⇔ 57

4
T 3
ina

3
in = 2T 3

γ,outa
3
out +

7

8
· 6T 3

ν,outa
3
out, (15)

S2,in = S2,out ⇔ T 3
ina

3
in = T 3

ϕ,outa
3
out, (16)

S11,mid = S11,out ⇔ 11

2
T 3
mida

3
mid = 2T 3

γ,outa
3
out, (17)

S12,mid = S12,out ⇔ 21

4
T 3
mida

3
mid =

21

4
T 3
ν,outa

3
out. (18)

Taking the ratio of Eqs. (17) and (18), we get

Tν,out =

(
4

11

)1/3

Tγ,out, (19)

which you derived during the lecture. Further, taking the ratio of Eqs. (16) and
(15), we obtain

T 3
ϕ,out =

4

57

(
2T 3

γ,out +
21

4
T 3
ν,out

)
=

4

57

(
2 +

21

4

4

11

)
T 3
γ,out =

4

57

43

11
T 3
γ,out, (20)

which is equivalent to Eq. (14) above.
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2. Next, we want to find the number density of the particle ϕ today. For this purpose,
we use the fact that below 10 keV the temperatures of photons, Tγ, and ϕ particles,
Tϕ, both fall with the scale factor as ∼ 1/a, therefore, their ratio remains constant.
Then, at present time

Tϕ,0 =

(
43

57
· 4

11

)1/3

Tγ,0 ≈ 0.65Tγ,0 ≈ 1.77K ≈ 1.52 × 10−14GeV. (21)

Since particles ϕ decoupled when they were ultrarelativistic, their distribution func-
tion keeps the ultrarelativistic Bose-Einstein form until the present time even though
the temperature is well below the particle’s mass. Therefore, the number density is
given by the same UR formula

nϕ,0 =
ζ(3)

π2
T 3
ϕ,0 = 4.3 × 10−40GeV3 ≈ 56 cm−3. (22)

3. For the associated energy density we then have (mϕ ≈ 100 eV)

ρϕ = mϕ · nϕ = 5.6 × 109 eV/m3 = 9.9 × 10−27 kg/m3. (23)

Meanwhile, the critical density is given by

ρcr =
3H2

0

8πG
≈ 8.5 × 10−27 kg/m3. (24)

Thus, the cosmological abundance of the particles ϕ would be

Ωϕ =
ρϕ
ρcr

≈ 1.16 > 1. (25)

Therefore, if the particle ϕ would exist, it would be overabundant in the Universe.
This is inconsistent with observations.
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3. Lee-Weinberg bound

1. When the reaction rate of the neutrino Γ is comparable to Hubble parameter H the
neutrino stops interacting

Γ(T ∗) ∼ H(T ∗) , (26)

where T ∗ is the temperature of decoupling. The rate of the reaction can be ap-
proximated by Γ ∼ nν4⟨σv⟩. The number density that appears in the relationship
Γ ∼ n⟨σv⟩ is the density of target particles. It is assumed that the most important
reaction to keep the new neutrinos ν4 at thermal equilibrium is the annihilation of
neutrino with its own antiparticle. We would then put nν̄4 . But it is also assumed
that there is no asymmetry between neutrinos and antineutrinos, so nν̄4 = nν4 .

The Hubble parameter during the domination of radiation can be expressed as
H = 1.66

√
g∗(T ) T 2

Mpl
, so the relationship (26) becomes

nν4(T
∗)⟨σv⟩ =

√
g∗(T ∗)

T ∗2

M̃
, (27)

where we defined the constant M̃ = Mpl/1.66.

2. The constraint to be imposed is that the present additional energy density of the
neutrino ν4 must not exceed the density of dark matter

ρν4 = 2mν4nν4(T0) ≤ ΩDMρ0cr . (28)

The equality is satisfied if all the dark matter is given by neutrinos ν4.

Once the neutrinos stop interacting, the number of neutrinos per comoving volume
remains constant nν4a

3 = const. In addition, we know that the total entropy per
comoving volume is conserved, i.e. sa3 = const. By combining the two conservation
laws we can express the density of neutrinos today as

nν4(T0) = nν4(T
∗)
s(T0)

s(T ∗)
= nν4(T

∗)
g∗(T0)

g∗(T ∗)

(
T0

T ∗

)3

. (29)

Using this relationship we can write (28) like

2mν4nν4(T
∗)
g∗(T0)

g∗(T ∗)

(
T0

T ∗

)3

≤ ΩDMρ0cr . (30)

The combination of relations (27) and (30) allows us to determine the temperature
of decoupling and the limits on the mass of ν4. We will be interested in two limiting
cases. The neutrino is light and decouples while still relativistic, or it is very heavy
and it is already non-relativistic at decoupling.

3. Light neutrino ν4: If the neutrino ν4 is relativistic at the time of decoupling, the
density at T ∗ is given by

nν4(T
∗) =

3ζ(3)

4π2
T ∗3 .

The thermal average of the product of the cross section and the relative velocity is

⟨σv⟩ ∼ G2
FT

∗2 .
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With these two relations, (27) gives us the decoupling temperature

T ∗ =

(
4π2
√

g∗(T ∗)

3ζ(3)G2
FM̃

) 1
3

≃ 2.2 (g∗(T ∗))1/6 MeV . (31)

We know that g∗ is 106.75 when all species of Standard Model are relativistic and
about 3 when there is only photons and massless neutrinos. For these values,
(g∗(T ∗))1/6 is of the order of 1. Our estimate of T ∗ is then

T ∗ ∼ 2MeV . (32)

At this temperature, the relativistic species are γ, νe, ν̄e, ν̄µ, νµ, ν̄τ , ντ , ν̄4, ν4, e
+,

e−. Note that neutrinos (and antineutrons) carry one degree of freedom, since they
come only with lefthanded polarization, while electrons (and positrons) carry two
degrees of freedom, since they come with both left- and righthanded polarizations.
We then get

g∗(T ∗) = 2 +
7

8
(1 · 4 + 3 · 2 + 2) =

25

2
. (33)

Then, the estimate for the decoupling temperature can be made more accurately:

T ∗ ≈ 2.2 · (25/2)1/6 ≈ 3.4MeV. (34)

At the present time, the only particles that are still relativistic are photons and
massless (standard) neutrinos. Neutrinos ν4 should also be included because they
decoupled being ultrarelativistic and since then their entropy is conserved (note
that the temperature of all neutrinos differs from that of photons, see problem 2
and lecture notes). Thus

g∗(T0) = 2 +
7

8
· 8 ·

(
Tν

T0

)3

= 2 +
7

8
· 8 · 4

11
=

50

11
. (35)

We substitute (33) and (35) in (30) and solve for mν4 to find

mν4 ≤
2π2

3ζ(3)

g∗(T ∗)

g∗(T0)

ΩDMρ0cr
T 3
0

≃ 10.7 eV. (36)
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4. Heavy neutrino ν4: If the new neutrino is non-relativistic when decoupling, the
density is given by

nν4(T
∗) =

(
mν4T

∗

2π

)3/2

exp
(
−mν4

T ∗

)
. (37)

We can already see that in this case a larger mass corresponds to a smaller density.
We therefore expect to find a lower limit for the new neutrino mass. The thermal
average product of the cross section and the relative velocity is now

⟨σv⟩ ∼ G2
Fm

2
ν4

.

This result is not entirely trivial. One might expect the presence of a factor
(T/mν4)

n. A detailed calculation shows that for the case of a Dirac neutrino, the
dominant contribution is independent of T . The relations (27) and (30) then become

m7/2
ν4

T ∗−1/2 exp(−mν4/T
∗) =

(2π)3/2
√

g∗(T ∗)

G2
FM̃

≡ a
√

g∗(T ∗), (38)

m5/2
ν4

T ∗−3/2 exp(−mν4/T
∗) =

(2π)3/2ΩDMρ0cr
2T 3

0

g∗(T ∗)

g∗(T0)
≡ b g∗(T ∗) , (39)

a = 1.6 × 10−8GeV3, b = 1.4 × 10−9GeV, (40)

where the inequality was replaced by an equality to simplify the calculations. Here
we used g∗(T0) = 2 + (7/8) · 6 · (4/11) = 43/11 because only 3 neutrino species
contribute to the entropy, the forth one decoupled already being non-relativistic.

Unfortunately we cannot find an analytic solution to the above equations. We start
by making the change of variables x = 1

2

mν4

T ∗ . The equations become

(2x)1/2m3
ν4
exp(−2x) = a

√
g∗(T ∗) , (41)

(2x)3/2mν4 exp(−2x) = b g∗(T ∗) . (42)

We can eliminate mν4 to find an equation for x

ex

x
=

(
16a

b3

)1/4

[g∗(T ∗)]−5/8 ≈ 96 600[g∗(T ∗)]−5/8 ≡ K . (43)

By taking the logarithm, we obtain

x− lnx = lnK . (44)

By assumption we have x ≫ 1. We will try to solve the equation by iterations. As
lnx ≪ x, we can neglect the logarithm to find a first approximation

x0 = lnK . (45)

To find the solution, we reinsert x0 in the equation

x ≃ x1 = lnK + lnx0 = ln(K lnK) . (46)

By inserting x1 in Eq. (42) we obtain

T ∗ ≃ bg∗(T ∗)e2x1

(2x1)5/2
=

√
a

2bx1

[g∗(T ∗)]−1/4 . (47)
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As before, we must analyze the dependence of T ∗ on g∗(T ∗). In this case the result is
more sensitive to the value of g∗. For a first estimate let us take g∗(T ∗) = 20. Then,
K ≈ 14 900 and x1 ≈ 12. The decoupling temperature then reads T ∗ ≃ 320MeV.
This is just above the QCD phase transition. Therefore, we can take

g∗(T ∗) = 2γ + 8 · 2g +
7

8
(2 · 4l + 3 · 2ν + 3 · 12q) = 61.75 . (48)

With this new value we can update K = 7340, x1 ≃ 11.3, and

T ∗ ≈ 250MeV. (49)

It is still above the QCD phase transition. Thus, this result is self-consistent. Then,
we can then find the limit on the mass mν4

mν4 ≥ 2x1T
∗ ≃ 5.7GeV . (50)
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