RELATIVITY AND COSMOLOGY 1II

Solutions to Problem Set 8 19th April 2024

1. Fraction of free protons

The Saha equation in thermal equilibrium reads as
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where I = m, +m. — my = 13.6eV is the binding energy of the hydrogen atom. For
an electrically neutral plasma, we have n, = n,. Introducing the fraction of free protons
xr= Z—Z, where np = n, + ng is the number of baryons, we can write the above as
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where we used the relation ng = nn, with the baryon-to-photon ratio
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and the photon number density
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Therefore, the fraction of free protons satisfies the quadratic equation
K’ 42 —-1=0, (5)

whose solutions are
-1+v1+4K

Since x must be in a range [0, 1], the only physical solution is that with a “plus” sign,

ie.,
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Thus, for any given temperature 7" one gets a unique solution for z. In particular, for
T =T;=0.25eV, we have K =~ 55440 and
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Indeed, the fraction of free protons at that time is negligibly small.



2. Decoupling and concentration

1. Just like in the lecture, the whole idea here is to use the conservation of entropy to
find out how the temperature changes. The difference is that now we have an extra
species ¢, which decouples at T; ~ 150 MeV. Note that since the muon decoupling
temperature Ty, ~ 7% ~ 2.5MeV, muons are still around in the plasma when ¢
decouples®.

Therefore, we arrive at the following picture. In the beginning, we have a plasma
that contains the new species ¢ (with 1 d.o.f.), photons (2 d.o.f.), two charged
leptons (electron and muon, 4 d.o.f. each), and three neutrinos (2 d.o.f. each). So
then, when everything is still in equilibrium (forming a plasma), we have for the
entropy density
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where T' stands for the temperature of the whole plasma.

When the temperature has dropped to T' = T; = 150 MeV, the particle ¢ decouples
from the plasma. From then on we have
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and these two terms evolve independently, i.e., the entropies S; = s1V and S5 = soV
are conserved separately. Here T' denotes the temperature of the plasma, and T}
the temperature of particle ¢. As long as nothing dramatic is happening, they are
still equal: they still fall off with the expansion of the universe. However, at one
point (around Ty, ~ 2.5MeV), the u* and p~ get annihilated (i.e., the reaction
whp~ < 27 goes out of equilibrium, because the temperature is too low now for the
production of a muon pair), and we are left with
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At this moment, the effective number of degrees of freedom in subsystem “1” has
decreased by a factor of 43/57, which means that T has to increase by a factor of
57/43, just to keep the entropy S; = 1V constant. So this is the moment when the
temperature 7' of the plasma begins to differ from the temperature Ty of the species

.

Next comes the decoupling of the neutrinos, at temperature 73, ~ 2 MeV
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!For derivation of muon decoupling temperature, follow the notes of Lecture 7 — there is analogous
derivation for electrons.



Starting from this point, the electron-positron-photon subsystem evolves indepen-
dently of the neutrino subsystem. The corresponding entropies S;; = s11V and

Si2 = 812V are conserved separately. Finally, at T;. ~ 10keV, electrons and
positrons annihilate each other:
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From now on we only have photons left in the plasma, that’s why its temperature is
denoted as 7T,. Once again: at the moment of decoupling of electrons the effective
number of degrees of freedom in subsystem “11” goes down by a factor of 4/11, so
T3 increases by a factor of 11/4.

Already from this schematic analysis, we may conclude that at muon-antimuon
annihilation the temperature of all particles which were in equilibrium with muons
increased in comparison to the temperature of species ¢ (already decoupled) by a
factor of (57/43)'/3. Later, at electron-positron annihilation, photons (as no other
particles were in equilibrium with electrons and positrons) were “heated up” again
by a factor of (11/4)Y/3. Thus, in the end, the temperatures are related as follows:
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However, let us derive this relation in a more rigorous way. Let us choose three
moments in the thermal history: (1) temperature T}, (the same for all particles)
which is below the decoupling temperature 7; = 150 MeV and above the muon-
antimuon annihilation freeze-out temperature 2.5 MeV; (2) temperature Tq (dif-
ferent for species ¢ and all other particles) somewhere below the neutrino decoupling
Ty, = 2MeV and above the electron-positron annihilation freeze-out temperature
10 keV; (3) temperature Ty (different for ¢, v, and ) below 10 keV. We know that
between (1) and (3) entropies S; and Sy are conserved separately while between (2)
and (3) entropies S and Sjp are conserved separately. Taking into account that
S = sV, V o a®, we have the following equations:
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Taking the ratio of Eqgs. (17) and (18), we get
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which you derived during the lecture. Further, taking the ratio of Eqgs. (16) and
(15), we obtain
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which is equivalent to Eq. (14) above.



2. Next, we want to find the number density of the particle ¢ today. For this purpose,
we use the fact that below 10 keV the temperatures of photons, 7', and ¢ particles,
Ty, both fall with the scale factor as ~ 1/a, therefore, their ratio remains constant.
Then, at present time
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Since particles ¢ decoupled when they were ultrarelativistic, their distribution func-
tion keeps the ultrarelativistic Bose-Einstein form until the present time even though
the temperature is well below the particle’s mass. Therefore, the number density is
given by the same UR formula
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3. For the associated energy density we then have (m, ~ 100€V)
po =mg-ng=56x10eV/m* = 9.9 x 10*" kg/m?. (23)

Meanwhile, the critical density is given by
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~ 8.5 x 10 *"kg/m?. (24)
Thus, the cosmological abundance of the particles ¢ would be

Q=22 ~1.16> 1. (25)
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Therefore, if the particle ¢ would exist, it would be overabundant in the Universe.
This is inconsistent with observations.



3. Lee-Weinberg bound

1. When the reaction rate of the neutrino I' is comparable to Hubble parameter H the
neutrino stops interacting
O(T*) ~ H(T™), (26)

where T™ is the temperature of decoupling. The rate of the reaction can be ap-
proximated by I' ~ n,,(ov). The number density that appears in the relationship
[’ ~ n(ov) is the density of target particles. It is assumed that the most important
reaction to keep the new neutrinos v, at thermal equilibrium is the annihilation of
neutrino with its own antiparticle. We would then put ny,. But it is also assumed
that there is no asymmetry between neutrinos and antineutrinos, so nz, = n,,.

The Hubble parameter during the domination of radiation can be expressed as
H = 1.66\/9*(T)]\T4—21, so the relationship (26) becomes
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where we defined the constant M = M,,/1.66.

2. The constraint to be imposed is that the present additional energy density of the
neutrino v4 must not exceed the density of dark matter

Pvy = 2m1/4nl/4 (TO) < QDMPSI« . (28)

The equality is satisfied if all the dark matter is given by neutrinos vy.

Once the neutrinos stop interacting, the number of neutrinos per comoving volume
remains constant n,,a® = const. In addition, we know that the total entropy per
comoving volume is conserved, i.e. sa® = const. By combining the two conservation
laws we can express the density of neutrinos today as
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Using this relationship we can write (28) like
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The combination of relations (27) and (30) allows us to determine the temperature
of decoupling and the limits on the mass of v4. We will be interested in two limiting

cases. The neutrino is light and decouples while still relativistic, or it is very heavy
and it is already non-relativistic at decoupling.
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3. Light neutrino v4: If the neutrino v, is relativistic at the time of decoupling, the
density at T™ is given by
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The thermal average of the product of the cross section and the relative velocity is

(ov) ~ GET* .
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With these two relations, (27) gives us the decoupling temperature

T — <47T2— Vg(T)) " e22 (g"(T*))M® MeV . (31)
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We know that g* is 106.75 when all species of Standard Model are relativistic and
about 3 when there is only photons and massless neutrinos. For these values,
(g*(T%))"® is of the order of 1. Our estimate of T* is then

T* ~ 2 MeV . (32)

At this temperature, the relativistic species are 7, Ve, Ue, Uy, Vy, Ur, Vyr, Ua, Vs, €7,
e. Note that neutrinos (and antineutrons) carry one degree of freedom, since they
come only with lefthanded polarization, while electrons (and positrons) carry two
degrees of freedom, since they come with both left- and righthanded polarizations.

We then get
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Then, the estimate for the decoupling temperature can be made more accurately:

T* ~2.2-(25/2)"/¢ ~ 3.4 MeV. (34)

At the present time, the only particles that are still relativistic are photons and
massless (standard) neutrinos. Neutrinos v4 should also be included because they
decoupled being ultrarelativistic and since then their entropy is conserved (note
that the temperature of all neutrinos differs from that of photons, see problem 2
and lecture notes). Thus
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We substitute (33) and (35) in (30) and solve for m,, to find
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4. Heavy neutrino v4: If the new neutrino is non-relativistic when decoupling, the
density is given by
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We can already see that in this case a larger mass corresponds to a smaller density.
We therefore expect to find a lower limit for the new neutrino mass. The thermal
average product of the cross section and the relative velocity is now

(ov) ~ Gy,

This result is not entirely trivial. One might expect the presence of a factor
(T'/m,,)". A detailed calculation shows that for the case of a Dirac neutrino, the
dominant contribution is independent of 7. The relations (27) and (30) then become
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where the inequality was replaced by an equality to simplify the calculations. Here
we used ¢*(Tp) = 2+ (7/8) - 6 - (4/11) = 43/11 because only 3 neutrino species
contribute to the entropy, the forth one decoupled already being non-relativistic.

Unfortunately we cannot find an analytic solution to the above equations. We start
by making the change of variables x = The equations become

(22)"*m}, exp(—2z) = a\/g*(T") (41)
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We can eliminate m,, to find an equation for x
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By taking the logarithm, we obtain
r—Inzxr=InK. (44)

By assumption we have z > 1. We will try to solve the equation by iterations. As
Inx < x, we can neglect the logarithm to find a first approximation

ro=InK . (45)
To find the solution, we reinsert z( in the equation
r~r;=InK+hzry=h(KInk). (46)

By inserting x; in Eq. (42) we obtain

T* ~ bg<*2(£3)5i2x1 _ /2th;1 [g*(T*>]71/4 ) (47)
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As before, we must analyze the dependence of T on ¢*(7™). In this case the result is
more sensitive to the value of g*. For a first estimate let us take ¢g*(7™) = 20. Then,
K =~ 14900 and z; ~ 12. The decoupling temperature then reads 7™ ~ 320 MeV.
This is just above the QCD phase transition. Therefore, we can take

7
g (T")=2,+8-2,+ §(2 -4 4+3-2,+3-12,) =61.75. (48)
With this new value we can update K = 7340, z; ~ 11.3, and

T* ~ 250 MeV. (49)

It is still above the QCD phase transition. Thus, this result is self-consistent. Then,
we can then find the limit on the mass m,,

my, > 20T ~5.7GeV . (50)



