
RELATIVITY AND COSMOLOGY II

Solutions to Problem Set 7 4th April 2025

1. Blackbody radiation

Compared with some initial time t0, the lengths, in particular the wavelength, get red-
shifted

λ(t) = λ0
R(t)

R0

,

where R(t) is the scale factor. Since the frequency is inversely proportional to the wave-
length, we have
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.

Then,
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since V (t) = V0
R3(t)

R3
0
.

Note that for the last two equalities, we had to impose T (t) = T0
R0

R(t)
, which gives us the

evolution of the temperature of radiation during the expansion of the universe. It is easy
to see that the total entropy S ∝ V T 3 is conserved
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2. Photon decoupling in numbers

1. The redshift is defined as

1 + z(t) =
R0

R(t)
, (2)

where R0 = R(t0) is the scale factor today. Since temperature redshifts as T ∼ R−1,
we find that at the time of decoupling

z(td) =
Td

T0

− 1 ≈ 1100 . (3)

2. In order to compute the age of the Universe

t =

∫
dt ,

1



when photons decoupled, we have to express the above in terms of the redshift.
We start from the definition of the Hubble parameter

H =
Ṙ

R
=

1

R

dR

dt
=

1

R

dR

dz

dz

dt
.

Using 1 + z = R0

R
, the above becomes

H = − 1

dt

dz

(1 + z)
.

Therefore

t =

∫
dz

(1 + z)H
.

We have seen that

H2 = H2
0

[
Ωλ + (1 + z)3Ωm + (1 + z)4Ωγ

]
.

Using this, the time of decoupling is obtained as

td =
1

H0

∫ ∞

zd

dz′

(1 + z′)
√

Ωλ + Ωm(1 + z′)3 + Ωγ(1 + z′)4
≈ 3.7× 105 years . (4)

3. For the abundances we have

Ωλ(zd) =

(
ρc(z0)

ρc(zd)

)
Ωλ(z0), (5)

Ωm(zd) =
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ρc(zd)

)
Ωm(z0)(1 + zd)

3, (6)

Ωγ(zd) =

(
ρc(z0)

ρc(zd)

)
Ωγ(z0)(1 + zd)

4 . (7)

where ρc(z0) and ρc(zd) correspond to the critical densities today and at the mo-
ment of decoupling, respectively. Using that ρc(z0)/ρc(zd) = H(z0)

2/H(zd)
2 we

get

Ωm(zd) =
Ωm(z0)(1 + zd)

3

Ωλ + (1 + z)3 Ωm + (1 + z)4 Ωγ

. (8)

The expressions for Ωλ(zd) and Ωγ(zd) are analogous.
When plugging in the numerical values one gets

Ωλ(zd) = 10−9, Ωm(zd) = 0.774, Ωγ(zd) = 0.225. (9)
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3. Fermion number density

Recall that the number density of particles in cosmic plasma is written as follows,

n = g

∫
f(p⃗)

d3p⃗

(2π)3
=

g

2π2

∫
f(E)E

√
E2 −m2dE, (10)

where g is a number of internal degrees of freedom of a particle and f(p⃗) is the distribution
function. To obtain the second equality, one should integrate over angular variables and
use the relation

EdE = |p⃗|d|p⃗|, (11)

following from the dispersion relation E =
√

p⃗2 +m2. For light fermions and antifermions
we have, correspondingly,
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Then the difference between nf and nf̄ is given by
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Expanding with respect to µ/T , we have

∆n =
g

π2

∫ ∞

0

dEE2

µ

T

e
E
T(

1 + e
E
T

)2 +O

(
µ2

T 2

) . (14)

Integrating by parts the first term, we obtain
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6
, (15)

where we used the formula ∫ ∞

0

z2n−1

ez + 1
dz =

22n−1 − 1

2n
π2nBn, (16)

B1 =
1

6
, B2 =

1

30
, B3 =

1

42
, ..., (17)

valid for positive integer n.
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