RELATIVITY AND COSMOLOGY 1II

Solutions to Problem Set 7 4th April 2025

1. Blackbody radiation

Compared with some initial time ¢y, the lengths, in particular the wavelength, get red-

shifted R()
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where R(t) is the scale factor. Since the frequency is inversely proportional to the wave-
length, we have
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since V' (t) = Vp
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Note that for the last two equalities, we had to impose T(t) = Ty 75> which gives us the
evolution of the temperature of radiation during the expansmn of til universe. It is easy
to see that the total entropy S oc VT is conserved
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2. Photon decoupling in numbers

1. The redshift is defined as
Ry
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where Ry = R(t) is the scale factor today. Since temperature redshifts as T ~ R~
we find that at the time of decoupling
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2. In order to compute the age of the Universe
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when photons decoupled, we have to express the above in terms of the redshift.

We start from the definition of the Hubble parameter
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Using 1 + z = % , the above becomes

Therefore

We have seen that
H? = Hy [0+ (1+2)°Qn + (14 2)'Q] .

Using this, the time of decoupling is obtained as
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. For the abundances we have
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where p.(z9) and p.(z4) correspond to the critical densities today and at the mo-
ment of decoupling, respectively. Using that p.(20)/pe(z4) = H(20)*/H(zq)* we

get
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The expressions for ,(z4) and €, (z4) are analogous.
When plugging in the numerical values one gets

On(za) =107, Q(20) = 0.774, Q. (z4) = 0.225.
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3. Fermion number density

Recall that the number density of particles in cosmic plasma is written as follows,
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where g is a number of internal degrees of freedom of a particle and f(p) is the distribution
function. To obtain the second equality, one should integrate over angular variables and
use the relation

EdE = |pld|pl, (11)

following from the dispersion relation £ = /p? + m?. For light fermions and antifermions
we have, correspondingly,
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Then the difference between ny and ny is given by
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Expanding with respect to p/T, we have
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Integrating by parts the first term, we obtain
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where we used the formula
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valid for positive integer n.



