RELATIVITY AND COSMOLOGY 1II

Solutions to Problem Set 6 29th March 2024

1. Densities evolution

1. The equation governing the evolution of the distribution function n(t, p’) reads
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where i = x,y, 2z, and summation over repeated indices is understood. Since the
Hubble parameter is H = ¢, we can rewrite the above as
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2.&3. As customary in the method of characteristics, we assume that a = a(s) and p’ =
p'(s), where s parametrises the characteristic curve. Using the chain rule for the
derivatives we obtain
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Comparing the above with (2), we immediately find the following set of Ordinary
Differential Equations
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where ag = a(0) and p{ = p*(0) are the initial conditions.
4. Moreover,
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which implies that n remains constant along the curve. Therefore, if we assume that
initially n(0,p}) = ng, we obtain n(t,p}) = n (t,pi;—o). This clearly shows that the

only effect the expansion of the Universe has on the distribution function of the
particles is the redshift in the momentum.



2. Conservation of chemical potential

1. We denote by f; the distribution function of i’s particle participating in the reaction
(1) +(2) = (3) + (4). The vanishing of the collision integral in equilibrium leads to
the equality
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where the upper sign stands for bosons and the lower sign stands for fermions. This

equation implies
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We conclude that log 1 j{ is an additive constant of motion. Now we exploit the

fact that in equilibrium we know the distribution functions :
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where again the upper sign holds refers to bosons and the lower one to fermions.
This is equivalent to :
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Substituting into eq. (8) and using that energy is conserved, we get
pa + p2 = i3+ g (11)

2. It is straightforward to generalize the above argument and deduce that
S =Y 12
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3. Consider the reaction et e™ — ete™v. From the conservation of the chemical poten-
tial it follows immediately that p, = 0.

4. Consider the reaction of annihilation, p + p — 2v. Since p1, = 0, we conclude that
Hp = — -

3. Proton gas

1. We saw in the lecture that the average path traveled between two reactions is A = #,
with o = m_? the cross section and
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the density of protons. The interaction rate, i.e. the frequency of collisions, is given
by
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where v is the average velocity of the protons. It can be evaluated assuming that
the kinetic energy of the gas is equal to %T :
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Now we compare the rate (13) with the Hubble parameter
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which sets the rate at which the universe evolves. Decoupling takes places when the
two rates are on the same order :
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where Ty is the decoupling temperature. We get
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n o = =4.2-10°m™>.

Assuming that the reactions of annihilation are negligible since decoupling, the
density ratio has not changed, so n) ~ 107" m~>. Note that this result is extremely
sensitive to 7. In the real Universe, we have about ng = 1. It is therefore necessary
to have a more complicated mechanism to explain the presence of matter in the

universe.



