
RELATIVITY AND COSMOLOGY II

Solutions to Problem Set 6 29th March 2024

1. Densities evolution

1. The equation governing the evolution of the distribution function n(t, pi) reads

∂n

∂t
−Hpi

∂n

∂pi
= 0 , (1)

where i = x, y, z, and summation over repeated indices is understood. Since the
Hubble parameter is H = ȧ

a
, we can rewrite the above as

a

ȧ

∂n

∂t
− pi

∂n

∂pi
= 0 ⇔ a

∂n

∂a
− pi

∂n

∂pi
= 0 . (2)

2.&3. As customary in the method of characteristics, we assume that a = a(s) and pi =
pi(s), where s parametrises the characteristic curve. Using the chain rule for the
derivatives we obtain

dn

ds
=

da

ds

∂n

∂a
+

dpi

ds

∂n

∂pi
. (3)

Comparing the above with (2), we immediately find the following set of Ordinary
Differential Equations

da

ds
= a ⇔ s = log

(
a

a0

)
, (4)

dpi

ds
= −pi ⇔ pi = pi0

a0
a

, (5)

where a0 = a(0) and pi0 = pi(0) are the initial conditions.

4. Moreover,

dn

ds
= 0 , (6)

which implies that n remains constant along the curve. Therefore, if we assume that

initially n(0, pi0) = n0, we obtain n(t, pi0) = n
(
t, pi a

a0

)
. This clearly shows that the

only effect the expansion of the Universe has on the distribution function of the
particles is the redshift in the momentum.
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2. Conservation of chemical potential

1. We denote by fi the distribution function of i’s particle participating in the reaction
(1) + (2) → (3) + (4). The vanishing of the collision integral in equilibrium leads to
the equality

(1± f1)(1± f2)f3f4 = (1± f3)(1± f4)f1f2 , (7)

where the upper sign stands for bosons and the lower sign stands for fermions. This
equation implies

log
f1

1± f1
+ log

f2
1± f2

= log
f3

1± f3
+ log

f4
1± f4

. (8)

We conclude that log
f

1± f
is an additive constant of motion. Now we exploit the

fact that in equilibrium we know the distribution functions :

fi =
1

e
Ei−µi

T ∓ 1
, (9)

where again the upper sign holds refers to bosons and the lower one to fermions.
This is equivalent to :

log
fi

1± fi
= −Ei − µi

T
. (10)

Substituting into eq. (8) and using that energy is conserved, we get

µ1 + µ2 = µ3 + µ4 . (11)

2. It is straightforward to generalize the above argument and deduce that

n∑
i=1

µi =
m∑
i=1

µ̄i . (12)

3. Consider the reaction e+e− → e+e−γ. From the conservation of the chemical poten-
tial it follows immediately that µγ = 0.

4. Consider the reaction of annihilation, p + p̄ → 2γ. Since µγ = 0, we conclude that
µp = −µp̄.

3. Proton gas

1. We saw in the lecture that the average path traveled between two reactions is λ = 1
σn
,

with σ = m−2
π the cross section and

n = 2

(
mpT

2π

)3/2

exp

(
−mp

T

)
the density of protons. The interaction rate, i.e. the frequency of collisions, is given
by

Γ =
v

λ
= σnv, (13)
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where v is the average velocity of the protons. It can be evaluated assuming that
the kinetic energy of the gas is equal to 3

2
T :

v =

√
3T

mp

.

Now we compare the rate (13) with the Hubble parameter

H = 1.66g1/2∗
T 2

MPl

,

which sets the rate at which the universe evolves. Decoupling takes places when the
two rates are on the same order :

1.66g1/2∗
T 2
d

MPl

=
1

m2
π

(
mpT

2π

)3/2

exp

(
−mp

Td

)√
3Td

mp

,

where Td is the decoupling temperature. We get

Td =
mp

ln
( √

3MPlmp

1.66g
1/2
∗ (2π)3/2m2

π

) =
mpc

2

kB ln
( √

3MPlmp

1.66g
1/2
∗ (2π)3/2m2

π

) = 2.5 · 1011K.

2. The density ratio is

np

nγ

=
2
(

mpc2Td

2πkB

)3/2

exp
(

−mpc2

kBTd

)
2ζ(3)
π2 T 3

d

= 5.3 · 10−18.

3. When T = T0 = 2.73K, the number density of photons is

n0
γ =

2ζ(3)

π2
T 3
0 =

2ζ(3)

π2

T 3
0 k

3
B

c3ℏ3
= 4.2 · 108m−3.

Assuming that the reactions of annihilation are negligible since decoupling, the
density ratio has not changed, so n0

p ≃ 10−10m−3. Note that this result is extremely
sensitive to T . In the real Universe, we have about n0

p = 1. It is therefore necessary
to have a more complicated mechanism to explain the presence of matter in the
universe.
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