RELATIVITY AND COSMOLOGY 1II

Solutions to Problem Set 5 22nd March 2024

1. Dipole anisotropy of the Cosmic Microwave Background

The distribution function of photons reads as follows,

1
N(p) = T 1" (1)
Here we denote p = |p]. The distribution function is a scalar with respect to Lorentz

transformations. This means that if we move to a reference frame that is moving with
respect to the CMB reference frame, then

Nogs(poss) = Nems(pems) - (2)

Here poyp is the momentum of a photon which is at rest in the medium, whereas popg
is the momentum of the photon measured in the Earth. Their absolute values are related

by Doppler effect formula,
1 —wcosf

PcmB = ﬁpom ) (3)

where 0 is the angle between ppps and the axis along which the Earth is moving with
respect to isotropic CMB background. Therefore, from Egs. (1) and (2) we get

PoBs PcmB
= (4)

Tops Toms'
for any given momentum of the photon. Then, the temperature acquires dependence on

0 and is given by
V1 —0? )

1 —wvcos0

Tops = Tcmp ( (5)

Expanding the above in powers of v and keeping the first order term, we find

or _ Toss — Tems

~ vcosh . 6
T Tems (6)

Tops ~ TCMB(l + v cos 9) —

Considering a dipole anisotropy of the order of 1072, we find for § = 0
v 1077, (7)

or, in conventional units,

v =~ 300 km/s . (8)

This order-of-magnitude estimate appears to be quite close to the exact value of the
Earth’s relative velocity v &~ 370 km/s.

1. Here and below we use the system of units in which A=k =c=1.



2. Effective number of degrees of freedom

1. For the ultrarelativistic bosons and fermions in thermal equilibrium the energy den-
sity is computed by

-
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In the relativistic limit £ /b’i(l;) ~ |k|, and the integral can be made adimensional
through a change of variable z = |k|/T
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The integral can be performed with the following trick :
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Putting it all together we get :
2 72
Poi = Goigyt Pri = g9rigg (13)

Therefore, the total energy density in the radiation dominated epoch is

2 2
P= prit Yy pri= (Z b + g ng,j> %T“ = g*%T“- (14)

2. To solve this problem it would be convenient to summarize the particle content of
the Standard Model of particle physics. In the table below we list particles sorting
them by mass and show the number of degrees of freedom (DOF). We also separated
particles that participate and do not participate in strong interaction because of the
QCD transition (see details below).

2. If you don’t remember the first values of the Riemann { function you can always compute them
by choosing wisely a periodic function to integrate over its period, and relate it to the sum of its Fourier
coefficients.



Particle | Mass (GeV) | Type | DOF
Not strongly interacting particles
¥ 0 boson 2
Ve iz ~ 1071 fermions | 3-2=06
e 5.11-10~* | fermion 4
i 0.106 fermion 4
T 1.78 fermion 4
W= 80.4 boson | 2-3=6
79 91.2 boson 3
h 125 boson 1
Strongly interacting particles
g 0 bosons | 8-2 =16
U ~2-1073 fermion | 3-4 =12
d ~5-1073 fermion | 3-4 =12
5 0.095 fermion | 3-4 =12
c 1.25 fermion | 3-4 =12
b 4.2 fermion | 3-4 =12
t 173 fermion | 3-4 =12

To construct this table you should take into account that each fermion has 4 DOF (two
spin states X particles/antiparticles), neutrinos are special fermions with only one spin
state (left-chiral), massless vector bosons have 2 DOF, massive vector bosons have 3 DOF,
while Higgs boson h is a scalar boson with only 1 DOF. Also, you should not forget that
there are 8 different gluon types (¢) and each quark has 3 colors. (For this consideration
each color can be treated as an independent particle.) We get :

(a) For T'=1 TeV all Standard Model particles are present in plasma and are ultra-
relativistic. This gives the total number of bosonic degrees of freedom ¢, = 28 and
fermionic gy = 90, so

7
gx(1 TeV) = 28 + 3 90 = 106.75. (15)

(b) For T' = 10 GeV we should exclude too heavy particles (W=*, Z° h, t). This reduces
number of degrees of freedom to g, = 18 and fermionic gy = 78, so

7
9.(10 GeV) =18 + < - 78 = 86.25. (16)

(c) As T'= 10 MeV is lower than the temperature of QCD transition Tcp there are
no free gluons and quarks in the plasma anymore. Moreover, the lightest baryon —
pion — has mass ~ 135 MeV, which means that baryons are also not present in the
plasma. The particles that contribute at this temperature are photons, neutrinos
and electrons which results in

9+(10 MeV) = 2 + g -10 = 10.75. (17)

(d) At the temperature T'= 0.1 MeV only photons and neutrinos are present in plasma,
which gives

7
9.(01 MeV) =2+ 26 =725, (18)



However, this is a wrong result. The drawback here is in the assumption of the
thermal equilibrium. As you will discuss later in the course, neutrinos decouple
from the other particles a T' ~ 1 MeV and at T'= 0.1 MeV they have temperature
that is different from the temperature of the electromagnetic plasma. The correct
value of g, in this case is g.(0.1 MeV) ~ 3.36.

The evolution of the g, is shown in the figure below :
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3. Thermodynamics of non-relativistic medium

Recall that the distribution function N(p) of gas in equilibrium is given by

1
Np) = w5 (19)
e T 1
where F(p) = /p*+m?, p = |p], and “—7 stands for bosons while “+” stands for

fermions. In the non-relativistic case F(p) ~ m—l—%, and under the assumptions m/T > 1,
(m — p)/T > 1 the distribution functions of particles and antiparticles become

a—m 2
N,.(p) = e T ez (20)
Denote p1 = i, then p, = —p.
Before computing thermodynamical quantities, let us consider here for further convenience
the general Gaussian integral of the form
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where I' is the gamma function and (2n — 1)l = (2n—1)-(2n—3)-...-3-1. We will use
it below.
1. The number density of particles in the gas is given by
d*p

ny = g/Np(p)W, (22)

where g denotes the number of internal degrees of freedom of the particle (or anti-
particle). Substituting (20) into (22), we arrive at

n, = %eu}m /000 e_%p2 dp =g (2—:) e T (23)
12=¢F§mT)3/2
The number density of antiparticles reads similarly,
3/2
Ng =g (2—:) : e T (24)
The total number density is n = n, + n,.
2. The energy density of particles is, by definition,
3
b9 [ MEw S (25)
To compute this in the non-relativistic limit, we substitute F(p) ~ m + % and
obtain L g e [ 2 5
pp:mnp+%2—7r26 T /0 e T p dp:mnp+§in. (26)

14=3+/7/2(mT)5/2
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Similarly, for antiparticles p, = mn, + §naT , and the total energy density is

3
p=mn+ inT. (27)
. The calculation of pressure is slightly more involved. Let us first consider the generic
standard definition of the pressure. Consider a small area AS placed perpendicular
to the direction of z-axis. The number of particles (or antiparticles) with momenta
from p to p + dp hitting the area during the time At is
1 d3p
An = =|v,| Ny o(p) —=ASAL, 28
= 50l Noal) (28)

p-|

where |v,| = , and 1/2 accounts for the fact that only half of the particles go

towards the area. When it hits the surface, the particle transfers to it the momentum
Ap, = 2p,. By definition, the pressure is a total momentum transferred to the surface
per unit area per unit time, that is

AnAp, d*p P’ &’p
P, = = N =g [ N, .(p)— . 2
p,a g / ASAt g / ‘UZ ’pz p,a(p> (27T)3 / E p,a(p) (27'{')3 ( 9)

We would get exactly the same expression if we started with the definition of the
stress-energy tensor for an ensemble of point-like particles derived in Lecture 10 in
the previous semester :

a’p Pup
T, = N iy 30
In the isotropic case, T;; = —n;; P, therefore, e.g., P = T, which coincides with
Eq. (29).
1
Due to isotropy of the medium we can write p? = §p2, hence
oo 4
g pidp
Npa(p) - (31)

P,.==
P 672 Jo E(p)

Calculating this integral in the non-relativistic limit (i.e., F(p) &~ m in the denomi-
nator), we get the answer

g tuom <2y, - mT\3/2 duem
Pp7a—6ﬂ2me T /0 e 2T dp—gT<ﬁ> e T =Tn,,, (32)

J/
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I4=34/7/2(mT)5/2

and, hence, P = T'n. Note that P < p, since T' < m. The conclusion is that for the
non-relativistic gas one can neglect its pressure and regard the condition P = 0 as
its equation of state.

. Let us outline one way to derive the expression for the entropy density. We start
from the relations



Taking the differentials, we have

dE =Vdp+ pdV ,
dN = Vdn +ndV (34)
dS =Vds+ sdV .

Next, we recall the first law of thermodynamics :

dE = TdS — PdV + > judN;, (35)

where the sum runs over all species present in the system. Substituting (34) into
(35), we have

(Ts—P—p—l—Zuini) dv + (Tds—dp—l—Zuidni) V=0. (36)

This equation is valid for the whole system as well as for any part of it. In particular,
we can take some region of a constant volume, dV = 0, and obtain

Tds —dp + Z widn; = 0. (37)

Plugging this back, we get the desired expression for the entropy density,

_PHp = pn,

38
. (38)
Using (27) and (32), one can write this as
5 m 1
s:§n+Tn—Tzi:,umi, (39)
where n; are given by (23) and (24).
Alternatively, we can use the following equation given in the lecture,
d*p
s=—g [[N(p)log N(p) F (1 £ N(p))log(1 = N(p))] 2n) (40)

where the upper sign refers to bosons and the lower sign to fermions. In the non-

relativistic limit, we can approximate the second part

(EN)?
2

F(1+ N)log(1+ N) ~ F(1 £ N)[£N — 4]~ =N (41)

and get

Z/ p)[log Ni(p :—gZ/ il @_1]:

i=p,a i=p,a

=-7 Z,umi—i-%—i-n, (42)

which coincides with the result in Eq. (39).



