
RELATIVITY AND COSMOLOGY II

Solutions to Problem Set 2 March 1st, 2024

1. Energy-momentum tensor for a perfect fluid

1. A perfect fluid is an idealized medium with no heat conduction, zero viscosity (no
shear forces) and isotropic pressure. This means that at every point, there is a
locally inertial frame of reference moving with the fluid. In this comoving frame,
the fluid appears the same in all directions.

Rotational invariance then tells us that T 0i = 0, since these terms transform as
vectors under spatial rotations. Also T ij = 0 for i ̸= j (these are called “shear
terms). So in the rest frame, the energy-momentum tensor of a perfect fluid is
diagonal. Lastly, of course the pressure has to be identical in all directions. We are
just left with

T µν = Diag [ρ, p, p, p] . (1)

With some trial and error this can be written in a covariant way as

T µν = (ρ+ p) uµuν + p ηµν , (2)

where uµ is the four-velocity of the medium, which in the rest frame reads uµ =
(1, 0, 0, 0).

Note: Since the above expression is covariant, it can be immediately generalized to an
arbitrary frame by replacing ηµν by a general metric gµν :

Tµν = (ρ+ p) uµuν + p gµν . (3)

2. In order to facilitate the calculations involved in this part of the exercise, it is
convenient to reinstate factors of c. Since ρ is actually a mass density, with units
kilogram per cubic metre, and p is a pressure, with units Newton per square metre,
the energy-momentum tensor should read

T µν = (ρ+
p

c2
)uµuν + pηµν . (4)

(a) We wish to compute the following quantity

uν∂µTµν . (5)

Plugging the explicit form of Tµν into the above, we obtain

uν∂µTµν = uν∂µ
(
ρ+

p

c2

)
uµuν + uν

(
ρ+

p

c2

)
∂µ(uµuν) + uµ∂µp

= −c2
(
uµ∂µρ+

(
ρ+

p

c2

)
∂µu

µ
)

. (6)

Here we used that uµu
µ = −c2, which implies uµ∂νuµ = 0. Now, due to

conservation of the energy-momentum tensor (∂µTµν = 0), the above leads to

uµ∂µρ+
(
ρ+

p

c2

)
∂µu

µ = 0 . (7)
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(b) To proceed with the attainment of the non-relativistic limit of the above ex-
pression, we first plug in the definition of the four velocity, uµ = (cγ, γu⃗), to
find

γ
∂ρ

∂t
+ γu⃗ · ∇⃗ρ+

(
ρ+

p

c2

) ∂γ

∂t
+
(
ρ+

p

c2

)
∇⃗ · (γu⃗) = 0 . (8)

Now, for c → ∞ and γ ≈ 1, we obtain the standard continuity equation (one
of the Navier-Stokes equations):

∂ρ

∂t
+ u⃗ · ∇⃗ρ+ ρ∇⃗ · u⃗ = 0 . (9)

(c) The conservation law ∂µTµν = 0 reads

∂µ
(
ρ+

p

c2

)
uµuν +

(
ρ+

p

c2

)
∂µ(uµuν) + ∂νp = 0 . (10)

Plugging the result of point (a) into the above expression, we find

ρuµ∂µuν +
1

c2
uµ∂µ(puν) + ∂νp = 0 . (11)

Consider the spatial part of this expression, i.e. ν = i:

ρuµ∂µ(γu⃗) +
1

c2
uµ∂µ(pγu⃗) + ∇⃗p = 0 . (12)

Expanding as before, we obtain

ργ

[
∂

∂t
(γu⃗) + (u⃗ · ∇⃗)(γu⃗)

]
+

γ

c2

[
∂

∂t
(pγu⃗) + (u⃗ · ∇⃗)(pγu⃗)

]
+ ∇⃗p = 0 . (13)

In the non-relativistic limit, we see that the above expression reduces to Euler’s
equation

ρ
∂u⃗

∂t
+ ρ(u⃗ · ∇⃗)u⃗+ ∇⃗p = 0 . (14)

2. General equation of state

In the previous exercise, we have shown that the energy-momentum tensor of a perfect
fluid in an arbitrary coordinate system is

Tµν = (ρ+ p)uµuν + pgµν , (15)

where ρ is the energy density, p the pressure and uµ the four-velocity of the medium. In
an arbitrary curved background, the conservation law ∇νT

µν = 0 implies

∂νT
µν + Γµ

νλT
λν + Γν

νλT
µλ = 0 . (16)

Now we consider the case µ = 0. Using eq. (15) in the rest frame of the fluid and the fact
that the FLRW metric fulfills gµν = 0 for µ ̸= ν, we get

∂νT
0ν + Γ0

νλT
λν + Γν

νλT
0λ = 0

⇒ ∂0T
00 + Γ0

00T
00 + Γ0

ijT
ij + Γν

ν0T
00 = 0

⇒ ∂0T
00 + 3Γ0

11T
11 + 3Γ1

10T
00 + 2Γ0

00T
00 = 0 , (17)
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where we used isotropy in the last step. Plugging in the Christoffel symbols of the spatially
flat FLRW metric, as derived in problem 3 of sheet 1, yields

⇒ dρ

dt
+ 3RR′ 1

R2
p+ 3

R′

R
ρ = 0

⇒ d

dt
(R3ρ) + p

dR3

dt
= 0 . (18)

1. Substituting the dependence p = wρ into (18) gives

d

dt
(R3ρ) + wρ

dR3

dt
= 0 . (19)

That leads to
1

(w + 1)ρ

dρ

dt
= − 1

R3

d(R3)

dt
, (20)

which has the solution

ρ(R) ∼ 1

R3(1+w)
. (21)

2. Substituting ρ(R) into Friedmann equation,(
Ṙ

R

)2

=
8πG

3
ρ(R), (22)

we have,

R(t) ∼ tα, α =
2

3

1

1 + w
, (23)

and hence

ρ(t) ∼ 1

t2
. (24)

Since α > 0, R(t) goes to zero as t → 0, while ρ(t) diverges.

3. Differentiating Eq.(23), one finds,

R̈(t) ∼ α(α− 1)tα−2. (25)

The Universe expands with acceleration if α− 1 > 0, or, equivalently, if w < −1/3.

3. Einstein Universe

From the lectures we know that in the case of Einstein’s universe

R0 =
1√
λ
=

c√
4πGρ

,

where we have restored the speed of light c for numerical estimations. For the cosmological
constant, we have

λ =
1

R2
0

= 3.44× 10−53 1

m2
= 1.33× 10−84 GeV2.

To obtain this equality, we multiplied by ℏ2c2 and transformed J in GeV with 1µm =
0.81 1

eV
. For the matter density:

ρ =
c2

4πR2G
= 3.7× 10−27 kg/m3 = 1.59× 10−47GeV4 .

To get the last equality, we multiplied by ℏ3c5 and transformed J in GeV.
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