
RELATIVITY AND COSMOLOGY II

Solutions to Problem Set 2

March 1st, 2024

1. Energy-momentum tensor for a perfect fluid

1. A perfect fluid is an idealized medium with no heat conduction, zero viscosity (no shear forces) and isotropic pressure. This means that at every point, there is a locally inertial frame of reference moving with the fluid. In this comoving frame, the fluid appears the same in all directions.

Rotational invariance then tells us that $T^{0i} = 0$, since these terms transform as vectors under spatial rotations. Also $T^{ij} = 0$ for $i \neq j$ (these are called “shear terms”). So in the rest frame, the energy-momentum tensor of a perfect fluid is diagonal. Lastly, of course the pressure has to be identical in all directions. We are just left with

$$T^{\mu\nu} = \text{Diag} [\rho, p, p, p]. \quad (1)$$

With some trial and error this can be written in a covariant way as

$$T^{\mu\nu} = (\rho + p) u^\mu u^\nu + p \eta^{\mu\nu}, \quad (2)$$

where u^μ is the four-velocity of the medium, which in the rest frame reads $u^\mu = (1, 0, 0, 0)$.

Note: Since the above expression is covariant, it can be immediately generalized to an arbitrary frame by replacing $\eta^{\mu\nu}$ by a general metric $g^{\mu\nu}$:

$$T^{\mu\nu} = (\rho + p) u^\mu u^\nu + p g^{\mu\nu}. \quad (3)$$

2. In order to facilitate the calculations involved in this part of the exercise, it is convenient to reinstate factors of c . Since ρ is actually a mass density, with units kilogram per cubic metre, and p is a pressure, with units Newton per square metre, the energy-momentum tensor should read

$$T^{\mu\nu} = (\rho + \frac{p}{c^2}) u^\mu u^\nu + p \eta^{\mu\nu}. \quad (4)$$

- We wish to compute the following quantity

$$u^\nu \partial^\mu T_{\mu\nu}. \quad (5)$$

Plugging the explicit form of $T_{\mu\nu}$ into the above, we obtain

$$\begin{aligned} u^\nu \partial^\mu T_{\mu\nu} &= u^\nu \partial^\mu \left(\rho + \frac{p}{c^2} \right) u_\mu u_\nu + u^\nu \left(\rho + \frac{p}{c^2} \right) \partial^\mu (u_\mu u_\nu) + u^\mu \partial_\mu p \\ &= -c^2 \left(u^\mu \partial_\mu \rho + \left(\rho + \frac{p}{c^2} \right) \partial_\mu u^\mu \right). \end{aligned} \quad (6)$$

Here we used that $u_\mu u^\mu = -c^2$, which implies $u^\mu \partial^\nu u_\mu = 0$. Now, due to conservation of the energy-momentum tensor ($\partial^\mu T_{\mu\nu} = 0$), the above leads to

$$u^\mu \partial_\mu \rho + \left(\rho + \frac{p}{c^2} \right) \partial_\mu u^\mu = 0. \quad (7)$$

(b) To proceed with the attainment of the non-relativistic limit of the above expression, we first plug in the definition of the four velocity, $u^\mu = (c\gamma, \gamma\vec{u})$, to find

$$\gamma \frac{\partial \rho}{\partial t} + \gamma \vec{u} \cdot \vec{\nabla} \rho + \left(\rho + \frac{p}{c^2} \right) \frac{\partial \gamma}{\partial t} + \left(\rho + \frac{p}{c^2} \right) \vec{\nabla} \cdot (\gamma \vec{u}) = 0 . \quad (8)$$

Now, for $c \rightarrow \infty$ and $\gamma \approx 1$, we obtain the standard continuity equation (one of the Navier-Stokes equations):

$$\frac{\partial \rho}{\partial t} + \vec{u} \cdot \vec{\nabla} \rho + \rho \vec{\nabla} \cdot \vec{u} = 0 . \quad (9)$$

(c) The conservation law $\partial^\mu T_{\mu\nu} = 0$ reads

$$\partial^\mu \left(\rho + \frac{p}{c^2} \right) u_\mu u_\nu + \left(\rho + \frac{p}{c^2} \right) \partial^\mu (u_\mu u_\nu) + \partial_\nu p = 0 . \quad (10)$$

Plugging the result of point (a) into the above expression, we find

$$\rho u^\mu \partial_\mu u_\nu + \frac{1}{c^2} u^\mu \partial_\mu (p u_\nu) + \partial_\nu p = 0 . \quad (11)$$

Consider the spatial part of this expression, i.e. $\nu = i$:

$$\rho u^\mu \partial_\mu (\gamma \vec{u}) + \frac{1}{c^2} u^\mu \partial_\mu (p \gamma \vec{u}) + \vec{\nabla} p = 0 . \quad (12)$$

Expanding as before, we obtain

$$\rho \gamma \left[\frac{\partial}{\partial t} (\gamma \vec{u}) + (\vec{u} \cdot \vec{\nabla}) (\gamma \vec{u}) \right] + \frac{\gamma}{c^2} \left[\frac{\partial}{\partial t} (p \gamma \vec{u}) + (\vec{u} \cdot \vec{\nabla}) (p \gamma \vec{u}) \right] + \vec{\nabla} p = 0 . \quad (13)$$

In the non-relativistic limit, we see that the above expression reduces to Euler's equation

$$\rho \frac{\partial \vec{u}}{\partial t} + \rho (\vec{u} \cdot \vec{\nabla}) \vec{u} + \vec{\nabla} p = 0 . \quad (14)$$

2. General equation of state

In the previous exercise, we have shown that the energy-momentum tensor of a perfect fluid in an arbitrary coordinate system is

$$T_{\mu\nu} = (\rho + p) u_\mu u_\nu + p g_{\mu\nu} , \quad (15)$$

where ρ is the energy density, p the pressure and u^μ the four-velocity of the medium. In an arbitrary curved background, the conservation law $\nabla_\nu T^{\mu\nu} = 0$ implies

$$\partial_\nu T^{\mu\nu} + \Gamma^\mu_{\nu\lambda} T^{\lambda\nu} + \Gamma^\nu_{\nu\lambda} T^{\mu\lambda} = 0 . \quad (16)$$

Now we consider the case $\mu = 0$. Using eq. (15) in the rest frame of the fluid and the fact that the FLRW metric fulfills $g_{\mu\nu} = 0$ for $\mu \neq \nu$, we get

$$\begin{aligned} \partial_\nu T^{0\nu} + \Gamma^0_{\nu\lambda} T^{\lambda\nu} + \Gamma^\nu_{\nu\lambda} T^{0\lambda} &= 0 \\ \Rightarrow \partial_0 T^{00} + \Gamma^0_{00} T^{00} + \Gamma^0_{ij} T^{ij} + \Gamma^\nu_{\nu 0} T^{00} &= 0 \\ \Rightarrow \partial_0 T^{00} + 3\Gamma^0_{11} T^{11} + 3\Gamma^1_{10} T^{00} + 2\Gamma^0_{00} T^{00} &= 0 , \end{aligned} \quad (17)$$

where we used isotropy in the last step. Plugging in the Christoffel symbols of the spatially flat FLRW metric, as derived in problem 3 of sheet 1, yields

$$\begin{aligned} &\Rightarrow \frac{d\rho}{dt} + 3RR' \frac{1}{R^2} p + 3 \frac{R'}{R} \rho = 0 \\ &\Rightarrow \frac{d}{dt}(R^3 \rho) + p \frac{dR^3}{dt} = 0 . \end{aligned} \quad (18)$$

1. Substituting the dependence $p = w\rho$ into (18) gives

$$\frac{d}{dt}(R^3 \rho) + w\rho \frac{dR^3}{dt} = 0 . \quad (19)$$

That leads to

$$\frac{1}{(w+1)\rho} \frac{d\rho}{dt} = -\frac{1}{R^3} \frac{d(R^3)}{dt} , \quad (20)$$

which has the solution

$$\rho(R) \sim \frac{1}{R^{3(1+w)}} . \quad (21)$$

2. Substituting $\rho(R)$ into Friedmann equation,

$$\left(\frac{\dot{R}}{R} \right)^2 = \frac{8\pi G}{3} \rho(R) , \quad (22)$$

we have,

$$R(t) \sim t^\alpha, \quad \alpha = \frac{2}{3} \frac{1}{1+w} , \quad (23)$$

and hence

$$\rho(t) \sim \frac{1}{t^2} . \quad (24)$$

Since $\alpha > 0$, $R(t)$ goes to zero as $t \rightarrow 0$, while $\rho(t)$ diverges.

3. Differentiating Eq.(23), one finds,

$$\ddot{R}(t) \sim \alpha(\alpha-1)t^{\alpha-2} . \quad (25)$$

The Universe expands with acceleration if $\alpha-1 > 0$, or, equivalently, if $w < -1/3$.

3. Einstein Universe

From the lectures we know that in the case of Einstein's universe

$$R_0 = \frac{1}{\sqrt{\lambda}} = \frac{c}{\sqrt{4\pi G\rho}} ,$$

where we have restored the speed of light c for numerical estimations. For the cosmological constant, we have

$$\lambda = \frac{1}{R_0^2} = 3.44 \times 10^{-53} \frac{1}{\text{m}^2} = 1.33 \times 10^{-84} \text{ GeV}^2 .$$

To obtain this equality, we multiplied by $\hbar^2 c^2$ and transformed J in GeV with $1 \mu\text{m} = 0.81 \frac{1}{\text{eV}}$. For the matter density:

$$\rho = \frac{c^2}{4\pi R_0^2 G} = 3.7 \times 10^{-27} \text{ kg/m}^3 = 1.59 \times 10^{-47} \text{ GeV}^4 .$$

To get the last equality, we multiplied by $\hbar^3 c^5$ and transformed J in GeV.