RELATIVITY AND COSMOLOGY 1II

Solutions to Problem Set 1 23th February 2024

1. Homogeneous and isotropic space

We know from the lecture that homogeneous and isotropic space with constant spatial
curvature can be described by the metric

d 2
ds® = R? (1 s 417 (d67 + sin® 6 d¢2)) , (1)

with £ = 1,0, —1. Metrics which describe the same homogeneous spaces with constant
spatial curvature should therefore be obtained by a change of variables. Having the term

dx? with coefficient 1 requires
dr

=y
Ik X

We can solve these equations for the different value of k. We find

(2)

k=1 —  r=siny,
k=20 — =Y,
k=-1 — r =sinhy.

With these changes of coordinates the metric takes exactly the forms given in the exercise.
Therefore, these describe the same type of homogeneous and isotropic space.

2. Volume in curved spacetime

1. The volume is given by

~ [ @y, 3)

with 1
0 0
et 1_7"_22 B rtsin®6 (4)
T =ae 0 r? 0 - 1—7r2/RY
0 0 r2sin’6

Therefore, we have
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2. Again, the volume is given by

V= /d‘g:vﬁ, (6)

and this time

R? 0 0
y=det [ 0 R2Zsin®y 0 = RPsin* ysin? . (7)
0 0 R?sin? y sin? 6

Therefore, we have

™ s 2
V= R3/ dx/ d&/ d¢ sin® x sin 0
0 0 0 (8)

= 47 R? / dy sin® y = 212 R3.
0
3. The difference of the factor of 2 is a result of the fact that the first set of coordinates
only covers half of a 3-sphere. Let’s begin with definition of 3-sphere in R*
22+ + 22+ w? = R% (9)
We now rewrite the last three variables into coordinates of a 2-sphere:

y = rsinfsin g,
z = rsinf cos p, (10)

w =1rcosf.
The 3-sphere equation for points on the sphere becomes
? +r? = R?, (11)
with r > 0. This gives two branches of solutions
r=+VR2 -2 (12)

both of which have coordinates range of r € [0, R),0 € [0,7), ¢ € [0, 27).

To compute the metric components, one uses chain rule dz; = g;“"}'_ dz’; where z; are
J
0,0
Erdr
dr = —F———,
VR2 — 12
dy = sinfsin ¢ dr + rcosfsin ¢ df + rsinf cos ¢ dy, (13)

dz = sinfcos ¢ dr + rcosfcose df — rsinfsin ¢ dp,
dw = cos fdr — rsin 0d6,

where the sign in front of the first of the 1-forms depends on the branch of the
solution. By substitution it into the Euclidean metric one gets

dr?

ds® = da* + dy* + d2* + dw® = ! + r2d0* + r* sin? Odp*. (14)
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This is exactly the metric from the first part and now one sees it covers only half
of the hypersphere. However, the equation (11) can be solved in another way. The
parametrization

r = RC'OS X5 (15)
r = Rsiny,
with x € [0,7) covers the space of both > 0 and x < 0. This leads to
dr = —Rsin y dy,
dy = R (cos xsinfsin ¢ dy + sin x(cosOsin ¢ df + rsinf cos ¢ dy)) (16)

dz = R (cos xsinf cos ¢ dx + sin x(cosf cos p df — rsinfsin ¢ dy)),
dw = R (cos x cos @ dx + sin x(sin 0df)) ,

and to the metric

ds® = dz® + dy? + d22 + dw® = R (dx2 + sin® y (d6? + sin® § d¢?) >7 (17)

which covers the entire hypersphere, not half, like the previous one. That explains
the discrepancy in results.

3. Friedmann—Lemaitre-Robertson-Walker (FLRW) metric

First we consider the flat space case, with the line element given by

ds® = —(da®)” + a*(2°) Y (da')? (18)

i

where for later convenience we introduced the shorthand notation

> (da')? = [(dz")? + (da®)® + (dz®)?]. (19)
1. The metric is
Guv = dla‘g[ - 1,@27012,@2}, (20)
SO
g = diag[ —1,a7% a2, a_z]. (21)

. The action for a classical particle with mass m is

S = m/ds = m/dp VG THEY (22)

where a dot denotes differentiation with respect to the affine parameter p. Now, to
get the equations of motion, we can as well vary the simpler action

S = m/dT G’ = /dT F(x, %), (23)

where 7 corresponds to proper time. By introducing the explicit form of the metric

we find
F(z, i) = m[ — (i°)2 + a? Z(@i)?} (24)
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Using the Euler-Lagrange equations

d OF  OF
-z 2 25
dr ozt Oz’ (25)
we find (use that £ = 2 + %%—f +3 %x;)
i = —ad Z(mZ)Q for p =10,
. a’ i . (26)
= —2—i%" for p=1,2,3,
a
where a prime denotes derivative with respect to 2°.
. The Christoffel symbols are defined as
e W (27)
By identification, the non-zero I'’s are
) ) a’
I, =ad and T§, =T} =—. (28)
a

The T'*

i U Jyk=1,2,3, are zero because the spatial part of the metric is flat. Let
us check the above results with the usual formula

1

Fi\w = 595)\ (aﬂglﬁf + &Jgun - amg;w) .

For T, we find

. 1 .
Lty = =9" (00gix + 0iGor — OxG0i)

2
1 ..
= —9"09i
29 09
1, a
= —a a 2 = —
2@ (114 a,

and for FOZ-Z-

1 K
F?i = 590 (a‘gm + 0i9ix — angii)
1

00
=—=g 0uGii
29 09

1
:——a 2 p— ,'
5 ha aa

. For calculating the Ricci tensor R,,,, we use the formula

R, =R, = 8,I%, — 9,0 + 0" —T°T" (29)

wpt LU ppd
where R, , is the Riemann tensor. We get

CL”

Roo = R0 = —3— and Ry = R, = ad" +2(d')*. (30)

a

Note: R

%i; = 0 for i = j; that’s why there is only a factor of 2 in the (a’)? term.
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5. Using the above, we see that the scalar curvature is

< (2] o

6. Finally, the non zero components of the Einstein tensor,

R=¢"R,, =6

1
G;w = R/.Ll/ - Qg;wR ) (32)

a’ a 2
)
a a

o (a_'ﬂ — —2ad" — (d')?. (34)

are
"

Goo = —3L 43
a

Gy = ad” +2(a')? — 3a®
a a

We extracted all the information contained in the metric. The tensor G, contains
the geometric part of the Einstein equation G, = 87GT),, + Ag,,, where T}, is the
energy momentum tensor and A is the cosmological constant.

Now we move to the curved space,

2
ds® = —dt* + d*(t) [1 Tk 5+ r?d6? + r” sin® edﬂ : (35)
— kr
1. The metric is )
g, = diag [—1, %, a*r?, a®r? sin® 0} , (36)
— kr
i 1—kr? 1 1
— kr
W = diag |—1 . 37
g a8 { Toa? T a?r? a?r%sin® 0} (37)
2. The Lagrangian is given by
2 . .
F(x,z)=m <—i2 + ﬁ?ﬁ + a*r?*6* + a®r? sin’ 9¢2) : (38)
— kr
Thus, the equations of motion are
. 72 . .
t = —ad (1 e + r26% + 12 sin? 0¢2> ,
— kr
n2 !
. 2 o) . 9202 rr a ..
P =r(l—kre) [9 + sin“ 6o } — k’m - ZEtr, (39)

. !
§ = sinfcos0* — 226 — 2%4,
T a

cosf -

b6 — 2%,
a

b=—2"4—2
r

sin 0



3. The non zero Christoffel symbols are
aa
' =——
1= kr?
Ity = aa'r?

I, = aa'r*sin’6,

a
7, = —
rt a )
kr
IV = —
1= kr?

[y = —r(l—krz),
Loy =—r (1 — krz) sin’ 6,

a
Iy =—,
ot a
Fzr =r 1,
ngb = —sinfcosb,
a/
re =—,
Pt a
Fir =71
e _ cos
% " sinf

4. Again using eq. (29), we compute the Ricci tensor
"
Ry = -3,
a
R aa” + 2k + 2(d')?
rr T 1 - kT’Q Y
Rop =172 (aa" + 2k + 2(@')2) ,

Ry =r?sin®6 (aa” + 2k + 2(a')?) .

5. The scalar curvature is

, a” ad\?> k
B=g" R =0 f(z) e

(41)

(42)

We remark that the spatial curvature modifies the space-time curvature by introdu-

cing the last term.

6. The Einstein tensor components are

N
k
Gy =3 [(a_) +—
a a
 2ad” + (a)?+k

Crr = 1 — kr? ’
Goo = —1” (2aa” + (d)* + k)

Y

Gop = —r°sin’ 0 (2aa” + (d')* + k) .

(43)



