
RELATIVITY AND COSMOLOGY II

Solutions to Problem Set 1 23th February 2024

1. Homogeneous and isotropic space

We know from the lecture that homogeneous and isotropic space with constant spatial
curvature can be described by the metric

ds2 = R2

(
dr2

1− kr2
+ r2

(
dθ2 + sin2 θ dϕ2

))
, (1)

with k = 1, 0,−1. Metrics which describe the same homogeneous spaces with constant
spatial curvature should therefore be obtained by a change of variables. Having the term
dχ2 with coefficient 1 requires

dr√
1− kr2

= dχ. (2)

We can solve these equations for the different value of k. We find

k = 1 → r = sinχ,

k = 0 → r = χ,

k = −1 → r = sinhχ.

With these changes of coordinates the metric takes exactly the forms given in the exercise.
Therefore, these describe the same type of homogeneous and isotropic space.

2. Volume in curved spacetime

1. The volume is given by

V =

∫
d3x

√
γ, (3)

with

γ = det


1

1− r2

R2

0 0

0 r2 0
0 0 r2 sin2 θ

 =
r4 sin2 θ

1− r2/R2
. (4)

Therefore, we have

V =

∫ R

0

dr

∫ π

0

dθ

∫ 2π

0

dϕ
r2 sin θ√
1− r2/R2

= 4π

∫ R

0

dr
r2√

1− r2/R2

= 4πR3

∫ π/2

0

dχ sin2 χ = π2R3.

(5)
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2. Again, the volume is given by

V =

∫
d3x

√
γ, (6)

and this time

γ = det

 R2 0 0
0 R2 sin2 χ 0
0 0 R2 sin2 χ sin2 θ

 = R6 sin4 χ sin2 θ. (7)

Therefore, we have

V = R3

∫ π

0

dχ

∫ π

0

dθ

∫ 2π

0

dϕ sin2 χ sin θ

= 4πR3

∫ π

0

dχ sin2 χ = 2π2R3.

(8)

3. The difference of the factor of 2 is a result of the fact that the first set of coordinates
only covers half of a 3-sphere. Let’s begin with definition of 3-sphere in R4

x2 + y2 + z2 + w2 = R2. (9)

We now rewrite the last three variables into coordinates of a 2-sphere:

y = r sin θ sinφ,

z = r sin θ cosφ,

w = r cos θ.

(10)

The 3-sphere equation for points on the sphere becomes

x2 + r2 = R2, (11)

with r > 0. This gives two branches of solutions

x = ±
√
R2 − r2, (12)

both of which have coordinates range of r ∈ [0, R), θ ∈ [0, π), ϕ ∈ [0, 2π).

To compute the metric components, one uses chain rule dxi =
∂xi

∂x′
j
dx′

j where x′
j are

r, θ, ϕ

dx =
±rdr√
R2 − r2

,

dy = sin θ sinϕ dr + r cos θ sinφ dθ + r sin θ cosϕ dφ,

dz = sin θ cosϕ dr + r cos θ cosφ dθ − r sin θ sinϕ dφ,

dw = cos θdr − r sin θdθ,

(13)

where the sign in front of the first of the 1-forms depends on the branch of the
solution. By substitution it into the Euclidean metric one gets

ds2 = dx2 + dy2 + dz2 + dw2 =
dr2

1− r2

R2

+ r2dθ2 + r2 sin2 θdφ2. (14)
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This is exactly the metric from the first part and now one sees it covers only half
of the hypersphere. However, the equation (11) can be solved in another way. The
parametrization

x = R cosχ,

r = R sinχ,
(15)

with χ ∈ [0, π) covers the space of both x ≥ 0 and x < 0. This leads to

dx = −R sinχ dχ,

dy = R (cosχ sin θ sinφ dχ+ sinχ(cos θ sinφ dθ + r sin θ cosϕ dφ)) ,

dz = R (cosχ sin θ cosφ dχ+ sinχ(cos θ cosφ dθ − r sin θ sinϕ dφ)) ,

dw = R (cosχ cos θ dχ+ sinχ(sin θdθ)) ,

(16)

and to the metric

ds2 = dx2 + dy2 + dz2 + dw2 = R2

(
dχ2 + sin2 χ

(
dθ2 + sin2 θ dϕ2

))
, (17)

which covers the entire hypersphere, not half, like the previous one. That explains
the discrepancy in results.

3. Friedmann–Lemâıtre–Robertson–Walker (FLRW) metric

First we consider the flat space case, with the line element given by

ds2 = −(dx0)2 + a2(x0)
∑
i

(dxi)2 , (18)

where for later convenience we introduced the shorthand notation∑
i

(dxi)2 = [(dx1)2 + (dx2)2 + (dx3)2]. (19)

1. The metric is
gµν = diag

[
− 1, a2, a2, a2

]
, (20)

so
gµν = diag

[
− 1, a−2, a−2, a−2

]
. (21)

2. The action for a classical particle with mass m is

S = m

∫
ds = m

∫
dp

√
gµν ẋµẋν , (22)

where a dot denotes differentiation with respect to the affine parameter p. Now, to
get the equations of motion, we can as well vary the simpler action

S = m

∫
dτ gµν ẋ

µẋν =

∫
dτ F (x, ẋ), (23)

where τ corresponds to proper time. By introducing the explicit form of the metric
we find

F (x, ẋ) = m
[
− (ẋ0)2 + a2

∑
i

(ẋi)2
]
. (24)
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Using the Euler-Lagrange equations

d

dτ

∂F

∂ẋµ
=

∂F

∂xµ
, (25)

we find (use that d
dτ

= ∂
∂τ

+ ∂
∂x0

∂x0

∂τ
+
∑

i
∂
∂xi

∂xi

∂τ
)

ẍ0 = −aa′
∑
i

(ẋi)2 for µ = 0,

ẍi = −2
a′

a
ẋ0ẋi for µ = 1, 2, 3,

(26)

where a prime denotes derivative with respect to x0.

3. The Christoffel symbols are defined as

ẍλ = −Γλ
µν ẋ

µẋν . (27)

By identification, the non-zero Γ’s are

Γ0
ii = aa′ and Γi

0i = Γi
i0 =

a′

a
. (28)

The Γk
ij, i, j, k = 1, 2, 3, are zero because the spatial part of the metric is flat. Let

us check the above results with the usual formula

Γλ
µν =

1

2
gκλ (∂µgνκ + ∂νgµκ − ∂κgµν) .

For Γi
0i, we find

Γi
0i =

1

2
giκ (∂0giκ + ∂ig0κ − ∂κg0i)

=
1

2
gii∂0gii

=
1

2
a−2∂0a

2 =
a′

a
,

and for Γ0
ii

Γ0
ii =

1

2
g0κ (∂igiκ + ∂igiκ − ∂κgii)

=−1

2
g00∂0gii

=−1

2
∂0a

2 = aa′.

4. For calculating the Ricci tensor Rµν , we use the formula

Rµν = Rρ
µρν = ∂ρΓ

ρ
µν − ∂νΓ

ρ
µρ + Γρ

κρΓ
κ
µν − Γρ

κνΓ
κ
µρ, (29)

where Rα
µρν is the Riemann tensor. We get

R00 = Rκ
0κ0 = −3

a′′

a
and Rii = Rκ

iκi = aa′′ + 2(a′)2. (30)

Note: Ri
jij = 0 for i = j; that’s why there is only a factor of 2 in the (a′)2 term.
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5. Using the above, we see that the scalar curvature is

R = gµνRµν = 6

[
a′′

a
+

(
a′

a

)2
]

(31)

6. Finally, the non zero components of the Einstein tensor,

Gµν = Rµν −
1

2
gµνR , (32)

are

G00 = −3
a′′

a
+ 3

[
a′′

a
+

(
a′

a

)2
]
= 3

(
a′

a

)2

, (33)

Gii = aa′′ + 2(a′)2 − 3a2

[
a′′

a
+

(
a′

a

)2
]
= −2aa′′ − (a′)2. (34)

We extracted all the information contained in the metric. The tensor Gµν contains
the geometric part of the Einstein equation Gµν = 8πGTµν +Λgµν , where Tµν is the
energy momentum tensor and Λ is the cosmological constant.

Now we move to the curved space,

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdϕ2

]
. (35)

1. The metric is

gµν = diag

[
−1,

a2

1− kr2
, a2r2, a2r2 sin2 θ

]
, (36)

so

gµν = diag

[
−1,

1− kr2

a2
,

1

a2r2
,

1

a2r2 sin2 θ

]
. (37)

2. The Lagrangian is given by

F (x, ẋ) = m

(
−ṫ2 +

a2

1− kr2
ṙ2 + a2r2θ̇2 + a2r2 sin2 θϕ̇2

)
. (38)

Thus, the equations of motion are

ẗ = −aa′
(

ṙ2

1− kr2
+ r2θ̇2 + r2 sin2 θϕ̇2

)
,

r̈ = r(1− kr2)
[
θ̇2 + sin2 θϕ̇2

]
− k

rṙ2

1− kr2
− 2

a′

a
ṫṙ,

θ̈ = sin θ cos θϕ̇2 − 2
ṙ

r
θ̇ − 2

a′

a
ṫθ̇,

ϕ̈ = −2
ṙ

r
ϕ̇− 2

cos θ

sin θ
θ̇ϕ̇− 2

a′

a
ṫϕ̇.

(39)
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3. The non zero Christoffel symbols are

Γt
rr =

aa′

1− kr2
,

Γt
θθ = aa′r2,

Γt
ϕϕ = aa′r2 sin2 θ,

Γr
rt =

a′

a
,

Γr
rr =

kr

1− kr2
,

Γr
θθ = −r

(
1− kr2

)
,

Γr
ϕϕ = −r

(
1− kr2

)
sin2 θ,

Γθ
θt =

a′

a
,

Γθ
θr = r−1,

Γθ
ϕϕ = − sin θ cos θ,

Γϕ
ϕt =

a′

a
,

Γϕ
ϕr = r−1,

Γϕ
ϕθ =

cos θ

sin θ
.

(40)

4. Again using eq. (29), we compute the Ricci tensor

Rtt = −3
a′′

a
,

Rrr =
aa′′ + 2k + 2(a′)2

1− kr2
,

Rθθ = r2
(
aa′′ + 2k + 2(a′)2

)
,

Rϕϕ = r2 sin2 θ
(
aa′′ + 2k + 2(a′)2

)
.

(41)

5. The scalar curvature is

R = gµνRµν = 6

[
a′′

a
+

(
a′

a

)2

+
k

a2

]
. (42)

We remark that the spatial curvature modifies the space-time curvature by introdu-
cing the last term.

6. The Einstein tensor components are

Gtt = 3

[(
a′

a

)2

+
k

a2

]
,

Grr = −2aa′′ + (a′)2 + k

1− kr2
,

Gθθ = −r2
(
2aa′′ + (a′)2 + k

)
,

Gϕϕ = −r2 sin2 θ
(
2aa′′ + (a′)2 + k

)
.

(43)
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