
RELATIVITY AND COSMOLOGY II

Solutions to Problem Set 14

1. de Sitter coordinate systems

1. From the flat metric in Minkowski space

ds2 = −dX2
0 + dX2

1 + . . . dX2
d (1)

we obtain

ds2 = −(cosh t)2dt2+
d∑

i=1

(
(cosh t)2(dωi)2+cosh t sinh tdt(ωidωi)+(ωi)2(sinh t)2dt2

)
(2)

Now we use the following identities

d∑
i=1

(ωi)2 = 1,

d∑
i=1

(dωi)2 = dΩ2
d−1,

d∑
i=1

ωidωi = 0

to obtain the final expression for the metric

ds2 = −dt2 + (cosh t)2dΩ2
d−1 (3)

In these coordinates dSd looks like a (d − 1)–dimensional sphere which starts out
infinitely large at t = −∞, then shrinks to the minimal finite size at t = 0, to then
grow again to infinite size as t → +∞.

2. By the same procedure we obtain that the metric in these coordinates looks like

ds2 = −dt2 + e−2t(dxi)2 (4)

These coordinates cover only a half of the dSd space. The surfaces of constant t are
infinite d− 1-dimensional planes with flat metric.

3. For the static patch coordinates we obtain

ds2 = −(1− r)2dt2 +
dr2

1− r2
+ r2dΩ2

d−1 (5)

Note that here ωi parametrize (d − 2)-dimensional sphere. In these coordinate
system ∂

∂t
is a Killing vector. Also in these coordinates one can explicitly see the

appearance of an event horizons at r2 = 1.
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2. Scalar field in FLRW spacetime

1. We begin from the action for a minimally coupled scalar field (in the (− + ++)
convention for the metric that we use in this course):

−
∫

d4x
√
−g

[
1

2
(∂µϕ)(∂

µϕ) + V (ϕ)

]
. (6)

The energy-momentum tensor is given as

Tµν ≡ − 2√
−g

δSM

δgµν
. (7)

From GRI exercises we know that

δ
√
−g

δgµν
= −1

2

√
−g gµν , (8)

so that we get

Tµν =
2√
−g

δ

δgµν

[√
−g

(
1

2
(∂αϕ) g

αβ (∂βϕ) + V (ϕ)

)]
=

2√
−g

[(
δ
√
−g

δgµν

)(
1

2
(∂αϕ) g

αβ (∂βϕ) + V (ϕ)

)

+
√
−g

δ

δgµν

(
1

2
(∂αϕ) g

αβ (∂βϕ) + V (ϕ)

)]

= − 2√
−g

[
1

2

√
−ggµν

(
1

2
(∂αϕ) g

αβ (∂βϕ) + V (ϕ)

)
+
√
−g · 1

2
(∂µϕ)(∂νϕ)

]
= −gµν

[
1

2
(∂αϕ) g

αβ (∂βϕ) + V (ϕ)

]
+ (∂µϕ)(∂νϕ). (9)

Inserting the FLRW metric gµν = diag [−1, a2, a2, a2] (as well as its inverse gµν =
diag [−1, a−2, a−2, a−2]) and using spatial homogeneity of the field ϕ, we get for the
diagonal elements of the energy-momentum tensor

T00 = −1

[
1

2
ϕ̇2 − V (ϕ)

]
+ ϕ̇2 =

1

2
ϕ̇2 + V (ϕ), (10)

and

Tii = a2
[
1

2
ϕ̇2 − V (ϕ)

]
, (11)

where no sum over i (and j) is implied here. The off-diagonal elements vanish:

T0i = Tij|i ̸=j = 0. (12)

Finally, we raise all indices. This is straightforward since the metric is diagonal:

T 00 = g0αg0βTαβ = (g00)2T00 =
1

2
ϕ̇2 + V (ϕ), (13)

T ii = giαgiβTαβ = (gii)2Tii = a−2

[
1

2
ϕ̇2 − V (ϕ)

]
, (14)

T 0i = T ij|i ̸=j = 0, (15)
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where sum over α and β is implied whereas we do not sum over i and j.

The energy-momentum tensor of a perfect fluid in its rest frame is (see sheet 3,
exercise 1):

T µν = (ρ+ p)δµ0 δ
ν
0 + pgµν . (16)

This implies

ρ = T 00 =
1

2
ϕ̇2 + V (ϕ), (17)

and

p =
a2

3

(
T 11 + T 22 + T 33

)
=

1

2
ϕ̇2 − V (ϕ). (18)

Finally, we can compute the state parameter:

w =
p

ρ
=

1
2
ϕ̇2 − V (ϕ)

1
2
ϕ̇2 + V (ϕ)

. (19)

2. The Friedmann equation gives

ä

a
= −4πG

3
(ρ+ 3p). (20)

For accelerated expansion, we therefore want ρ+ 3p < 0, which implies

ϕ̇2 < V (ϕ). (21)

3. For the equation of motion, we insert Eqs. (17) and (18) to the continuity equation:

ρ̇+ 3H(ρ+ p) = 0 ⇒ ϕ̇ϕ̈+
dV

dϕ
ϕ̇+ 3H · ϕ̇2 = 0

ϕ̈+ 3Hϕ̇+
dV

dϕ
= 0. (22)

Indeed, this is the equation of motion for the scalar field. We could have found
it directly from varying the first action in Eq. (6) with respect to ϕ. Finally, the
Friedmann equation implies

H2 =
8πG

3
ρ =

8πG

3

(
1

2
ϕ̇2 + V (ϕ)

)
. (23)

3. Behavior of the inflaton

The equations of motion for a free massive scalar field are (see previous exercise)

ϕ̈+ 3Hϕ̇+m2ϕ = 0 , (24)

H2 =
8πG

6

(
ϕ̇2 +m2ϕ2

)
. (25)
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1. Solving the second equation for H and putting it into the first, we get

ϕ̈+
√
12πG

√
ϕ̇2 +m2ϕ2ϕ̇+m2ϕ = 0 . (26)

This is a nonlinear second order differential equation with no explicit time depen-
dence. It can therefore be reduced to a first order differential equation for ϕ̇(ϕ).

Using ϕ̈ = ϕ̇dϕ̇
dϕ
, we get

dϕ̇

dϕ
= −

√
12πG

√
ϕ̇2 +m2ϕ2ϕ̇+m2ϕ

ϕ̇
. (27)

2. (a) “Ultra-hard” period (ϕ̇ ≫ mϕ and ϕ̇2 ≫ m2
√
G
ϕ)

This is the situation where the potential energy is small compared to the kinetic
energy. In this approximation, Eq. (27) becomes

dϕ̇

dϕ
≈ −

√
12πGϕ̇ , (28)

so the solution is damped exponentially

ϕ̇ ≈ C exp(−
√
12πGϕ) , (29)

where C a constant of integration. We can immediately solve this relation for
ϕ(t) to obtain

ϕ(t) =
1√

12πG
log

[
C
√
12πGt

]
. (30)

The above relations tell us that even if ϕ̇ had a large initial value, it decays
exponentially faster than the value of the scalar field itself. Therefore, the
attractor is reached very quickly and this enlarges the set of initial conditions
which lead to an inflationary stage.

In order to find the Hubble parameter, we use Eq. (25), which in the “ultra-
hard” limit reads

H2 ≈ 4πG

3
ϕ̇2 . (31)

Plugging (30) into the above, we obtain

H2 ≈ 1

9t2
→ H ≈ 1

3t
. (32)
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(b) “Slow-roll” period (dϕ̇/dϕ ≈ 0 and ϕ̇2 ≪ m2ϕ2)

In this limit, Eq. (27) gives

−
√
12πG− m

ϕ̇
≈ 0 → ϕ̇ ≈ − m√

12πG
. (33)

Using this result, we find that

ϕ(t) ≈ ϕ0 −
mt√
12πG

, (34)

where ϕ0 is some initial value. Correspondingly, the Hubble parameter during
the “slow-roll” period is found from (25) to be equal to

H ≈ H0 −
m2t

3
, (35)

where we defined H0 =
√

4πG
3
mϕ0. A useful check at this point is to compute

the scale factor a. We find

H ≡ ȧ

a
≈ H0 −

m2t

3
→ a ∝ eH0t−m2t2

6 . (36)

For t ≪ (
√
Gϕ0)

2/H0, we can neglect the second term in the exponent and
obtain exponential expansion of the universe, as we should. (Even for larger
values of t, exponential expansion will continue approximately albeit with a
changing value of H.)

3. We are now asked to compute the Hubble parameter when the potential and kinetic
terms are of the same order of magnitude. To do so, it is more convenient to work
with the original system of equation for the inflaton.

From eq. (25), we see that

ϕ̇2 +m2ϕ2 =
3H2

4πG
. (37)

We notice that the above equation can be solve using the following change of vari-
ables:

ϕ̇ =

√
3

4πG
H sin θ , (38)

ϕ =
1

m

√
3

4πG
H cos θ . (39)

Combining these two equations, we find

Ḣ cos θ −Hθ̇ sin θ = mH sin θ . (40)

We now turn to eq. (24)
ϕ̈+ 3Hϕ̇+m2ϕ = 0 . (41)

Using

ϕ̈ =
1

2ϕ̇

d

dt
ϕ̇2 and ϕ =

1

2ϕ̇

d

dt
ϕ2 , (42)
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the above becomes
d

dt
ϕ̇2 + 6Hϕ̇2 +m2 d

dt
ϕ2 = 0 . (43)

Plugging in the expressions for ϕ̇ and ϕ from (38) and (39), we find

d

dt

(
H2

)
= −6H3 sin2 θ ⇒ Ḣ = −3H2 sin2 θ . (44)

Finally, we replace Ḣ in (40) to obtain

θ̇ ≈ −m , (45)

where we averaged over timescales that are much bigger than m−1 and simultane-
ously much smaller than H−1. This is possible since H ≪ m and it allows us to
drop the oscillatory term. We arrive at:

θ ≈ −mt , (46)

therefore
Ḣ = −3H2 sin2(mt) . (47)

Finally, we integrate this equation and get

1

3H
=

t

2

(
1− sin(2mt)

2mt

)
≈ t

2
, (48)

for mt ≫ 1. Therefore

H ≈ 2

3t
. (49)

This expression suggests that we are inside a matter dominated period.

4. We have seen that the temperature T is related to the energy density ρ as

ρ =
π2

30
g∗(T )T

4 ,

where g∗(T ) is the number of relativistic degrees of freedom at a given temperature.

We are asked to estimate the temperature at the end of inflation, i.e. when the slow
roll condition is saturated:

ϕ̇2
end ≈ m2ϕ2

end , (50)

where we denoted ϕend the value of the field at the end of inflation. This means
that the energy density will be

ρ(ϕend) =
1

2

(
ϕ̇2
end +m2ϕ2

end

)
≈ m2ϕ2

end . (51)

Since we want all the energy to be transferred to the SM particles, g∗(Tend) ∼ 100,
therefore

Tend ≈ 0.4
√

mϕend . (52)

In part 2 we saw that during slow-roll, |ϕ̇| ≈ m√
12πG

, so from (50) we find that

ϕend ≈
1√

12πG
. (53)

This leads to

Tend ≈ 0.2

√
m√
G

= 0.2
√

mMPl . (54)
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