
RELATIVITY AND COSMOLOGY II

Solutions to Problem Set 13

1. Cold Dark Matter perturbations in radiation domination

1. First of all, we need to Fourier transform and write the equations in momentum
space:

δρ′λ + 3
a′

a
(δρλ + δpλ)− (ρλ + pλ)

(
k2vλ + 3Φ′) = 0, (1)

[(ρλ + pλ) vλ]
′ + 4

a′

a
(ρλ + pλ) vλ + δpλ + (ρλ + pλ) Φ = 0. (2)

Secondly, we recall the dispersion relations δpλ = u2s(λ)δρλ and pλ = w(λ)ρλ, where
the first relates single-component density perturbations, while the second the back-
ground densities. As wCDM = uCDM

s = 0 we can neglect immediately all the pressure
terms in the equations (1) and (2), and be left with

δ′CDM +
ρ′CDM

ρCDM

δCDM + 3
a′

a
δCDM − k2vCDM − 3Φ′ = 0, (3)

ρ′CDM

ρCDM

vCDM + v′CDM + 4
a′

a
vCDM + Φ = 0. (4)

The hint helps us remember that
ρ′CDM

ρCDM
= −3a′

a
, so we are lead to:

δ′CDM − k2vCDM = 3Φ′ (5)

v′CDM +
a′

a
vCDM = −Φ. (6)

In a radiation dominated universe a ∝ η, so a′

a
= 1

η
which finally brings us to the

set of equations

δ′CDM − k2vCDM = 3Φ′, (7)

v′CDM +
1

η
vCDM = −Φ. (8)

2. In the homogeneous case, Φ = 0, the equations become

δ′CDM − k2vCDM = 0 (9)

v′CDM +
1

η
vCDM = 0. (10)

Equations (10) can be immediately integrated to give

vCDM =
A

k2η
;
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Substituting this back into (9) we have the general solution for δCDM

δCDM = A log(kη) +B.

In general then, Cold Dark Matter perturbations in a radiation dominated back-
ground are expected to grow logarithmically. Regularity conditions at early times
however, would impose A = 0, leaving the perturbations as constant (another way
of phrasing the same concept, is that the logarithmic mode decays very very quickly
at early times and so should be neglected).

3. Multiplying both sides of equation (6) by η we can bring it in the form:

d

dη
(η · vCDM) = −η · Φ

whose unique solution with the property of being finite for η → 0 is

vCDM = −1

η

∫ η

0

dη̃η̃ · Φ.

In particular, vCDM → 0 as η → 0.

4. We can plug the solution for vCDM into equation (5), and get

δ′CDM +
k2

η

∫ η

0

dη̃η̃ · Φ = 3Φ′

whose solution is formally

δCDM = 3Φ(η) +C− k2
∫ η

0

dη1
η1

∫ η1

0

dη2η2Φ(η2),

and C an integration constant. The constant is fixed by the values of δCDM and Φ
for η → 0, δCDM,(i) and Φ(i); moreover we can swap the order of integration so that
the η1–integration can be performed, and obtain

δCDM = δCDM,(i) + 3
(
Φ(η)− Φ(i)

)
− k2

∫ η

0

dη2η2Φ(η2) log

(
η

η2

)
.

The last integral of the above expression contains two modes, as log
(

η
η2

)
= log η−

log η2. The leading behaviour at early times will be given by the first term, which
presents a divergence for η → 0, while the second amounts to a constant.

In particular then, we need to solve the integral

log η · k2
∫ η

0

dη2η2Φ(η2),

which, by a reasonable change of integration variables becomes

−
3Φ(i)

(urads )2
log(urads kη) ·

∫ urad
s kη

0

dx

(
cosx

x
− sinx

x2

)
.
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For x ≫ 1 the potential rapidly decreases (in point 2 we even approximated it to
be 0), so we can extend the integration limit to +∞, and solve the definite integral∫ +∞

0

dx

(
cosx

x
− sinx

x2

)
=

∫ +∞

0

dx
d

dx

(
sinx

x

)
= −1.

Moreover, urads = 1√
3
, so the required leading behavior is

δCDM = δCDM,(i) − 9Φ(i) · log(urads kη),

which shows a logarithmic pattern, as famously expected.

2. Sachs-Wolfe effect

1. In a inhomogeneous universe, as the photon travels through it will gain or lose
energy. Its free evolution is governed by the geodesic equation

P µ :=
dxµ

dλ

dP µ

dλ
= −Γµ

νρP
νP ρ,

We will adopt the coordinate system in which the metric takes the conformal New-
tonian form

ds2 = a2(η)
[
−(1− 2Φ)dη2 + (1− 2Ψ)δijdx

idxj
]
,

so in particular, the 0-component of the geodesic equation will take the form

dP 0

dη
=

1

P 0

dP 0

dλ
= −Γ0

νρ

P νP ρ

P 0

= −Γ0
00P

0 + 2Γ0
0iP

i − Γ0
ij

P iP j

P 0

= −
(
ȧ

a
− Φ′

)
P 0 + 2∂iΦP

i −
[
ȧ

a
−Ψ′ − 2

ȧ

a
(Ψ− Φ)

]
δij
P iP j

P 0
.

2. In a perturbed universe, the coordinate-momentum P µ defined above, and the
energy-momentum measured by a local observer in their own local frame P̃ µ =
(E, P̃ i) are different. We can relate the two the common square invariant

ηµνP̃
µP̃ ν = gµνP

µP ν = 0 =⇒

{
P 0 = E√

−g00
= E

a
(1 + Φ)

P i = E√
−gii

n̂i = E
a
(1 + Ψ) n̂i

Substituting back into the geodesic equation we find the evolution for the energy
measured by a local observer:

d

dη

(
E

a
(1 + Φ)

)
= −

(
ȧ

a
− Φ′

)
E

a
(1 + Φ) + 2

E

a
(1 + Ψ) (n̂ · ∂)Φ

−
[
ȧ

a
−Ψ′ − 2

ȧ

a
(Ψ− Φ)

]
E

a
· (1 + Ψ)2

(1 + Φ)2
,
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which at first order reduces to

1

E

dE

dη
= − ȧ

a
+Ψ′ + (n̂ · ∂)Φ. (11)

Each of the three terms in equation (11) has a clear physical interpretation: the
first term gives the redshifting of the photon given by the expansion of the universe,
E ∝ a−1; the second term captures the effect given by the local deformation of the
scale factor due to the inhomogeneities a(η) 7→ ã(x⃗, η) = (1 + ψ)a(η), so now the
energy of the photon is redshifted as E ∝ ã−1. Finally, the last term describes the
gravitational redshift or blueshift as the photon travels out (or respectively, falls in)
a gravitational potential well.

3. Using the relation (n̂ · ∂)Φ = dΦ
dη

− ∂Φ
∂η

we can rewrite the geodesic equation

d ln(aE)

dη
=
dΦ

dη
+ Φ′ −Ψ′,

which can be integrated between our time and the time of recombination, to become

ln(aE)0 = ln(aE)rec + Φ0 − Φrec +

∫ η0

ηrec

dη (Φ′ −Ψ′) . (12)

We can set Φ0, as constant shifts in the potential don’t change the equations of
motion.

After decoupling, the photon distribution maintains the same shape as they simply
stream along their geodesics, and since the Bose-Einstein distribution only depends
on E

T
, it means the effective photon temperature goes like T ∝ E. Therefore we can

relate the temperature anisotropies to the energy as

aE ∝ aT̄

(
1 +

δT

T̄

)
and expanding the log in (12), we get

δT

T

∣∣∣
0
=
δT

T

∣∣∣
rec

− Φrec +

∫ η0

ηrec

dη (Φ′ −Ψ′) . (13)

4. Let’s examine the contribution to δT
T

∣∣∣
rec

; there will be fluctuations induced by

energy-density fluctuations in the primordial plasma, and by doppler effects due
to the motion of the electrons. Neglecting this second contribution, we have that,
since ργ ∝ T 4

δT

T

∣∣∣
rec

=
1

4

δργ
ργ

.

Substituting back in, and taking the working hypothesis of a perfect fluid, we have

δT

T

∣∣∣
0
=

1

4

δργ
ργ

− Φrec.

This is called the Sachs-Wolfe effect: it combines the intrinsic temperature fluctu-
ations associated with the density fluctuations on the last scattering surface, with
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the gravitational redshift undergone by the photon travelling towards us. The ne-
glected integral

∫ η0
ηrec

dη (Φ′ −Ψ′) turns out to be a subdominant contribution, and
it is known under the name integrated Sachs-Wolfe effect.

Since the decoupling happens in the matter domination era, we can relate Φ to the
density fluctuations via the simple relation

2Φ ≃ δρ

ρ
≃ δρm

ρm
=

3

4

δργ
ργ

,

where the first equality is given by Einstein equation, the second to the fact that
in the matter-domination period, the dominant energy-density contribution is given
by the non-relativistic matter component, while the last follows from the adiabatic
evolution of density perturbations (which is always the case in a barotropic, perfect
fluid).

Putting it all together, this brings to the famous relation

δT

T

∣∣∣
0
=

2

3
Φrec − Φrec = −1

3
Φrec.

An alternative way to solve this very last part of the exercise, is to work in the gauge
where recombination happens instantaneously at some fixed energy density, rather
than at some fixed value of the redshift z. In such case, the intrinsic temperature
fluctuations at recombinations are due to the fact that recombination doesn’t it all
happen at the same z, and therefore, recalling a

a0
:= 1

1+z

δz

1 + z

∣∣∣
rec

= −δa
a

∣∣∣
rec

= − ȧ
a
δt
∣∣∣
rec

= −2

3

δt

trec
= −2

3
· δ

(
1

1 + Φrec

)
=

2

3
Φrec.

3. Horizon problem

1. Without inflation, the particle horizon (the distance over which we expect causal
contact) at the time of recombination (CMB decoupling) by now makes an angle of
approximate 1.5° on the sky. How does that answer change for a universe which is
always dominated by radiation?

Recombination happens at trec ≈ 3.7 × 105 years. Now, if there is only a radiation
stage in the history of the universe, the scale factor changes in time as

a = a0

( t
t0

)1/2

∝ t1/2. (14)

Then, we have for the horizon at the time of recombination

dh(trec) = a(trec)

∫ trec

0

c dt

a(t)
= c · t1/2rec

∫ trec

0

t−1/2 dt = 2c · trec. (15)

The conformal size of this horizon is

d̃h(trec) =
dh(trec)

a(trec)
=

2c · trec
a(trec)

=
2c

a0
(t0trec)

1/2. (16)
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The conformal distance from which the relic photons fly towards us since the time
of recombination is

l̃ =

∫ t0

trec

c dt

a(t)
=
ct

1/2
0

a0

∫ t0

trec

t−1/2 dt =
2ct0
a0

[
1−

(trec
t0

)1/2]
(17)

Therefore, the angle θh that the decoupling horizon makes on today’s sky

θh =
d̃h(trec)

l̃
=

2c
a0
(t0trec)

1/2

2ct0
a0

[
1−

(
trec
t0

)1/2] =
[( t0
trec

)1/2
− 1

]−1

≈ 5.2 × 10−3 rad ≈ 0.3°,

(18)
where we have used the current age of the universe t0 ≈ 13.7 × 109 years.

2. If inflation solves the horizon problem, we want that the particle horizon generated
at the end of inflation, which by now has a size of

dh(te) ·
a0
ae
, (19)

is equal or greater than the distance we can look back today

l(t0) = a0

∫ t0

te

c dt

a(t)
= ||a(t) ∝ t2/3|| ≈ 3ct0 =

2c

H0

. (20)

Here we assumed that the dominant contribution to l is made by the matter-
dominated epoch. Note that we can receive signals only from some particles which
were created after the end of inflation. Therefore the lower integration boundary in
Eq. (20) is te and not ti (the initial moment of inflation).

So let us say
dh(te)

ae
≃ l(t0)

a0
. (21)

During inflation, the Hubble parameter Hinf is almost constant which leads to the
quasiexponential expansion of the universe,

a(t) = ai exp(Hinft), (22)

where again index i denotes the beginning of inflation (we can choose ti = 0). Then,
the horizon size at the end of inflation,

dh(te) = ae

∫ te

0

c dt

a(t)
=
cae
ai

∫ te

0

e−Hinf tdt =
c

Hinf

(ae
ai

− 1
)
≈ c

Hinf

ae
ai
. (23)

So let us try to write the equality of Eq. (21) in terms of the number N of e-folds

of inflation, N ≡ log
(

ae
ai

)
:

c

Hinf

1

ai
≃ 2c

H0a0
ae
ai

≃ 2
Hinf

H0

ae
a0

eN ≃ 2
Hinf

H0

T0
Te

(g0
ge

)1/3

N ≃ log

(
2
Hinf

H0

T0
Te

(g0
ge

)1/3
)
. (24)
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Here we used the entropy conservation law in order to relate the scale factors at the
end of inflation and today in terms of corresponding temperatures; ge and g0 are
the corresponding numbers of relativistic degrees of freedom.

Further, we use the Friedmann equation to find

Hinf =

√
8πG

3
ρ = ||ρ = v4|| =

√
8π

3

v2

MPl

, (25)

where MPl = G−1/2 is the Planck mass. Also, we know that Te = v. Finally, we
have the following expression for the number of e-foldings during inflation:

N = log

[
4

√
2π

3

(g0
ge

)1/3 v

MPl

T0
H0

]
. (26)

3. Now let’s try to put in the numbers. The most straightforward way is to express
everything in the natural units.

We have
T0 = 2.73K ≈ 2.3 × 10−13GeV, (27)

H0 = 67.7 km/(s · Mpc) ≈ 2.2 × 10−18 s−1 ≈ 1.5 × 10−42GeV, (28)

MPl = 1.22 × 1019GeV. (29)

We know that

g0 = 2 +
7

8
× 6× 4

11
≈ 3.9. (30)

We will estimate the number of d.o.f. at the end of inflation as the full number of
d.o.f. in the Standard Model, i.e.,

ge = 106.75. (31)

Then, we finally get
N ≈ 24 + log v[ GeV ]. (32)

This gives
v = 108GeV ⇒ N ≈ 42,

v = 1016GeV ⇒ N ≈ 61.
(33)

This rough estimate comes pretty close to what we derived in the lecture!
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