RELATIVITY AND COSMOLOGY 11
Solutions to Problem Set 13

1. Cold Dark Matter perturbations in radiation domination

1. First of all, we need to Fourier transform and write the equations in momentum

space:

/ a, /
0px +3— (6px +pa) = (pr +p2) (K*ux + 39") =0, (1)
/

, a
[(px+pr)va] + 45 (Px+Dpr)oa+0px+ (pa +pa) @ =0. (2)

Secondly, we recall the dispersion relations dpy = u(\)dpy and py = w(\)py, where
the first relates single-component density perturbations, while the second the back-
ground densities. As w“PM = 4y¢PM = () we can neglect immediately all the pressure
terms in the equations (1) and (2), and be left with

!/

/
depu + PODM 5 s + 3% Scpar — Koo — 38 =0, (3)
PCDM a
/ a/
pCDMUC’DM + U,CDM + 4_UC’DM +® =0. (4)
PCcoM a
The hint helps us remember that —Z ggﬁ = — %’, so we are lead to:
a/
Vepum —vopm = —. (6)

In a radiation dominated universe a o 7, so %/ = % which finally brings us to the

set of equations
6/CDM - kQUCDM = 3(I)I7 (7>

Vepym + EUCDM = —0. (8)

. In the homogeneous case, ® = 0, the equations become

Scpu — k*vopm =0 (9)
, 1

Vepm T EUCDM =0. (10)

Equations (10) can be immediately integrated to give

A

VcpM = an;
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Substituting this back into (9) we have the general solution for dcpas
dcpm = Alog(kn) + B.

In general then, Cold Dark Matter perturbations in a radiation dominated back-
ground are expected to grow logarithmically. Regularity conditions at early times
however, would impose A = 0, leaving the perturbations as constant (another way
of phrasing the same concept, is that the logarithmic mode decays very very quickly
at early times and so should be neglected).

. Multiplying both sides of equation (6) by 1 we can bring it in the form:

d

—(n. ——n.-P
dn (n-vepum) n

whose unique solution with the property of being finite for n — 0 is

1 /M
VeDpM = ——/ dnmn - .
nJo

In particular, vepy — 0 as n — 0.
. We can plug the solution for vepys into equation (5), and get

k2 [
5’CDM+— dnm - ® = 39’
n Jo

whose solution is formally
" m
dcpm = 32(n) + C — k’2/ ﬂ/ dnana®(n2),
o ™ Jo
and C an integration constant. The constant is fixed by the values of dcpy; and @

for n — 0, dcpar,iy and @(;); moreover we can swap the order of integration so that
the n;—-integration can be performed, and obtain

n
depm = depuo +3 (2(n) = 2) = kQ/ dna12® (1) log (%) '
0

The last integral of the above expression contains two modes, as log (%) = logn —

logny. The leading behaviour at early times will be given by the first term, which
presents a divergence for n — 0, while the second amounts to a constant.

In particular then, we need to solve the integral

n
logn - k2/ d772772®(772)>
0

which, by a reasonable change of integration variables becomes

3P rad withn cosr sinz
~ (ured )2 log(u, kn)-/o dx )




For = > 1 the potential rapidly decreases (in point 2 we even approximated it to
be 0), so we can extend the integration limit to +oo, and solve the definite integral

/+°°dx (cosx B sin;c) _ /+°°d$i (sinx) —
0 x x 0 dx x

Moreover, u/%? = ig, so the required leading behavior is

Sepm = depariy — 9P - log(uy k),

which shows a logarithmic pattern, as famously expected.

2. Sachs-Wolfe effect

1. In a inhomogeneous universe, as the photon travels through it will gain or lose

energy. Its free evolution is governed by the geodesic equation
dxt dpP+

Pt = — — = -—T" pP"Pr

d\ d\ ve ’

We will adopt the coordinate system in which the metric takes the conformal New-

tonian form
ds* = a*(n) [ (1 = 2@)dn” + (1 — 2W)d;;dx'da’]

so in particular, the O-component of the geodesic equation will take the form

dP® 1dpP°  _, P'P?
dnp ~ POdx P PO
. Pipi
= Lo P’ + 205, P = T3 —-
a - [a a PP
= —(=—® ) P"+20,0P" — |- -V —2— (¥ — ®)| §;;——.
(a ) * [a a< )| 9 PO

2. In a perturbed universe, the coordinate-momentum P* defined above, and the
energy-momentum measured by a local observer in their own local frame P* =
(E, P") are different. We can relate the two the common square invariant

o__FE _E
NuwP"P" = g, P'P" =0 = Pr=rm=al+®)
v 124 Pi — E ﬁZ:E(1+\II)ﬁz
Vv —Yii a

Substituting back into the geodesic equation we find the evolution for the energy
measured by a local observer:

(Earo)--(t-v) Zaralar e e



which at first order reduces to

1dFE a .

Bdn a+\I/+(n-8)<I>. (11)
Each of the three terms in equation (11) has a clear physical interpretation: the
first term gives the redshifting of the photon given by the expansion of the universe,
E o a™'; the second term captures the effect given by the local deformation of the
scale factor due to the inhomogeneities a(n) — a(Z,n) = (1 + ¥)a(n), so now the
energy of the photon is redshifted as F oc @a~!. Finally, the last term describes the
gravitational redshift or blueshift as the photon travels out (or respectively, falls in)
a gravitational potential well.

. Using the relation (7 - 0)® = % — %—: we can rewrite the geodesic equation

dIn(aF) _ e NP
dn dn

which can be integrated between our time and the time of recombination, to become

"o
In(aFE)o = In(aE)rec + Po — Prec + / dn (®" — ). (12)

Nrec

We can set @y, as constant shifts in the potential don’t change the equations of
motion.

After decoupling, the photon distribution maintains the same shape as they simply
stream along their geodesics, and since the Bose-Einstein distribution only depends
on %, it means the effective photon temperature goes like 7' oc E. Therefore we can
relate the temperature anisotropies to the energy as

- oT
E T 1+ —=
alb x a (—i—T)

and expanding the log in (12), we get

(5_T
T

_5T
o T

rec

10
— D+ / dn (@' — ). (13)

nrec

. Let’s examine the contribution to ¢£| : there will be fluctuations induced by

T
energy-density fluctuations in the primordial plasma, and by doppler effects due

to the motion of the electrons. Neglecting this second contribution, we have that,
since p,, o< T*

orT
T
Substituting back in, and taking the working hypothesis of a perfect fluid, we have

_1dp,
rec 4 p’y '

oT) _ Lony

r— - - (I)rec-
T 1o 4 p,

This is called the Sachs-Wolfe effect: it combines the intrinsic temperature fluctu-
ations associated with the density fluctuations on the last scattering surface, with
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the gravitational redshift undergone by the photon travelling towards us. The ne-
glected integral fnzzc dn (®" — ¥') turns out to be a subdominant contribution, and
it is known under the name integrated Sachs-Wolfe effect.

Since the decoupling happens in the matter domination era, we can relate ® to the
density fluctuations via the simple relation

9P Opm 300

20 = ,
P pm 4 py

where the first equality is given by Einstein equation, the second to the fact that
in the matter-domination period, the dominant energy-density contribution is given
by the non-relativistic matter component, while the last follows from the adiabatic
evolution of density perturbations (which is always the case in a barotropic, perfect

fluid).

Putting it all together, this brings to the famous relation
5_T = g(I)rec - CIDrec = _lq)rec'
Tl 3 3

An alternative way to solve this very last part of the exercise, is to work in the gauge
where recombination happens instantaneously at some fixed energy density, rather
than at some fixed value of the redshift z. In such case, the intrinsic temperature
fluctuations at recombinations are due to the fact that recombination doesn’t it all

happen at the same z, and therefore, recalling % = 1;

2 ot 2 1 2
= -3 === 0|l — = _CI)rec'
rec 3trec 3 1+ D 3

0z
142

_da

rec a

Q
Y
a

rec

3. Horizon problem

1. Without inflation, the particle horizon (the distance over which we expect causal
contact) at the time of recombination (CMB decoupling) by now makes an angle of
approximate 1.5° on the sky. How does that answer change for a universe which is
always dominated by radiation?

Recombination happens at t... &~ 3.7 x 10° years. Now, if there is only a radiation
stage in the history of the universe, the scale factor changes in time as

£\ 1/2
a=ap (—> o /2. (14)
to

Then, we have for the horizon at the time of recombination

free cdt e [ 1y
dh(trec) = a(trec)/ —N — ¢ tre/c / t / dt =2c- trec- (15)
0 a(t) 0

The conformal size of this horizon is

7 dh (trec> 2c - trec 2c 1
dp(trec) = = = " (totree) % 16
h( ) a(trec) a(trec) aO( 0 ) ( )




The conformal distance from which the relic photons fly towards us since the time
of recombination is
1/2

3 to to 9 1/2
| = / C_dt — CtO / t_1/2 dt = ﬂ[l N <trec> } (17)
tree O(1) ao ao to

trec

Therefore, the angle 8, that the decoupling horizon makes on today’s sky

dp(trec) Z—g(totrec)lm B [( to
N
ag to

where we have used the current age of the universe ¢y ~ 13.7 x 10? years.

O, =

1/2 -1
) _ 1} ~ 5.2 x 10 % rad ~ 0.3°,

trec

(18)

. If inflation solves the horizon problem, we want that the particle horizon generated
at the end of inflation, which by now has a size of

dh(te) ' @7 (19)

Qe
is equal or greater than the distance we can look back today

2c

o cdt
I(to) = ao/ O Jalt) oc %] ~ ety = = (20)
te 0

a(t)
Here we assumed that the dominant contribution to [ is made by the matter-
dominated epoch. Note that we can receive signals only from some particles which
were created after the end of inflation. Therefore the lower integration boundary in
Eq. (20) is t. and not ¢; (the initial moment of inflation).

So let us say
a.  ap

During inflation, the Hubble parameter Hj,s is almost constant which leads to the
quasiexponential expansion of the universe,

a(t) = a; exp(Hinet), (22)

where again index i denotes the beginning of inflation (we can choose ¢; = 0). Then,
the horizon size at the end of inflation,

te cdt ca te c /a c a
dalte) = ae | oo =S [ erttap = (% 1) 0 23
a(te) = a /0 a(t) a; /0 ‘ Hins \a; Hint a; (23)

So let us try to write the equality of Eq. (21) in terms of the number N of e-folds

of inflation, N = log (‘;—)

c 1 2c
Hipra; — Hoag
Qe ~ Hinfae
a; o HO Qo
H. T 1/3
Vo~ 9 mf—o(@>
HO Te Ge
Hine T ( go\ /3
N ~ log (2 —<—> . 24
Og( HO Te Ge ( )
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Here we used the entropy conservation law in order to relate the scale factors at the
end of inflation and today in terms of corresponding temperatures; g. and gy are
the corresponding numbers of relativistic degrees of freedom.

Further, we use the Friedmann equation to find

/87 8t v?
inf — : 7‘[ ) 25
Hipy 3 p=lp=v 3 Mpy (25)

where Mp, = G~1/2 is the Planck mass. Also, we know that 7, = v. Finally, we
have the following expression for the number of e-foldings during inflation:

21 rgo\ V3 v Ty
N = tog [1y/Z (Y 0 To
g[ 3 \ge Mpy Hy

. Now let’s try to put in the numbers. The most straightforward way is to express
everything in the natural units.

. (26)

We have
Ty =273K ~ 2.3 x 10 ¥ GeV, (27)
Hy = 67.7km/(s - Mpc) ~ 2.2 x 10 ¥s '~ 1.5 x 10 * GeV, (28)
Mp = 1.22 x 1019 GeV. (29)
We know that
I Ry (30)
P=2Ty 117

We will estimate the number of d.o.f. at the end of inflation as the full number of
d.o.f. in the Standard Model, i.e.,

ge = 106.75. (31)
Then, we finally get
N =~ 24+ logv[GeV . (32)
This gives
v =10°%GeV =  N~42
16 (33)
v=10" GeV = N =~ 61.

This rough estimate comes pretty close to what we derived in the lecture!



