RELATIVITY AND COSMOLOGY 1II

Solutions to Problem Set 12 17th May 2024

1. Linearised Einstein equations for scalar perturbation

In order to derive the general expression for the linearised Einstein tensor we will exploit
the fact that the metric g, = a’ (Nuw + hyw) and v, = 0, +h,, are related by a conformal
transformation of factor ¢ = loga. Henceforth, the Einstein tensor associated to g, is
related to the one generated by 7, as
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where the covariant derivatives are evaluated with the metric 7,,, but indices need to be
raised with g" = Sy = L (n" — h*™):
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Linearising this last expression, you can obtain
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where the Christoffel symbols I'{ ,, and the Ricci tensor and the Ricci scalar are all com-
puted with respect to the metric v,,,
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At linear order we can now compute the Ricci tensor and the Ricci scalar:

RE(Y) = = (0,00 0" + 010 D,y — DNOMRE — 940,h3)
R(v) = 0,0,h" — 9,0"hY.
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The time has come to impose the gauge: the Christoffel symbols become
[go=—9, TH=00,  Iy=06; T =030V-250¥—750,T

and each term in (1) can be made explicit, thus recovering the desired components of the
linearised Einstein tensor.

2. Linearised energy-momentum conservation
The linearized Einstein equations read as

SG" = 8T GST™, (3)



where 0T# is the linearized deviation of the stress-energy tensor from the homogeneous
part. To recover its components, recall that the stress tensor of an ideal fluid is written
as
T} = (p+ p)utuy — 6P
where we can separate the homogeneous part from the small perturbations by setting
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Recalling that at any perturbative level it must hold that u? = —1,
(—1+20) (1+6u°)” + O(viv') = -1 = 6u’ = —@,

while the linear fluctuations of the spatial part accounts for the physical velocity of the
fluid, and can be constrained by residual gauge freedom.
Given that, the linearized stress-energy tensor fluctuations can be written as
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and substituting into 3 we have, for the ij-component
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Since the traceful and the longitudinal component are independent, we concluide that the
longitudinal part of the Einstein tensor must vanish, imposing

U =—-9o.

This simple relation is really a consequence of the working hypothesis of an ideal fluid,
and might need to be relaxed in more general contexts. In this simple framework it allows
us to immediately eliminate the potential ¥ from our equations, thus giving
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in the above, the label tot on the right-hand side of the equations, stands for the sum
over all the components of the ideal fluid on the right hand side.

Finally, the conservation equations on the linearized stress-energy tensor simply look like
Bl A T
v, 1 = 0,1} — FZATU — FWTf = 0.

and by keeping the first order terms in its expansion (with the clarification that here the
Christoffels need to be computed with the original metric g,, and not just its conformal
equivalent), we get the linearized conservation equations
a/
0p' +3— (8p +0p) + (p+p) (Av — 30') =0,
/

[(p+p)v] + 4%(P+p)v +0p+ (p+p)® =0.



3. Linearised energy-momentum conservation

4. Helicity basis tensors
The rotation of polarization vectors can be described by

eV = e cosa — e sin Q,
e® = eWgina + e@ cosa
If one constructs the vectors
et =el) +ie®, (4)

then the straightforward calculation gives that e*’ = e**®e*. This means that the helici-
ties of these vectors are =£1.
The tensors el(-;) and el(-;) are obviously symmetric, they are also traceless because vectors

e and e® are unit and orthogonal. Now, inverting (4)
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one can rewrite the tensors eg;) and e§;) as
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From this expression it is obvious that the desired vectors of helicities £2 are
el? = (+) + ze(x) (6)
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All possible 2-tensors which one can construct can be expressed as a linear combination
of eia)egﬁ ) where a,f € 1,2. The dimension of such tensors is then equal to 4. Being
traceless and symmetric gives 2 conditions. Since we have already found 2 traceless
symmetric tensors all the others can only be their linear combination.

5. Dimension of helicity basis
Using the formula (5) from the previous exercise, the third symmetric combination of unit
vectors can be writen as
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Thus, the helicity of such vector is zero. Now one can construct a tensor
kik;
T i
hij = 0ij — k;_2j (8)

and check that transversality condition holds:
T T

The trace of such tensor is equal to

thus it is the desired tensor.



