
RELATIVITY AND COSMOLOGY II

Solutions to Problem Set 11 10th May 2024

1. Jeans instabilities

1. We substitute

ρ = ρ0 + δρ , p = p0 + δp ,

v⃗ = δv⃗ , ϕ = ϕ0 + δϕ .

in the system of equations and keep only the terms linear in the perturbations. We
get

∇2δϕ = 4πGδρ (1)

∂δρ

∂t
+ ρ0∇⃗ · δv⃗ = 0 , (2)

∂δv⃗

∂t
+

v2s
ρ0

∇⃗δp+ ∇⃗δϕ = 0 , (3)

where we used δp = v2sδρ. Taking the divergence of eq. (3) we find

∂

∂t

(
ρ0∇⃗δv⃗

)
+ v2s∇2δρ+ ρ0∇2δϕ = 0 . (4)

Using eqs. (2) and (1), the above can be written as a second order differential
equation for the density perturbation δρ:

∂2δρ

∂t2
− v2s∇2δρ = 4πGρ0δρ . (5)

The solutions to this equation are plane waves

δρ ∝ e−i(ωt−kz) ,

where we assumed propagation in the z−direction only. In order to find the disper-
sion relation, we plug the above into eq. (5) to find (after a short calculation)

ω(k)2 = v2sk
2 − 4πGρ0 .

Let us comment a bit on this result. The behaviour of the solutions depends on the
wavenumber k. More precisely, it depends on whether k is larger or smaller than
the critical value (Jeans wavenumber)

kJ =

(
4πGρ0
v2s

)1/2

.

For k > kJ , ω is real so the perturbations oscillate as sound waves. On the other
hand, for k < kJ ω is imaginary and as a result the perturbations are amplified
exponentially.
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2. The system of equations describing the motion of the fluid is

∇2ϕ = 4πGρ , (6)

∂ρ

∂t
+ ∇⃗(ρv⃗) = 0 , (7)

∂v⃗

∂t
+ (v⃗ · ∇⃗)v⃗ = −1

ρ
∇⃗p− ∇⃗ϕ . (8)

We now consider perturbations on top of

ρ0 ∝ a−3 , v⃗0 = Hr⃗ , ϕ0 =
2πGρ0r

2

3
.

Poisson equation immediately gives us

∇2δϕ = 4πGδρ .

Consider now eq. (7). Keeping terms linear in perturbations we find

∂δρ

∂t
+ ρ0∇⃗ · δv⃗ + δρ

(
∇⃗ · v⃗0

)
+
(
v⃗0 · ∇⃗

)
δρ = 0 .

Using v⃗0 = Hr⃗ the above yields

∂δρ

∂t
+ ρ0(∇⃗ · δv⃗) + 3Hδρ+H(r⃗ · ∇⃗)δρ = 0 .

Finally, eq. (8) becomes

∂

∂t
(v⃗0 + δv⃗) + ((v⃗0 + δv⃗) · ∇⃗) · (v⃗0 + δv⃗) = − 1

ρ0 (1 + δρ/ρ0)
∇⃗δp− ∇⃗(ϕ0 + δϕ) .

Once again we are interested in the terms which are linear in the perturbations,
therefore the above becomes

∂δv⃗

∂t
+ (v⃗0 · ∇⃗)δv⃗ + (δv⃗ · ∇⃗) · v⃗0 = − 1

ρ0
∇⃗δp− ∇⃗δϕ = 0

Since δp = v2sδρ and v⃗0 = Hr⃗, we obtain

∂δv⃗

∂t
+Hδv⃗ +H(r⃗ · ∇⃗)δv⃗ +

v2s
ρ0

∇⃗δρ+ ∇⃗δϕ = 0 .

2. Linear sizes of perturbations and masses of objects

The total mass of the object is given by

M(R) ≃ 4π

3
R3ρM,0, (9)

where ρM,0 = ΩMρc is the present average mass density of dark matter together with
baryons. The critical density ρc = 1.5 · 1011 ·M⊙/Mpc3, ΩM = 0.27. We find from Eq.(9)
that

R ∼ (1− 3)Mpc ⇐⇒ M ∼ (1011 − 4 · 1012)M⊙
R ∼ (10− 30)Mpc ⇐⇒ M ∼ (1014 − 4 · 1015)M⊙
R ∼ (40− 400)kpc ⇐⇒ M ∼ (107 − ·1010)M⊙
R ∼ 10kpc ⇐⇒ M ∼ 105M⊙.

(10)
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3. Free streaming length

The physical distance traveled by a generic free particle would be

ℓ = R(tEq)

∫ tEq

t0

v(t′)
dt′

R(t′)
(11)

Let’s make an approximation by splitting that integral into part when it moves with
ultrarelativistic speed v ≈ 1 and nonrelativistic v ≈ p/m.

ℓ = R(tEq)

[ ∫ tNR

t0

dt′

R(t′)
+

∫ tEq

tNR

p(t′)

m

dt′

R(t′)

]
(12)

Consider the second integral. Particle’s momentum gets redshifted with the expansion of
the universe, as usually, p(t′) ∼ R(t′)−1. Thus, p(t′) = R(tNR)

R(t′)
· p(tNR) ∼ R(tNR)

R(t′)
·m, as the

the transition between non-relativistic and relativistic regime happens when momentum
is roughly of the scale of particle’s mass.
This leads to

ℓ = R(tEq)

[ ∫ tNR

t0

dt′

R(t′)
+

∫ tEq

tNR

R(tNR) dt
′

R(t′)2

]
(13)

In a radiation-dominated universe R(t) = αt1/2, which allows to evaluate the integrals

ℓ = αt
1/2
Eq

[ ∫ tNR

t0

dt′

αt′1/2
+

∫ tEq

tNR

αt
1/2
NR dt′

α2t′

]
= 2(

√
tEqtNR−

√
t0tEq)+

√
tEqtNR log

tEq

tNR

(14)

The time of emission, as it’s in the Early Universe, may safely be approximated to be 0.
That leads to the clean solution of

ℓ =
√

tEqtNR(2 + log
tEq

tNR

) (15)

As the temperature and cosmic time during radiation dominance are related as

t =
Mpl

1.66(g∗)1/2T 2
∼ Mpl/T

2 (16)

where the numerical factors have been neglected, as this is only order-of-magnitude-
calculation (note that different decoupled species may have different temperature).
Assembling it all together:

ℓ ≃ Mpl

TEqTNR

(2 + 2 log
TNR

TEQ

) (17)

with TNR ∼ m = 0.1 eV and TEQ = 0.7 eV, so the entire bracket content is of order of
unity. Neglecting it and cleaning up the units leads to

ℓ ∼ ℓpl
M2

pl

TEqTNR

∼ 1022m (18)

The matter density at tEq is evaluated from current densities

ρEq = (ΩMρc) · (1 + zEq)
3 ∼ 10−16 kg/m3 (19)
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Finally, within a sphere of such length there is roughly a mass of

M =
4

3
πρEqℓ

3 ∼ 1050 kg ∼ 1019M⊙ (20)

That places the large scale structure of neutrinos on a scale way bigger than galaxy cluster.
Such matter is ‘too hot’ (= perturbations too smeared out) to form structure responsible
for galaxy rotation curves.
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