
RELATIVITY AND COSMOLOGY II

Solutions to Problem Set 10 3rd May 2024

1. Sphalerons in the Standard Model and beyond

As given in the exercise, the following quantities are conserved in a sphaleron transition:

∆e ≡ Le −
1

3
B, ∆µ ≡ Lµ −

1

3
B, ∆τ ≡ Lτ −

1

3
B. (1)

Here B is the total baryon number (again, number of baryons minus number of an-
tibaryons), while the lepton number L (number of leptons minus number of antilep-
tons) has been split in three contributions from the three different generations, with
L ≡ Le + Lµ + Lτ .
Adding the three conserved quantities above gives a fourth, more familiar, conserved
quantity:

∆e +∆µ +∆τ = Le + Lν + Lτ −B = L−B. (2)

So sphaleron reactions can violate both B and L, but in such a way that B − L remains
conserved.
Now we want to say something about total baryon number B and total lepton number L.
The difference of fermion and antifermion number density is

nf − nf̄ = µ
gT 2

6
. (3)

The net baryon number B of the standard model is caused by 36 quark degrees of freedom
(2 quarks with 3 colors each per family, 3 families, left- or right handed) that each carry
individual baryon number of 1/3, so we get B = 2µqT

2. The net lepton number (per
family) is caused by 3 lepton degrees of freedom (left and right electron, left neutrino)
that each carry individual lepton number 1, so we get Li =

1
2
µiT

2. Combining all that
gives

B − L = −Le − Lµ − Lτ +B

= −1

2
(µe + µµ + µτ )T

2 + 2µqT
2. (4)

1. Sphaleron processes convert 3 baryons (9 quarks) into 3 antileptons. In thermal
equilibrium we then have

9µq = − (µe + µµ + µτ ) . (5)

Putting everything together, we can relate the created baryon asymmetry B as a
function of the conserved quantity B−L, for sphaleron transitions in the Standard
Model:

B − L =
1

2
· 9µqT

2 + 2µqT
2

=
13

2
µqT

2

=
13

4
B .

(6)

1



2. As X can decay to ud (B = 2
3
, L = 0), to ūl̄ (B = −1

3
, L = −1) and to d̄ν (B = −1

3
,

L = 1), the decay of X results in average change of

(B − L)X =
2

3
rud +

2

3
rūl̄ −

4

3
rd̄ν , (7)

where

rud =
Γud

ΓX,tot

, rūl̄ =
Γūl̄

ΓX,tot

, rd̄ν =
Γd̄ν

ΓX,tot

(8)

are branching ratios. As rud + rūl̄ + rd̄ν = 1,

(B − L)X =
2

3
(1− rd̄ν)−

4

3
rd̄ν =

2

3
− 2rd̄ν (9)

Similarly, the decay of X̄ results in

(B − L)X̄ = −2

3
+ 2r̃dν̄ with r̃dν̄ =

Γ̃dν̄

Γ̃X̄,tot

. (10)

Note that Γ̃X̄,tot = ΓX,tot is required by CPT invariance.

3. Considering decay of equal populations of X and X̄:

(B − L)tot = nX ·
[
(B − L)X + (B − L)X̄

]
= 2nX · (r̃dν̄ − rd̄ν) . (11)

Therefore, if r̃dν̄ ̸= rd̄ν , so the process is not CP-invariant, net B − L charge is
produced, which results in non-zero total baryon number.

2. Rotation curves of galaxies

We start from

v2 =
GM(r)

r
, (12)

where for a spherically symmetric distribution

M(r) = 4π

∫ r

0

dr′r′2ρ(r′) , (13)

with ρ(r) the density.

1. We consider first the case where for r < rcore the density is constant, i.e.

ρ(r) =

{
ρ0 for r ≤ rcore

0 for r > rcore
, (14)

where ρ0 is core’s density. Evaluating the integral gives

M(r) =

{
4
3
πρ0r

3 for r ≤ rcore
4
3
πρ0r

3
core for r > rcore

, (15)

which results in
v ∝ r−1/2 (16)

outside the galaxy’s center.
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2. Consider now the possibility that the density obeys inverse power law, i.e.

ρ ∝ r−α , α > 0 . (17)

In this case, (13) gives us

M(r) ∝ r3−α , α < 3 . (18)

Therefore, the circular velocity becomes

v ∝ r1−α/2 . (19)

To get flat rotational curve, v ≈ const., one needs α = 2.

3. Potential well

1. We start by solving exactly the three-dimensional problem. Schrödinger’s equation
is given by

−∇⃗2

2m
Ψ = EΨ , (20)

where m is the mass of the particle, Ψ its wave-function that must be continuous
everywhere and vanish outside the cube. The solutions inside the cube are

Ψabc = sin
(
a
πx

R

)
sin

(
b
πy

R

)
sin

(
c
πz

R

)
, (21)

where a, b and c are positive integers. Plugging the above into Schrödinger’s equa-
tion we find the corresponding energy eigenvalues

Eabc =
π2

2mR2

(
a2 + b2 + c2

)
. (22)

To compute the number of states of momentum below pmax, one requires total energy

to stay below Emax =
p2max

2m
. This results in condition

π2

2mR2

(
a2 + b2 + c2

)
<

p2max

2m
(23)

which is description of a sphere of radius r = pmaxR/π in (a, b, c)-space.

The number of available states therefore is proportional to sphere’s volume

N ≈ 1

8
· 4π
3
r3 =

1

6π2
p3maxR

3, (24)

where the approximation holds if r ≫ 1.

2. In the course we saw that, via classical approximation,

Napprox. ≈
1

(2π)3

∫
d3p d3x =

1

(2π)3
4π

3
p3maxR

3. (25)

This is exactly the same value as (24)
Since there are 3 neutrinos and 3 antineutrinos, we can put 6N neutrinos of negative
or zero energy in these levels.

3



Note: It shouldn’t come as a surprise, as both formulas are classical approaches to the same
problem, only the limit was taken at different points. Both questions can be expressed as what
is the partition function of system with Hamiltonian

H(x, p) =

{
p2

2m if p < pmax and x is inside the cube,

∞ otherwise.

One can either find the states quantum mechanically and evaluate Z(β) =
∑

e−βEi or compute

the classical partition function for a particle Z(β) = 1
(2πℏ)3

∫
e−βH(x,p) d3x d3p in the limit of

β → 0. The classical limit in the first case is taken via replacing the number of points in a

sphere with a volume integral.

4. Primordial Black Holes

Hawking temperature simply states that black holes can radiate and emit energy (and
particles) as if it is an object of temperature 1

8πGM
. According to Stefan- Boltzmann law,

P (T ) = σ0AT
4, (26)

where σ0 is Stefan–Boltzmann constant, σ0 = 1
60
π2 in the Planck units ℏ = c = G = 1.

The surface from which a black hole emits energy is the event horizon of the black hole.
In case of Schwarzschild black holes, as we know from Relativity and Cosmology I, the
horizon is spherically symmetric and appears at the radius rs = 2M . This gives the total
area of emission

A = 4πr2s . (27)

Combining the two results above and also the expression for Hawking temperature, we
can write down the total power of energy emission of a Schwarzschild black hole,

P =
4π3

15
M2T 4 =

1

15360πM2
. (28)

However, P is nothing but −dM
dt

since for a static black hole the total energy it possesses
only comes from its mass. Thus, we have a differential equation to solve for the life time
of a black hole; as the mass of a black hole reduces to zero, the black hole evaporates and
the time it takes to do so will be the life time of this black hole. Solving the differential
equation

dM

dt
= − 1

15360πM2
(29)

yields

M =
( τ

5120π

)1/3

, (30)

where τ stands for the life time. Let’s restore SI units:

M = MPl

(
1

5120π

τ

tPl

)1/3

(31)

where MPl = 2.17 × 10−8 kg is the Planck mass, and tPl = 5.39 × 10−44 s the Planck time.
For primordial BH to survive till today, τ must be greater than current age of the universe,
4.3 × 1017 s, the mass of the black hole has to be at least

Mmin = 1.7 × 1011 kg (32)
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Scientifically speaking, this is roughly 0.8 of the mass of trash United States produces
every year (2.4 × 1011 kg).
The mass here suggests that the Hawking temperature of this black hole is

Tmax =
1

8πGMmin

≈ 59MeV (33)

which is higher than the mass of electrons and neutrinos. This means that the black
hole could also emit these particles from the beginning, energy emission must include
not only production of photons (which we have considered from the beginning), but also
neutrinos, electrons, and gravitons (which we should consider because the gravitational
field is strong around the black hole). Therefore,

P ′ =
1

2

(
2︸︷︷︸

photons

+
7

8
(4 + 6)︸ ︷︷ ︸
leptons

+ 2︸︷︷︸
gravitons

)
P =

51

8
P. (34)

The factor 1
2
refers to 2 degrees of freedom of the photons we considered previously.

Inside the bracket we have 2 degrees of freedom for photons and 2 degrees of freedom
for gravitons. The 4 + 6 in the bracket is related to electrons, positrons (both helicities)
and three types of neutrinos and antineutrinos (only left-handed). This modified power
of radiation changes the minimum mass required for a primordial black hole to survive
until present day:

M ′ = M

(
51

8

)1/3

≈ 3.2 × 1011 kg. (35)

This is roughly equal to the mass of all living humans today (3.9 × 1011 kg).
These are two limits of lifetime of a black hole. To get the exact answer one must include
“gray factors”, taking propagation of emitted particles into account. However precise
considerations of this type are beyond the scope of this course.

5


