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Introduction

You have probably stumbled upon some of the following statements about the universe
The universe is homogeneous and isotropic.
The universe is currently expanding at an accelerated rate.
The universe was extremely hot and dense in the past.
The universe contains relic black-body radiation.
The universe contains two types of matter: ordinary matter and dark matter.
The universe contains dark energy.
Light elements such as D, *He, “He, and Li in the universe were cooked during the first few
minutes after the Big Bang.
The universe was inflating in the past.
e Large-scale structures of the universe (clusters of galaxies) are originated from quantum
fluctuations.
The aim of these lectures is to explain the above statements with the use of general relativity,
equilibrium and non-equilibrium statistical mechanics, and particle physics. The notations used
here follow from that of Relativity and Cosmology I.

In this note, the main lecture material is interspersed with occasional supplementary materials:
blocks of text of smaller font-size which can be skipped during the first reading. These supplemen-
tary materials provide side remarks or touch upon more advanced topics that are beyond the scope
of these lectures. At the end of each lecture, exercises of various difficulty levels are provided.
Some of these exercises are solved explicitly, in which case they are called examples. This note is
also equipped with a short bibliography at the end of each part, referring mostly to textbooks that
explain a particular topic in more detail and occasionally to articles deriving specific results that are
not derived here. A list of theory questions is given at the end of the note.



Contents

Lecture 1

Lecture 2

Lecture 3

Lecture 4

Lecture 5

Lecture 6

Lecture 7

Lecture 8

Lecture 9

Lecture 10

Lecture 11

Expanding Universe

Thermal History

Big Bang Nucleosynthesis

Baryogenesis

Dark Matter

12

18

22

28

36

42

45

53

60

69



Vi

Vi

Lecture 12

Lecture 13

Lecture 14

Inflation

Perturbations

76
80

86



Expanding Universe



1.1

Lecture 1

I Large-scale properties of the universe; FRW metric.

Isotropy and Homogeneity of the Universe

In order to give a sense of scales for various objects studied in cosmology and astrophysics, we list
here the sizes of some of the most recognizable structures in the universe:
e Earth radius ~ 6.4 x 10® cm
e Solar radius ~ 7.0 x 10'° cm
e Earth-Sun distance = 1AU ~ 1.5 x 10'3 cm
To go beyond this point, it is useful to adopt a new unit of distance called parsec
AU

1
1pc= = 3.26 lightyear = 3 x 10'8 1.1
pc L arcsec 1ghtyear X cm (1.1)

The unit of parsec originates in the context of parallax distance-measurements of stars. As shown in

the Figure 1.1, if we know the arc length s and the angle 8, the distance r to the star can be inferred.

The distance to a star 1 pc is if the length of the arc is 1 AU and the angle it subtends is 1 arcsec.
e A galaxy can be thought of as a disk of radius ~ 30 kpc and thickness ~ 1 kpc (see Figure 1.1)

e The galaxies in our universe are clumped together in clusters of typical size ~ 10 Mpc. The
Virgo galaxy cluster, for example, consists of ~ 10° — 10* galaxies.
e Finally, the size of our observable universe is ~ 5 x 103 Mpc.

Two of the most fundamental assumptions in cosmology are that the universe is isotropic and
homogeneous on large scales, i.e. much larger than the galaxy cluster scale. The isotropy of the
universe can be verified by counting and comparing the number of galaxies in different directions
or by observing the cosmic microwave background (CMB). The homogeneity of the universe,

Figure 1.1: Measuring the distance to a star with the method of parallax.
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Figure 1.2: Typical dimensions of a galaxy.

~ 1 kpc

~ 30 kpc

on the other hand, is much more difficult to justify as it is practically impossible for us to make
measurements at places located at over hundreds of megaparsecs away from us. Nevertheless, we
can instead measure the distances between galaxies, reconstruct a 3d picture of the universe out of
them, and see if it is homogeneous.

Armed with these assumptions, we now attempt to go as far as we can in constructing a
mathematical description of the universe.

FRW metric

Our first task is to derive the most general homogeneous and isotropic metric. For the sake of
clarity, let us forget about the time in spacetime for the moment; we will introduce it back later. A
line element in a 3d space is written in terms of the spatial coordinates x* as

d0* = y;;dx'dx’ (1.2)

with i, j = 1,2,3 and the signature of the metric ¥;; taken to be (+++). The metric ¥; completely
determines the geometry of such a space, but it is weakly constrained. A good starting point is the
more constrained Riemann curvature tensor R; ji.

Reminder:

The Riemann tensor R;jx, has the following (anti)symmetry properties:

Rjjke = —Rjixr, antisymmetric in the first two indices
Rijre = —Rijuk, antisymmetric in the last two indices
Rjjke = Ryijs symmetric in the first-two and last-two pairs of indices

At a particular point, we have sufficient freedom to choose a coordinate system in which
%j=0ij,  k%=0 (1.3)

where, as usual, §;; is the Euclidean metric. The only way to construct a Riemann tensor without
breaking isotropy is by building it solely out of J;;’s (recall that §;;’s are invariant under rotation)

Rijre = £ (x) (8bj0 — 8ubjx) (1.4)

At this point we have solved half of the problem. The homogeneity requirement can be fulfilled
by requiring that the proportionality factor {(x) is the same everywhere, i.e. {(x) = constant.
Substituting back %; = 6;j, we arrive at a tensor equation

Rijee = € (VYo — YieYVie) (1.5)

which is valid in any coordinate system. The above Riemann tensor can be compared with its
definition in terms of the metric and its first two derivatives, giving us a 2nd order differential
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equation which can in principle be solved for ¥;;. However, instead of doing that we will follow an
easier path.
It follows from (1.5) that

Ri;j =207, Ricci tensor (1.6)

R=6C(, scalar curvature (1.7)

Depending on the value of {, the space is qualitatively different:

£>0: constant positive curvature (1.8)
£=0: flat (1.9)
£<0: constant negative curvature (1.10)

It is well known that in the { = 0 case the metric can always be chosen to be %; = §;; everywhere
(simplest choice). To obtain the metric for { # 0 cases we can borrow the same idea. We do so by
first embedding the space of interest in a flat space of one more dimension, in which the metric can
be written down trivially. The induced metric is then obtained by removing one of its dimensions.
For example, take a 3-dimensional sphere S> and embed it in a 4-dimensional flat space. In this
space, the 3-sphere is defined by the equation

GG+ xg=d® (1.11)
which is obviously homogeneous and isotropic. Its metric is given by
d0? = dx? +dx3 + dx3 + dx; (1.12)

To obtain the induced metric, we seek to eliminate the x4 dependence in the above metric. Taking
the differential of the constraint (1.11)

x1dxy +xodxy + x3dx; +x4dx4 =0 (1.13)
and using it to eliminate the dx4 in (1.12), we get

(x1dx) + xpdx; +x3dx3)2

dl* = dxi +dx; +dx; + R (1.14)
1742743
The metric (1.14) is simpler when expressed in terms of the spherical coordinates
x! =rsin0cos ¢ (1.15)
x> = rsinOsin¢ (1.16)
x> =rcos0 (1.17)
which allow us to rewrite
dx} +dx3 +dx3 = dr* +r*dQ? (1.18)
xldx) +x%dx, + x3dxs = rdr (1.19)

where

dQ? = d6* +sin” 049> (1.20)
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All in all, the metric (1.14) can be rewritten as

r2dr?

dl* =dr* + rdQ* + ———
as—r

d2
== -+ r7dQ?
;

a2

d—2
- a2 r_ +72d92 (1.21)
1-72

In the last step, we have introduced a new dimensionless variable

=L (122)
a
As can be seen from the metric (1.21), in this example of a 3-sphere, whose scalar curvature is

positive, the domains of the coordinates are

Felo,1) (1.23)
6 €0, 7] (1.24)
¢ € (0,27) (1.25)

Since the domain of 7 is bounded, a positive curvature space is sometimes called closed.

By dimensional analysis, we know that the Ricci scalar is proportional to a~2. Therefore, the
metric for the negative curvature case can be obtained from the positive curvature one (1.21) by the
following substitution

at — —d* (1.26)
which brings us to

2
a? = 2ag?

2

a

dr?
_ 2 =2 2
=a <1+F2+r dQ) (1.27)

As we can see from the above metric, the domains of the coordinates in this case are

7€ [0,00) (1.28)
0 € [0, 7] (1.29)
¢ € (0,27) (1.30)

Since the domain of 7 is unbounded, a negative curvature space is sometimes called open.
The most general homogeneous and isotropic spatial metric can be written in the following
compact form that accounts for all cases (positive, zero, and negative curvature):

dfz—a2< dr’ +72d§22> (1.31)
- \1-k#? ‘

where

+1, closed, positive curvature
K= 0, flat, zero curvature (1.32)

—1, open, negative curvature
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Figure 1.3: Three-dimensional representation of 2-sphere (left) and one-sheet 2-hyperboloid (right).

Restoring the time and accounting for the possibility that a can be time-dependent, we obtain

dsz—dtz—az(t)< il +72d92> (1.33)
B 1 - K2 '

which is known as the Friedmann-Lemaitre-Robertson-Walker metric or simply the FLRW metric
or even FRW metric.

Remarks:

e The FRW metric (1.33) describes all possible homogeneous and isotropic spacetime
locally, but not necessarily globally. This is because the topology of the spacetime of
interest is not necessarily simple. For example, a spacetime that is locally flat may look
like a torus globally. In some cases, it might be possible to identify the topology of a
spacetime from within. If, for instance, the galaxies located at different distances away
appear to be repeated, then it could be an evidence that the topology of the universe is
toroidal.

o It is not always possible to embed a curved space in a flat space of higher dimension. For
example, it is known that we cannot embed a negative curvature 2d space in a 3d flat
space. We can instead embed it in a 5d or 6d flat space. For a 4d flat space, it is known
that we can embed a negative curvature 2d space in it locally, but we still do not know if
it is doable globally. Furthermore, it has been proven that a hyperbolic k-space can be
embedded in a 5k-5 dimensional flat space or any flat space of dimension > 2k — 1, e.g. a
hyperbolic 3-space can be embedded in a 10 dimensional flat space or any flat space of
dimension > 7.

e By looking at their metrics, we found that a positively-curved homogeneous and isotropic
space is finite (compact) while a negatively-curved one is infinite (non-compact). One way
to gain an intuition on this is by studying curved spaces that we can imagine. 2-sphere
and (one-sheet) 2-hyperboloid suggest themselves as representatives of K = 41 and
K = —1 spaces respectively. Figure. 1.2 shows how they look like when embedded in a
3d Euclidean space. Following the procedure for obtaining the induced metric we learned
in this lecture, we remove the z coordinate. From the pictures, it is clear that , which
corresponds to the projection of the radius onto the xy plane, is bounded for 2-sphere and
unbounded for 2-hyperboloid.



1.2 FRW metric 11

Summary:
The size of the observable universe is ~ 5 x 10> Mpc. It appears to be homogeneous and
isotropic on scales larger than that of the galaxy clusters (= 10 Mpc). The most general metric
compatible with homogeneity and isotropy is given by the FRW metric (1.33)
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Lecture 2

Friedmann equations; Friedmann equations in Newtonian gravity; Einstein’s static universe;
expanding universe.

Friedmann equations

Having found the FRW metric (1.33) describing a time-dependent homogeneous and isotropic
universe, we now turn to its dynamical aspects. We would like to write down the Einstein equation
describing such a universe

where Gy = Ryy — %guvR is the Einstein tensor, A is the cosmological constant, and 7,y is
the energy-momentum tensor. The nonzero components of the Christoffel symbol in Cartesian
coordinates are

a
i a;
. K .
Iy = ;gjkx’ (2.4)
from which we can construct the Ricci tensors and scalar
Ryo = —32 (2.5)
a
.. )
a a 2K
.. .0
K
Re —6 <“ “2+2> 2.7
a a a

As a first approximation, we can assume that the universe is a perfect fluid. It’s energy-momentum
tensor is then

Tuv = (p + p)uyuty — pguv (2.8)

with p, p, and u, being its the energy density, pressure, and 4-velocity of the fluid respectively. The
universe is thus not boost invariant and has a preferred cosmic rest frame, namely the rest frame
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of the fluid, in which uy, = (1,0,0,0). In this coordinate system, the non-zero components of the
stress energy tensor are

Too = p (2.9)
Tij = —pgij (2.10)

Plugging (2.5), (2.7), and (2.9) into the 00" component of the Einstein equation, we get

¢ K A 81G
N 2.11
a2+a2 3 3 ( )

and plugging (2.6), (2.7), and (2.10), into the ij" components of the Einstein equation, we get

.. %) K
2242 4+ = _A=—82Gp (2.12)
a a a

All the other components of the Einstein equation are identically zero. Note that as a consequence of
the homogeneity and isotropy of the universe, the ten Einstein equations have been reduced to only
two. Equations (2.11) and (2.12) are important in cosmology. They are known as the Friedmann
equations. The two Friedmann equations have three unknowns: p, p, and a, i.e. they are under
determined. In order for them to be solvable, one more equation is needed. The extra equation
complementing them is usually taken to be the equation of state of the universe: an equation of the
form p = wp, where w depends on the properties of the energy component in question. Below are
three types of energy components that are of special importance in Cosmology together with their
equations of states:

e Non-relativistic matter / dust: p =0

e Relativistic matter / radiation: p = p/3

e Cosmological constant / dark energy: p = —p
If several species are present, the equation state is given by the sum of each component
p:ZWipi (2.13)
i

The Friedmann equations also come in several other forms, which are useful in different
contexts. For instance, we can take the difference between (2.11) and (2.12) to get a useful form of
the Friedmann’s equations that does not involve K

i A 4nG

a=3 3 PT3) 219

This form is also useful because it readily tells us about whether the expansion of the universe is
accelerating or decelerating. To see other variants of the Friedmann equations, let us consider the
energy-momentum conservation

vV, THY = 9, T* +FﬁﬁTVﬁ +IygTHP =0 (2.15)
and set 4 = 0 to arrive at

WT» +T0 TP + Ty, 7% =0 (2.16)
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Feeding it with (2.2), (2.3), (2.9), and (2.10), we get
. L a a
p+3-p+3-p=0 (2.17)
a a
which could be rewritten in a more physically-transparent form as

d , 3 a
5; (Pa’) +p—-=0 (2.18)

This is just the 1st law of thermodynamics
dE + pdV =0 (2.19)

with V o< @ and E o pa?. Since the conservation of energy is a consequence of the Bianchi identities,
we could have arrived at (2.18) from the Einstein equations via the Bianchi identities. Due to this
very reason, we stress here that the energy conservation equation (2.18) is not independent from
the two Friedmann equations that we have obtained earlier, namely (2.11) and (2.12), as they are
nothing but the components of the Einstein equation. Thus, (2.18) can be regarded as yet another
alternate form of one of the Friedmann equations. Having four equations (2.11), (2.12), (2.14),
and (2.18) in our hands, we can pick any two equations to form a pair of Friedmann equations
which can be solved with the help of an equation of state. For example, if we want to have a set of
differential equations that do not involve second derivatives (é), then we can pick (2.11) and (2.18)
as our choice of Friedmann equations.

Friedmann equations in Newtonian gravity

General relativity is not necessary in describing a flat space (K = 0) containing only non-relativistic
matter (p = 0) in the absence of a cosmological constant (A = 0). Hence, we expect the Friedmann
equations in this case to be derivable from Newtonian gravity. Let us check if this is indeed true.
Consider a uniform distribution of matter with energy/mass density p. The total energy/mass inside
a spherical region of radius a must conserved, so

d (4 3\ _
dt <p37m ) =0
d 3
o (pa’) =0 (2.20)

which coincides with the energy conservation equation (2.18) for p = 0, as expected. Now, let us
study the motion of a test mass m located on the surface of the sphere. Newton’s laws of motion
and gravity give

. Gl 471,'3
mi=—-G— | p-na’ | m
a2 p3

. 4

4 _Za6p (2.21)
a 3

where we have used the fact that the gravitational field outside of a sphere is equivalent to that due

to a point mass located at the center of the sphere and vanishes inside of it. Again, we find that this

matches with the special case of (2.14) where K =0, p=0and A =0.
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Einstein’s static universe

Einstein (and most people during his time) thought that the universe must be static in the sense that
a = 0. Starting from this assumption, he then postulated the existence of cosmological constant.
Let us retrace the (hand-wavy) line of reasoning that led him to this conclusion. At that time, the
cosmological constant had not been discovered, so let us begin by setting A = 0. The static (¢ = 0)
Friedmann equations (2.11) and (2.12) then reduce to

K 8nG

—-=— 2.22
a? 3 (222)
K

2= —8nGp (2.23)

Einstein observed that the universe is not empty (there are stars!), so its energy density must be
non-zero

p#0 (2.24)
Furthermore, he observed that stars do not move, so
p=0 (2.25)

If these observations are true then (2.22) and (2.23) would be inconsistent; the former gives K # 0
while the latter gives K = 0. To reconcile these, in 1917 Einstein realized that the presence of a
cosmological constant A in the Einstein equation would appear in the Friedmann equations as

K A 8nG
o2 i 2.26
a? 3 3 (2.26)
K
——A=0 (2.27)
a
and would allow for a consistent solution given by
1
a= K=+1, A=4nGp (2.28)

\/K’
The presence of such a cosmological constant gives rise to an apparent conceptual problem. If
we set p = 0 and A # 0, then the Friedmann equations (2.11) and (2.12) only accept non-trivial
solutions where the space is curved K # 0 and non-static ¢ # 0. In other words, even an empty
space has a non-trivial dynamics (and is curved). This is actually not a real physical problem. It is
just a possibility that people tend to find difficult to accept. After Friedmann published his model,
which we will discuss in the next section, in 1922, Einstein stated that introducing the cosmological
constant A was his biggest blunder.

Expanding universe

Unlike Einstein, Friedmann thought that it is more reasonable that the universe has no cosmological
constant A = 0, but is dynamical. Here, for no other reason than simplicity, let us set K = 0 and
p =0, i.e. a matter dominated universe, so that the Friedmann’s equations (2.11) and (2.12) reduce
to

a¢  8nG

= 2.29

7 3 P (2.29)
.. .2

29,4 9 (2.30)
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Integrating the second equation, we get

2/m3+/m9:0
a a
2loga+loga=C

ata=C (2.31)

where C is an integration constant. Integrating once more yields

/d@m:/ah

a? =t
N\ 2/3
a=aqg () (2.32)
Io

where we have neglected the new integration constant, as it is negligible for large enough #’s. Using
the obtained a(r), we can calculate how the energy density evolves with time with the help of (2.29)

3 a? 11

_3a 11 2.
8nGa? 6mGt? (2.33)

P

A prediction of Friedmann’s model is that the distances between stars must increase with time.
This can be seen in the following way. Consider two objects located at fixed coordinate points (such
objects are called comoving) separated by a constant coordinate distance AZ away. The physical
distance A{ between them is given by

AP = a*(1)AP?
Al =a(t)Al (2.34)
Taking the time-derivative while keeping the coordinate distance A/ fixed

%%fzzaa)AZ (2.35)

and rewriting A/ in terms of A/ using (2.34), we get

Al a(t)
TE*_cxﬂAg (2.36)

By defining the Hubble parameter / Hubble constant
H=" (2.37)
a

we can rewrite (2.36) as

dA?
—— =HN/ 2.38
dt ( )

which is known as the Hubble’s law. It says that two objects located at a constant coordinate
separation A/ away from each other move apart with a physical speed dA¢/dt proportional to their
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physical distance A¢. For instance, if we plug in the solution for a matter dominated universe (2.32),
we obtain
dal 2
7 SIAK (2.39)
To verify the Hubble’s law experimentally, we need a way to measure the distances of faraway
objects. One way to do so is by comparing the inherent luminosities of the so called standard
candles (stars with known luminosities) with the apparent ones. By observing how the distances
of these standard candles evolve with time, we can check the validity of the Hubble’s law. The
receding speeds of stars can be measured more accurately by measuring the shifts in their spectral
lines due to the Doppler effect. According to the Doppler effect, the frequency of a photon emitted
with frequency @y by a star that is moving at a speed v away from us is redshifted to

1—v
0=/ 2.40
1~|—vw0 (2.40)

By measuring the redshifts in the spectra of various stars, Hubble managed to obtain a distance vs
velocity relation that shows a general trend of velocity increasing with distance. Despite the highly
scattered data points he obtained, Hubble was bold enough to draw a straight line corresponding
to H =500 1;4“11)/2 in his 1929 paper. This differs by about an order of magnitude from the results
of more precise recent measurements, settling at around H = 701%/2. Even to this day, the best
measurements of the Hubble parameter still contains high degrees of error, mainly stemming from

our inability of measuring the distances of faraway objects precisely.

Summary:

Friedmann equations are two equations that, as a pair, are equivalent to the Einstein equations
for an FRW universe filled with perfect-fluid. Friedmann equations come in many forms. Four
of them (2.11), (2.12), (2.14), and (2.18) are derived here. Einstein found that if we assume that
the universe is static, has nonzero energy density, and has zero pressure, then the Friedmann
equations would be inconsistent unless the cosmological constant is nonzero. Friedmann, having
come to peace with the possibility that the universe is dynamical, found that (as an example) a
matter dominated universe would expand with time. In such a universe, two objects located at
fixed coordinate positions move apart according to the Hubble’s law, i.e. with a physical speed
that is proportional to their physical distance.
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Lecture 3

redshift in an FRW universe; definition of luminosity distance; luminosity distance and
Hubble’s law

Redshift in an FRW universe

Suppose that a light pulse is emitted at # = 71 by a star located at the comoving coordinates 6 = 7 /2,
¢ =0, and 7 = 7 in an FRW universe (described by the metric (1.33)) to be detected by us at the
same angular coordinates at ¢ = fy and 7 = 0. On its way to our detector, the pulse follows the null
geodesic

0=ds> =dr* —a*(1) ar (3.1
1 —K7? '
Taking the square root and integrating gives
_ arcsinry, K=+1
[y (ST TS 32
- = = r) = r, = .
woa) o Vi—kE U
arcsinh r;, K= —1

where we have picked the negative root since we are interested in light pulse that travels in the
decreasing instead of increasing 7 direction. We will find this equation useful in future discussions.

Suppose that a second pulse is emitted by the star shortly after the first one at ¢t = #; + dt; and
detected at r = 1y + Oty by our detector. As the two pulses are both emitted at the same comoving
radial coordinate 7y, (3.2) yields

f(r) = f(m)
to+0ty  t 00 dt
/Mn a(z):/,l a(t) (3.3)

For sufficiently small 8¢y and 0f;, we have

6t0 . on

a(to) — a(n) (3.4)
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If the two pulses coincide with the peaks of an electromagnetic wave, we can substitute 67y/6f; =
o; /@, where @y and o, are the observed and emitted frequency respectively, to get

a(ll)
W= 3.5
La(to) G-)
or, in terms of wavelengths,
2o = 2, 200) (3.6)

La(ty)

Hence, the wavelength of a photon rescales just like how the physical distance between any two
points would. If the universe is expanding, we have a(tp) > a(t1), and so A9 > A; (redshift). On
the other than, if the universe is shrinking, we have a(fo) < a(t;), and so A9 < A; (blueshift). In
astrophysics, the amount of redshift / blueshift is often measured in terms of a quantity

_Ao—A a(n)
- 7Ll N a(tl)

z —1 3.7

which we simply call the redshift. It is often useful to express results in terms of the redshift z as it
is one of a few quantities that we can directly measure.

Luminosity distance and Hubble’s law

The Hubble’s law (2.38) we found in the previous lecture states that in an FRW universe two
comoving points move apart with a physical speed that is proportional to their physical distance.
We immediately run into a problem when we decide to confirm this statement experimentally. The
reason is that at cosmological scales the physical distance between two points at an instance is
practically impossible to measure. We therefore need to resort to indirect methods of measuring
distance, which typically involve detecting light from faraway objects. The price to pay is that the
said indirect methods do not actually measure the physical distance at a particular moment in time,
but more complicated notions of distance that depend on the properties of the universe at different
moments in time during the light’s journey. Examples of these indirect methods include:

e Comparing the apparent luminosities of standard candles (objects with known luminosities)

to their intrinsic luminosities.

e Comparing the apparent sizes of standard rulers (objects with known sizes) to their actual

sizes.

e The method of parallax: measuring the shifts in the apparent positions of the objects of

interest due to the orbital motion of the Earth.

Let us study the first method in more detail, as it is the method that works most effectively for
the largest distances. This method leads to a notion of distance called the photometric distance or
luminosity distance. The idea is that, in the absence of expansion, the apparent luminosity (energy
flux per unit time) P registered at a telescope pointing towards a spherically symmetric light source
whose intrinsic luminosity is L is given by

S
4md?

where S is the cross-section of the telescope and d in this case is the distance between the light
source and the telescope. Inspired by this, we define the luminosity distance as

| LS

P=L (3.8)
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though in an expanding universe d would no longer be the same as the source-telescope distance.
Since S and L are typically known, we can measure d by measuring P.

Now, we shall try to understand what information we actually get when we measure the
luminosity distance d. To this end, we derive the apparent luminosity P from the intrinsic luminosity
L. P can be obtained from L by multiplying it with three factors. First, there is the geometrical
fraction factor that is due to the fact that only a fraction of the light emitted by the light source is
captured by the telescope. At the time of detection #, the light front emitted at time #; has spread to
a sphere of comoving radius 7; which can obtained by inverting (3.2) to solve for 7. To calculate
the area of this light front, consider the space interval at t = ¢,

=2

1 —K7?

di* = a* (1) [ + f2d£22] (3.10)

The light front corresponds to the surface of constant 7. If we set d7 = 0, the above spatial metric is
equivalent to that of a flat space. So, the total area of the wavefront is simply given by

Stot = / a? (o) dQ? = 4nrra’ (o) (3.11)

Out of this light front, only a small fraction S /S, with S being the cross-section of the telescope, is
captured by the telescope. Second, as we discussed in the previous section, the observed frequency
of the light emitted by the light source is redshifted compared to the original frequency, and
as a result the luminosity is modified by the ratio of the observed and emitted photon energies
(hay)/(hoy). Third, due to the difference in the metric at the point of emission and detection, the
time-flow rate differ at the two points. Consequently, the luminosity is further modified by the ratio
of the two rates 8t;/0ty. Putting all the factors together, we find

S Aoy ot 1
P=L{— | |—||=— 3.12
<Stot> (71(1)1) <5t() ( )
Noting that Sy is given by (3.11), wy/@; = a; /ap, and 8ty/dt; = ap/a; (as found in the previous
section), the observed luminosity is given by

(3.13)

Comparing this with (3.8), we find the information content packaged in the luminosity distance

F1(to,t1)

a(ty)

d = a*(1o) (3.14)

This can be taken as the theoretical definition of the luminosity distance.

With the help of (3.2) and (3.7) we can relate d to z. As a warm up here we consider the case
where 7| is small and so #; is close to fy; we will do it generally in the next lecture. In this case,
(3.2) reduces to

Io—1
a(to)

~ 7 (3.15)

since a(t) is approximately constant and f (7)) =~ 7;. Furthermore, by Taylor expanding a(t;) ~
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a(ty) +ao(t; —19) in (3.7), we get

—1

alf
. (t0)
a(t()
Nd

) + d()(l] — t())
(to)(to —11)
a(to)

Fra(ty) (3.16)

where in the last step we employed (3.15). Now, we can use (3.16) to express the 7| in (3.14),
which is now reduced to d ~ a(ty)7y, in terms of z

a(to)
~ d=Hd 3.17
alto) (3.17)

This is the Hubble’s law written in terms of experimentally measurable quantities.

Summary:

In an expanding universe, the observed frequency of light emitted by a faraway object is
redshifted relative to its emitted frequency. The amount of redshift is often measured in terms of
a quantity z, defined in (3.7). At cosmological scales, the physical distance is practically difficult
to measure. The luminosity distance is an alternative notion of distance that is measurable. It is
defined in terms of experimentally measurable quantities in (3.9) and in terms of unmeasurable,
but theoretically useful quantities in (3.14). As found in (3.17), the Hubble’s law can be written
in terms measurable quantities.
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Lecture 4

I Relation between luminosity distance and redshift; critical density; content of the universe

Relation between luminosity distance and redshift (the plan)

In the previous lecture, we defined two experimentally measurable quantities, the luminosity
distance d and redshift z. Our goal in this lecture is to relate the two quantities. The reason we
are interested in the relation between d and z is because it depends on the content of the universe.
This means that by measuring it we can probe the content of the universe. From the definitions of
luminosity distance (3.14) and redshift (3.7), we have

d=rnr (tl,l())a(t())(l +Z) 4.1)

We want to write the everything on the right hand side solely in terms of z. First, we use (3.2) to
express 7 (t1,%o) in terms of 7

;

(to)(1 +2)si [ o dt] K1
al(l, +2) s / —, =+
RV Ay
d (t)(1+)/l° i K=0 4.2)
= a Z — = .
’ v alt)
()(1+)'h[/m dt] K=-1
a(t Z)sin —, =—
’ =0
What is left to be done is to express the integral
o dt
— 4.3
J, e )

in terms of z. In order to do that, we need to solve for the time-dependence of the scale factor a().
In this lecture, we will do exactly that, while deriving useful results in the process.

Critical density

The term involving the cosmological constant —A /3 in the Friedmann equation (2.11), when moved
to the right hand side of the equation, can be interpreted as due to a constant energy density

A
paA= 371G 4.4)
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which we refer to as the vacuum energy density. While the name is based on our best guess for its
nature, i.e. that the energy density of vacuum is indistinguishable from a cosmological constant, the
right interpretation is not yet known. Similarly, if we move the —A term in the Friedmann equation
(2.12) to the right hand side, we can interpret it as due to the vacuum pressure

A

PA= T 816G 4.5)

As we can see,

PA = —PA (4.6)

So, the vacuum energy component has an equation of state parameter wy = —1. With these
definitions, we can define the total energy as

Dot = P + Pa 4.7
and the total pressure as
Pot =P+ Pa (4.8)

Using the definition of the Hubble parameter (2.37), the Friedmann equation (2.11) and the energy
conservation equation (2.17) can be written respectively as

K 8nG
H* + — =~ Prot (4.9)
a 3
dpro
g‘zﬁHmwum> (4.10)

From (4.9), we see that the present universe is flat (K = 0) if the present total energy density Por.0
is equal to the critical density

_ 3
Pe=c o (4.11)
Though the critical density p. could be defined at any time, throughout these lectures it is always
defined at the present time r = ty. p. can be found by measuring the Hubble parameter Hy. For
Hy = 100h (km/s) /Mpc, the critical density is p. = 1.884%> x 10~>g/cm?.

The relative size between the total density today pyo,0 and the critical density p. tells us about
the curvature of the universe:

Poto > P — K>O0: the universe is closed
Poto =P — K=0: the universe is flat
Poto <pe — K<O: the universe is open

Apart from that, it also tells us about the fate of the universe (whether it expands forever or bounces
back). As an example, consider a matter dominated universe with p = 0 and A = 0. In this case,
the Friedmann equation (2.14) that is independent of K reduces to
i 4nG
a_ 77, 4.12)
a 3
Multiplying both sides with ad and using the energy conservation pa® = constant = poag (from
here and on we will write ag and a(#y) interchangeably), we arrive at

4G 0
m:_7f<m@>m (4.13)
3 a



4.3

24 Lecture 4

Then, integrating over ¢ gives

1, 4nG 1 4nG
5612 — Tpoaga = const = —?ag(po — pc) (414)
where the constant of integration was found by evaluating the left hand side at t = #. This resembles

the energy conservation equation for a particle of unit mass moving under the influence of a potential

4nG 1
Ula) = ==~ podj- (4.15)

with total energy

4nG
E=———a(po—pc) (4.16)

3
By the particle motion analogy, it is clear that the fate of the universe depends on the relative size
between py and p.. There are two cases. If py < p., and hence E > 0, the universe would expand
forever with a(t) — oo as r — co. On the other hand, if py > p., and hence E < 0, the universe
would expand for a finite amount of time, and then collapse.

Content of the universe

Suppose that the universe is composed of:

e radiation, with py, = p,/3

e non-relativistic matter (dark and baryonic combined), with p,, =0

e cosmological constant, with py = —pa
This is, in fact, the simplest model of the universe that is broadly consistent with the observed
features of the universe. We would like to study how such a universe evolves with time. Before
going any further, it will prove useful to express the content of the present universe in terms of the
dimensionless numbers &; = p; o/p., called abundances. Explicitly,

=P g,=Pm0. o —Pro 4.17)
P P P

We stress here that, like the critical density p., the abundances €; in these lectures are defined at
the present time ¢ = #9. The Friedmann equation (4.9) can be written as

8nG
H? = == (Py+Pm+ P+ P) (4.18)

where we have defined the curvature contribution to the energy density as

3 K
-—__- = 4.19
Pk 37C a2 (4.19)
By defining the abundance associated to the curvature as
PK.0 K
Qp=—-=— (4.20)
T e aH

and with the use of (4.11) and (4.17), we can write the Friedmann equation (4.18) at the present
time as a sum rule

1= Qx4 Qk + Q0+ Q, 4.21)
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This form of the Friedmann equation is compact and useful for consistency checking, but it does
not tell us about how the universe expands.

To obtain an equation that dictates the expansion of the universe, we need to understand how
the different energy components evolve as the universe expands. For simplicity and solubility, we
will assume that the different components do not interact with one another. This assumption is
valid at the present epoch, but it becomes increasingly inaccurate as we go backward in time, as
the temperature was higher and interactions were stronger then. The energy conservation equation
(2.18) for matter

o (Pma3) =0 (4.22)
implies that the matter energy density scales as

Next, the energy conservation equation for radiation gives

0 da’

3 —_
ot (pr”) +py o ~°
d
2 (pyat) =0 (4.24)

where we have used the equation of state for radiation py = p,/3. The last equation reads

1
pyoc — (4.25)

at

which can be understood as follows: the number density of photons scales as 1/a® and the
energy/frequency of each photon scales as 1/a, so together they make 1/a*. By definition, the
curvature energy density (4.19) scales as

1

P — (4.26)
a

Finally, also by definition, the cosmological constant energy density is unchanging
pa = constant 4.27)

Knowing the scaling behaviour of each component, the Friedmann equation (4.18) can be
developed as follows

8nG
H? = == [pa++px + P+ Py

_ 3G C{PA PK.0 (@)qpm,o (%)m’m@ﬂ

3 Pe Pc \a pc \a pe \a
—H [QA +Qx (%")2 +Q (%)3 +Q, (20)4] 4.28)

In the last step, (4.11) and (4.17) were used. Using the definition of the Hubble parameter, we can
rewrite it in a more useful form as

(4) = o+ (D) +an(2) +2r(2)' 429)

a a



4.4

26 Lecture 4

Given the abundances Q; and the Hubble parameter Hy at r = #y, this equation tells us pretty much
everything about how the universe expands. It can also be rearranged to a form that is more intuitive

1
§a2 +U(a)=0 (4.30)
where
H2 3 4
Ula) = — 5 (QAa +Qrai +Q, +Qy ) 4.31)

(4.30) describes the energy conservation of a particle of unit mass moving under a potential U (a).

Relation between luminosity distance and redshift (the result)

We are now in a position to fulfill the goal we set in the beginning of the lecture: expressing the
luminosity distance d solely in terms of the redshift z. We start by defining x = a/a¢ and

1 1 1
A(x) = Qp+ QK; + Qm; +ny7 (4.32)

which encapsulates the information about the content of the universe, so that we can write (4.29)
compactly as

() — B ()

d
Y HoA(x)x (4.33)
dt
This allows us to express the sought-after integral (4.3) as
o dt odt d 1 I d
/ 2o R / a (4.34)
n a(t) n dxapx  aoHy x2A( )

where we have used (4.33) to rewrite df/dx in terms of x and the fact that x(fp) = ap/ap = 1 and
x(t1) =a(t1)/a(to) = 1/(1 +z) by the definition of redshift (3.7). We can then plug (4.34) to (4.2)
to obtain d(z). For example, for K = 0 we have

14z ! dx
d(z) = e /l'ﬂ 2AG) (4.35)

All the three cases K = —1,0,+1 can be captured by a single equation

I+z
d(z) = h|v/Q / 436
()= govasn K x2A (4.36)
Its reduction to each case is more readily seen if we use (4.20) to write out Qg explicitly
1 v—K
d(z) = ap(1 +z) N smh aoH / xZA (4.37)

The current form coincides with the expression for K = —1. When K = +1, we have /—K =i,
and so the sinh would transform into a sin, as it should. The flat case K = 0 is obtained by taking
the formal limit Qg — 0.
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By measuring d(z) and fitting the curve with the expression (4.37), the content of the universe
can be inferred. Using (4.21), we can eliminate Qk from the fitting-parameter set, leaving us with
Qy, Q, and Qp. pyo and p. can be obtained directly from the CMB and Hubble parameter
measurements, giving Q. It turns out that 2, < 1, i.e. can be neglected in practice. The best-fit
values turned out to be Q,, ~ 0.3 and Q, ~ 0.7. Based on this, the so called Lambda-Cold-
Dark-Matter model (ACDM model), also known as the standard model of cosmology, acquires its
name.

Another virtue of (4.33) is that it allows us to calculate the age of the universe #y by integrating
it from ¢t = 0, corresponding to x = 0 (since a = 0 at that time), to ¢ = fy, corresponding to
x=ap/ap=1

1 ! odx
0 Ho/o XA(x) (4.38)
Summary:

The critical density p. (4.11) is the value of the present energy density that yields a flat universe.
The relative size between p,. and the current total energy density pior 0 determines the curvature of
the present universe and whether it will expand forever or shrink into singularity after expanding
for a finite amount of time. The luminosity distance - redshift relation d(z), given in (4.37),
depends on the energy content of the universe, which is encapsulated by the function A(x). By
measuring d(z), we can probe the energy content of the universe.
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Lecture 5

I cosmological constant domination; radiation domination; chronology of cosmological epochs

Cosmological epochs

In the previous lecture, we found that the expansion of a universe that comprises of matter, radiation,
and cosmological constant (the ACDM model) is dictated by the non-linear equation (4.29), which
is difficult to solve in general. However, most of the time there is a single energy component that
dominates far above the others, greatly simplifying the dynamics. It is therefore instructive to
study how the universe evolves when it is dominated by each of the energy components of the
ACDM model, namely matter, radiation, and cosmological constant. Matter-dominated universe
was already discussed in Lecture 2, with the key results given in (2.32) and (2.33). Here, we will
study the other two and give an overview of the different cosmological epochs.

Cosmological constant dominated universe

Consider a cosmological constant dominated universe, with p =0, p =0, K =0, but A # 0. The
motivation for setting K = 0 is that we know that Q is negligible today. It would be even more
so in the past as it scales more slowly with respect to a than matter and radiation do, and it will
never dominate over the cosmological constant in the future as it decays rather than grows. The
Friedmann equations (2.11) and (2.12) in this case are

.2 A

% =3 (validonlyif A>0) (5.1)
. %)

22+ % _A=0 (5.2)
a a

The first equation can be written as

a A
/=2 5.3
p 3 (5.3)

The solution is simply

a = apexp <\/§t> (5.4)
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Taking the second derivative gives

A A
d:aogexp (\/;t> >0 (5.5

i.e. an accelerated expansion, in contrast to what we have in a matter dominated universe with the
solution a o< 12/ 3 found in (2.32), which gives d < 0. Note that since we have set K = 0, the above
analysis does not account for the possibility that A < 0. We can check that setting A < 01in (5.1)
would yield an imaginary Hubble parameter, which is absurd since the scale factor is a real number.

Radiation dominated universe

A universe dominated by radiation, with K = 0 and A = 0, obey the Friedmann equations

N\ 2
<a> — 87er1) (5.6)
a 3
i [a\?
2+ <> = —87Gp (5.7)
a a

Substituting the power-law ansatz a o< t* to both equations, we get

o 8rnG

T 68
2a(ax—1) o 871G

(ﬂ) 23 P (5-9)

where we have used the equation of state for radiation p = p/3 to arrive at the second equation.
Eliminating p gives an equation for o

a2o—1)=0 (5.10)

So, either ¢ = 0 or o¢ = 1/2. Since the former one corresponds to a static universe, only the latter
one is of interest. Hence, the solution is given by

A2
“—a <> (5.11)

fo
and so, according to (5.8), the energy density evolves as

3

= — 5.12
32nGt? (5.12)

o)
Summary and chronology

Below is a summary of the properties of the universe dominated by each of the energy components
of the ACDM model
e Matter domination (p = 0):

A\ 2/3
a=aqy <> (5.13)
Io
1 1 1
=—— .14
6nGt2  ad .19
2
H==— (5.15)
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Figure 5.1: Chronology of cosmological epochs in the ACDM model. As far as ACDM model is
concerned, the universe was dominated by radiation in its earliest stage. It then went through an
intermediary matter-domination stage before finally entering a never-ending cosmological-constant-
domination stage.

log a
A 0.5
z=0.
a ~ e\/gt
z = 3000 2
an~ 13 \
|
l
1 [
an~t2 | I
|
| l > logt
Py~ Pm  Pm ~ PA s 08
e Radiation domination (p = p/3):
A\ 12
a—a () (5.16)
|
3 1 1
_ e 5.17
32xGtr  a* (>-17)
1
_ 1 1
> (5.18)
e Cosmological constant domination (p = —p):
a = age™ (5.19)
_ A constant (5.20)
p= sgC _ constan .
H= M?Gp = constant (5.21)

Figure 5.1.3 shows rough time-evolution of the scale factor in the ACDM model. We are
currently at the epoch where p,, ~ pa > py. At sufficiently late times, all the densities except
the cosmological constant will have decayed away, leaving us with a universe dominated by
cosmological constant, which, as we just learned, corresponds to an exponential expansion a o<

exp ( /3\t> Going into the past, we have a growing energy densities of matter (p,, o< a~>) and

radiation (py o< a~*). Matter soon largely dominates over the cosmological constant, resulting in
a matter-dominated universe with a scale factor varying as a o r>/3. Going further into the past,
radiation eventually overtakes matter, leading to a radiation-domination epoch with a o< 11/2,

Summary:
As the universe expand, different energy components scale differently and, consequently, dom-
inate the universe at different times. In the ACDM model, the universe started in a radiation-
domination stage, then switched into an intermediary matter-domination stage, before finally
entering a never-ending cosmological-constant-domination stage.
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I review of equilibrium statistical physics; Big-bang theory and cosmic microwave background

Review of equilibrium statistical physics

With the knowledge we have so far, we can extrapolate back into the history of the universe until the
temperature becomes high enough that interactions allow significant interchanges among the energy
components of the universe. Probing back further would require assumptions about the particle
interactions and the nature of physical laws themselves. Nevertheless, this apparent drawback, when
taken to the extremity, turns into an advantage. As particles interact more strongly and rapidly, they
are more likely to achieve thermal equilibrium. Thanks to that, we can use the powerful concept of
thermal equilibrium, which allows us to describe a huge system, i.e. the universe, with only a few
thermodynamical parameters such as temperature and chemical potentials. It is remarkable how
much further we can go when armed with statistical mechanics.

A system in thermal equilibrium can be characterized by a density matrix. In quantum physics,
the density matrix is given by

A

L1 £
p= Zexp <_ T +.ule> (5-22)

where Z, H, T, u;, and Q; are respectively the partition function, Hamiltonian, temperature,
chemical potentials, and conserved numbers (e.g. baryon number, lepton number) of the system.
The density matrix satisfies Tr p = 1 and conserved numbers satisfy [Q;, A] = 0, so that they are
conserved —?%Qi =[A, Ql] = (. Classically, the density matrix is given by

1 H(p,
p = Zexp [ (; 9 +MiQi(P,CI)] (5.23)
with {H,0;} = 0.

In many cases, the full-blown treatment using the density matrix is not needed. A system can
often be accurately described as a collection of non-interacting particles. The number density N
and energy density p of free particles in thermal equilibrium are given by

N= (Zi)3/d3pn(p) (5.24)
p= (2‘;)3 / d*pE (p)n(p) (5.25)

where g is the number of degrees of freedom, E(p) is the energy of a particle with momentum p,
and n(p) is the distribution function in thermal equilibrium, which is given by

1
ngp(p) = —————— (5.26)
exp(EB-4) ¥ 1

For fermions we pick the positive sign and for bosons we pick the negative sign. In the relativistic
limit T >> m, the integrals in (5.24) and (5.25) can be calculated explicitly. The results are

2

T gT*  boson
p=13% (5.27)
330 gT* fermion

¢B3)

—ng3 boson
N=<¢,% (5.28)
iig)gT3 fermion
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where §(x) is the Riemann zeta function. If both bosons and fermions are present, the total energy
density can be written compactly as

2

T 4
= —gT 5.29
P =358 (5.29)
where
7
8= ) +3 ) (5.30)
bosons fermions

is the effective number of relativistic degrees of freedom. The sums above are taken over species
that are relativistic at temperature 7. The entropy per unit volume s, can be expressed in terms of
the distribution function as

d’p
SB/F = —./ ) [nB/F(p) logngp(p) F (1+ng/r(p))log (1 i"lB/F(P))] (5.3D

In the relativistic limit, ng/r << 1 and we get a common formula

3
s=— [ Gen(e) (1~ logn(p) (532)

Alternatively, we can obtain it via the following thermodynamic argument. In the absence of
chemical potential, we have

U=TS—-pV (5.33)
Taking the volume V to be a comoving volume, we can define the entropy density as

aS p+p
=" _rF 5.34
CovT T (534)
Using (5.27) and the equation of state for radiation p = p /3, we can calculate the entropy density s
in the relativistic limit
2m?
=gl 5.35
ST (5.35)
In the non-relativistic limit, on the other hand, the number density n, energy density p, and
pressure p are given by

mT\ =
p = gmN (5.37)
b= eNT < p (5.38)

for both bosons and fermions.

Big-Bang theory and the cosmic microwave background

In the ACDM model, the universe at its earliest stage is dominated by radiation. According to
(5.12), the energy density in a radiation dominated universe becomes singular as t — 0. What
happens at the singularity is not yet answerable by physics. The known laws of physics are expected
to break down at least around the Planck scale E ~ My = 1.22 X 10'° GeV; to describe physics
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beyond the Planck scale, a theory of quantum gravity is needed. Despite that, we can at least deduce
that close to the singularity, but before the known laws of physics break down, the universe was
filled with densely-packed and rapidly-interacting particles, which are presumably in a thermal
equilibrium with a very high temperature. This suggests that the universe began in an extremely
hot and dense state that one could describe as a "bang," hence the name Big-Bang theory.

One prediction that comes out of this reasoning is that of the cosmic microwave background
(CMB), which is commonly attributed to George Gamow. The Big-Bang theory says that the
universe was initially hot and dense, full of photons, electrons, ions, etc. It then cools down as
it expands. At temperatures of around the Rydberg energy 13.6 eV, i.e. typical binding energy
of atoms, ions and electrons start to bind together to form atoms, and consequently the universe
became transparent to radiation. Following this reasoning, we expect the present universe to be
populated by relic photons that were once in thermal equilibrium, but have decoupled, lingering
around freely as a background, the CMB, that we can observe. In 1965, the CMB was discovered
accidentally by Penzias and Wilson at temperature of around 4 K (more precise measurements
narrowed it down to around 2.73 K).

Let us now try to estimate the current CMB temperature with the tools we have in our hands.
(5.29) allows us to express the Hubble parameter in the radiation-domination epoch as

871G 12 2
H=|——- ra - 539
< 3 P d> Mo (5.39)
where we have defined
1/2
My = ( 4315 ) / - 7Mp‘l : (5.40)
Am3g.G 1.66g.

Combining (5.18) and (5.39), we obtain a relation between the time ¢ and temperature T

-2
) (5.41)

This is one of the most useful equations of the Big-Bang theory. The temperature of the CMB
photons can be estimated (very roughly) by plugging the age of the universe into ¢. Plugging
t ~ 10 billion years gives T ~ 1 meV ~ 10K, which is roughly in accordance with the measured
value (2.73 K).

Another prediction of the big bang theory is about the abundances of light elements in the
universe, such as Li’, D, He?, He*, etc which cannot be explained by thermodynamic cooking
in stars alone. A process known as the Big Bang Nucleosynthesis (BBN) could explain their
abundances quite accurately. We will learn about BBN later in the course.

_1/2M,
t:—:0.301g*1/2T—pl~15x (1MeV

Aside: ¢* and the Standard Model

Let us count the number of degrees of freedom in the standard model.

Scalar sector

Higgs field A: one degree of freedom. Goldstone bosons {6y, 60,, 03} (which disappear when the W
and Z bosons become massive): three times one degree of freedom.

Fermion sector

The following quarks carry one fermionic degree of freedom each:

{ur,ug,dr,dr,cr,Cr,SL,SR:tL,1R, b1, DR} (5.42)
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In the Standard Model, all these quarks come in three colours. Also, next to every quark there exists
the corresponding antiquark. So we end up with 12-3-2 =72 fermionic degrees of freedom at the
quark side.

Next, there are the leptons. The following leptons carry one fermionic degree of freedom each:

{er,er, Vi, i, UR, Vi + TL, TRy VE }- (5.43)

(In the Standard Model, there are no righthanded neutrinos.) Leptons do not feel color (SU(3))
charge. There is an antilepton next to every lepton though. So we count 9 -2 = 18 fermionic degrees
of freedom at the lepton side.

Vector sector

Massless vectors carry two degrees of freedom, for their two polarizations. Massive vectors
have three polarizations, so three degrees of freedom. After electroweak symmetry breaking, the
Standard Model contains nine massless vector (the photon plus eight gluons) and three massive
vectors ({W+,W—,Z%)).

Total
oM = Y g.(boson) + . Y g.(fermion)
' bosons 8 fermions
7
= 1+9-2+3-3+§(72+18)
= 106.75. (5.44)
Summary:

The big bang theory is based on the simple deduction that since the universe is expanding (or
shrinking as we go backwards in time) it must be very dense and hot in the past. One of the
predictions of the big bang theory is the presence of the cosmic microwave background (CMB),
freely-lingering relic photons that were once in thermal equilibrium but decoupled at some
point.
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Lecture 6

I kinetic equations; relaxation-time approximation; freeze in and freeze out.

Particle kinetics in an expanding universe

To a good approximation, we can describe the universe as a homogeneous and isotropic gas
of particles with a distribution function n(p,x,t) = n(|p|,¢). In the absence of inter-particle
interactions, the momentum simply scales as p o< a~! as the universe expands (this was derived in
the case of a photon in lecture 3), and so the distribution function evolves as

a
n(p,t) = n(po,fo) = no (Pao) (6.1)
where ny is the distribution function at ¢ = #y. In words, the distribution function is unchanged apart
from a rescaling in the momentum to account for the fact that particles whose momentum is p at an
arbitrary time # have momentum py = pa/ao at time ¢ = ty. The equation describing the evolution
of n, called kinetic equation, can be derived by relating the partial derivative

dn _ dngdpy _ dno  a(t)
ot Jpo 9t dpoFaln)

(6.2)

where pg = pa/ap and a partial derivative with respect to a vector V is defined as d/dV =
d/9V &+ 9 /dVy)+ d/IV.Z, with the partial derivative

8n_8n0@_8noﬁ

0 _ 770 - (6.3)
dp dpo dp  Ipoao

Substituting the dng/dpy in (6.3) into the one in (6.2), gives us the kinetic equation
on on
— —Hp—=0 6.4
BP p op (6.4)

A similar equation for the number density N = [ %n(p) can be obtained by taking the integral

il % of the above equation

3
dN_/deBN_O 65)

dar ) @npPop T
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Figure 6.1: Schematic of a 2 <+ 2 collision.
p 42

q1 q3

The integral term can be simplified via integration by parts for each of the momentum component,
e.g. [d®ppdn/dp, = — [d’pdp./dpmn = —N, where we have used n(p) — 0 for p — 0. Doing
s0, yields

dN

o +3HN =0 (6.6)

It is easy to see that the solution corresponds to the scaling law N o< a3,

The kinetic equation (6.4) was derived by neglecting the interaction among particles. To account
for collisions, we can simply add a collision integral term I, so that it becomes

dan on
5 ~HPy, =k (6.7)

which is known as the Boltzmann equation. For example, to account for 2 <> 2 scatterings

(Figure. 6.1), we include

_ 1/ g dPq Dy
2p0 ) (2m)324) (27)3245 (27)324)

x{n(p)n(q1)[1£n(g2)][1 £n(g3)] —n(g3)n(g2)[1 £n(p)][1 £n(q)]} (6.8)

|2

2n)*8* (p+q1 — g2 — q3) M|

Icol =

The delta function is there to ensure 4-momentum conservation, |M;|* is the matrix element of
the process, and the first and second term in the curly bracket accounts for the phase space of the
initial and final states respectively with Bose-enhancements (positive signs) or Fermi-suppressions
(negative signs) included. In general, we could have other types of collisions, such as 1 <> 2
(e.g. WHeutvy), 13 (g ut < etviy), 24 3 (eg efe <> 3y), etc, and the I is
given by the sum of the contribution of each collision-type. The Boltzmann equation (6.7) is an
integro-differential equation, which is very difficult to solve in general. In many cases of interest,
however, the universe is close to being in thermal equilibrium, and an approximation dubbed the
relaxation-time approximation can be used. This approximation is motivated by the expectation that
the effect of particle collisions, which manifests itself through the collision term /.oy, is driving the
system towards thermal equilibrium, whereupon I.,; = 0. Inspired by that, in the relaxation-time
approximation we assume that o) o< —(n — neq) and write the Boltzmann equation as

on on
H i

i pa—p = —I'(n—neq) (6.9)

where I, the rate of reaction, is given by the inverse of the mean free time 7 of the particle collisions

r=7t"'= (<;VL>>_1:<GNV> (6.10)
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where v is the relative velocity of the colliding particles, A = (on)~! is the mean free-path of
particles with cross-section o. Notice that, in the absence of expansion (6.9) correctly predicts that
n tends to relax to 7eq.

The Boltzmann equation for the number density # in the relaxation-time approximation can

be found by taking the integral [ (‘21;’)73 of (6.9). The left hand side was found in (6.6) and the right

hand side is simply given by —I'(N — Neq). Putting them together, we have

% +3HN = —T(N — Neg) 6.11)

Freeze in and freeze out

We found in (6.11) that the evolution of the number density N of particles in an expanding universe
is driven by two effects: the diluting effect of the expansion, whose strength is characterized
by the Hubble parameter H, and the thermalizing effect of particle collisions, whose strength is
characterized by the reaction rate I'. The temperature 7, at which

I(T.) = H(T,) (6.12)

marks the transition between two qualitatively different behaviours of the number density N. In one
extreme I'(7T") > H(T), the expansion of the universe is negligible and thermal equilibrium can be
achieved without hurdle. In the other extreme I'(7') < H(T), interactions happen so rarely that the
number of particles in a comoving volume essentially freezes and hence the number density simply
scales as N o< a*. These behaviours are summarized below

A Neg(T), I(T) > H(T)

a(T,
(2
In the expression for I'(T') < H(T), we have picked the point 7 = 7, as the scaling reference
for N. Since at that point I'(7..) = H(T.), and not I'(T,) < H(T.), the expression is only correct
marginally, up to an O(1) factor. T, is sometimes called freeze-in temperature and sometimes
called freeze-out temperature, depending on how the ratio I'’/H changes with time. Freeze in
happens when the system starts in the out-of-equilibrium regime, I'(T)/H(T) < 1, and moves
towards the I'(7') /H(T) > 1 regime, getting thermalized in the process. Freeze out is the opposite
process occurring when an initially thermalized system in the I'(T)/H(T) > 1 regime moves
towards the I'(T) /H(T) < 1 regime, getting driven out of equilibrium in the process. We will see
these processes more explicitly when we study the example below. Before going any further, we
would like to point out two caveats of (6.12) and (6.13). First, I'(T') here refers to only reactions /
collisions that change the number of particles under consideration. Second, (6.13) is not applicable
for unstable, decaying particles.

To get a grasp of the concept of freeze in and freeze out, let us take a look at a gas of electron
and positron, interacting mainly via the process ete™ < yy', in the radiation domination epoch.
The cross section of the process can be calculated in the center of mass frame to be

N (6.13)

3
) , I(T)< H(T)

—Try, vl

N\ m L[ 4B (6.14)
ﬁﬂl’e logmig—l y vl

IThere are of course other processes such as e~y <> e~ 7, eT 74 ey, e "¢t < e”e™, etc, but those processes merely
interchange the momenta of the particles involved without changing their particle numbers and therefore irrelevant as far
as freeze-in or freeze-out processes are concerned.



6.2 Freeze in and freeze out 39

Figure 6.2: Temperature dependence of the rate of interaction I" (left) and its relative size compared
to the Hubble parameter I'/H (right) for electron-positron-photon system in the radiation domination
epoch.
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where r, = at/m, with a = 1/137 being the fine-structure constant and E is the total energy of the
colliding particles in the center of mass frame. The derivation of (6.14) is beyond the scope of these
lectures. Nevertheless, one could at least guess its & o< E~2 dependence, which is valid in both
non-relativistic and relativistic case, by dimensional considerations. Dismissing the logarithmic
term, which is subleading and for simplicity, the rate of reaction I" for the cross-section (6.14) can
be computed as

3/2
% <meT / em/T T <m,
= (cNv)~{ 2 21 (6.15)
218(03)
na-—=—+T, T 2 m,
6 w2 ~

where we have used (5.36) in the T < m, case, and (5.28) and E ~ 3T in the T 2 m, case. The
qualitative behaviour of I'(T') is depicted in Figure 6.2; it is large at high 7' and small at low T,
which is in accordance with our intuition: higher temperature implies higher thermal equilibrium
density, which, in turn, implies that the particles interact more frequently, hence the higher rate I'.
In the radiation epoch, the Hubble parameter H(7T') is given by (5.39), so

F(T) 7”3 ﬂ 7mL/T%7 TSm,
D e ©.16
2 0
6 L1 T2 me

As can be seen in Figure 6.2, I'(T')/H(T) hits 1 twice, at T = T, (freeze in) and T = T, (freeze
out). These crossing points can be found by equating the above expression to 1. The freeze-in
temperature 7., which lies in the T 2> m, regime, is easier to calculate

Taw=0

2C6(73T)M0 ~ 10" Gev (6.17)
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Figure 6.3: The behaviour of N, /Ny during the freeze-in and freeze-out process. The three different
curves on the right part of the graph illustrate the fact that the final, freeze-out value of N, /N, does

not depend on the initial value of N, /Ny before freeze-in.
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1
3 logx —x~ —39 (6.18)

From the second to third line, x = m, /T, was introduced; from the third to fourth line r, = o /m,
was used; in the last step, we plugged in the numerical values of the quantities. The last equation
can be solved iteratively or perturbatively, treating the log term as a small correction
Me — ¢ 739+ 2 10g39 ~ 43 (6.19)
T, 2
After the freeze out, the comoving number density freezes at around its value at 7 = T,.

In this example, the photons are always in thermal equilibrium and consequently its number
density simply scales as Ny o< a3, This means that we can use the ratio N, /Ny as a representative
of the comoving number density of the electrons. The behaviour of N, /N, during the freeze in and
freeze out is shown in Figure. 6.3. As shown in the figure, after freeze out (T < T.) N, /Ny freezes
atits value at 7T = T

N,
Ny

Ne

43\ 2
o Del ( > e BT 107 (6.20)
Ny

2 Z03)

Note that the process of freeze in, which is nothing but thermalization, erases any information about
the initial conditions of electrons in the universe. Consequently, the freeze-out density of N, /N,
does not depend on the initial state of the electrons at T > T,.

T<T, T=T,

Summary:
The universe can be approximated as a gas of particles whose distribution function (and number
density) evolves according to the kinetic equation / Boltzmann equation (6.7). In the relaxation-
time approximation, the Boltzmann equation for the number density simplifies to (6.11). The
behaviour of the number density is qualitatively different depending on the relative size between
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the interaction rate I' and the Hubble parameter H. If I' > H, the particles are in a thermal
equilibrium. If I" < H, the number density N simply scales as N o< a—>. When I' ~ H, there is a
transition from one behaviour to the other. If the transition goes from I' << H (out of thermal
equilibrium) to I' > H (in thermal equilibrium), the process is called freeze in and if it is the
other way around it is called freeze out.
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Lecture 7

I decoupling of photons; entropy conservation;

Decoupling of photons

At some temperature far above 13.6 eV, the Rydberg energy (Hydrogen’s binding energy), the
universe was mainly composed of tightly-coupled p, e, 7, and H plasma soup. At this stage, due to
the presence of charged particles, the mean free path of photons was much shorter than the Hubble
radius. At temperatures far below the Rydberg energy, it became thermodynamically favourable for
the e~ ’s and p’s to combine into neutral atoms. As a result, the mean free path of photons became
much larger than the Hubble radius and the photons essentially decoupled from the rest of the soup;
these decoupled photons are the ones that we observe today as the CMB. Here, we are interested
in studying the in-between process: how does the plasma soup behave as the temperature of the
universe crosses the Rydberg energy?

Before the decoupling of photons, the main reaction holding photons in thermal equilibrium
is e~ +p <> H+ 7. When the species involved are in thermal equilibrium, they obey the Saha’s
equation

32
Lenp — (meT> e_I/T (71)
Ny 2n

where I = mj, +m, —my = 13.6 eV = 1.58 x 10° K is the Rydberg energy.

Remark: derivation of the Saha’s equation (7.1).

The number density of photons in thermal equilibrium is given by (5.28). Since we are interested
in studying a low-energy process occurring at 7 ~ 13.6 eV, the species other than photon can
be assumed to be non-relativistic, with their number densities given by (5.36)

eT 3/2 e Me
ne =g, (";n ) exp [—(’"T“)] (72)
T\ 3/2 _
np=gp (rr;,;t) exp [—(mpT“p)} (7.3)

32 B
1 = gn (’"HET> exp {_(mH“H)} (7.4)
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where g, = g, =2 and gy = 2 X 2 = 4. Noting that t, = 0, when the plasma is in a chemical
equlibrium the chemical potentials satisfy

Hp + He = p (7.5)

The desired Saha’s equation (7.1) is obtained by multiplying (7.2) with (7.3) and dividing the
result with (7.4).

Assuming that the universe was neutral as a whole, we can set n, = n, so that the Saha’s equation
reduces to

T 3/4
ne%n}{/z (m ) e T (7.6)

21

Big Bang Nucleosynthesis considerations, which will be studied later in the lectures, constraint the
value of the baryon to entropy (photon) ratio quite precisely to around 1 = ng/ny = 6.15 x 10719,
Thus, assuming that Hydrogen makes up most of the baryon density, we have

¢(3)

3
Dar (1.7)

ng~ng="MnNny="nm

where (5.28) was used in the last equality. The reaction rate for the process e~ +p <> H+ 7y is given
by

I = (Oyenev) + (Oypnpv) (7.8)
with
87 8o’
Op=Z3Te="3 5 (7.9)
8T 8rwa?

which, again, can be deduced by dimensional arguments. In (7.8), we have neglected the contribu-
tion from 7-H scattering, which is presumably small relative to the others as Hydrogen is neutral.
Owing to m, < m,, which implies that 6y, > 0y, and the neutrality of the universe n, = n, we
can neglect the photon-proton contribution to the reaction rate, leaving us with

2 3/4
r:<ayenev>:83”nf; nC(3)2T3<m€T> e (7.11)

where we have used (7.6), (7.7), (7.9), and v ~ 1 (since photons are involved) in arriving at the last
expression. As the temperature decrease due to the expansion, I'(7') gets increasingly Boltzmann
suppressed. When I'(T) = H(T), the plasma looks essentially transparent to the photons and
photon decoupling occurs. Equating the reaction rate above with the Hubble parameter (5.39) gives

T9/4 ; T2
B——e 1

_ (7.12)
i/ Mo

where we have encapsulated some of the constants in

) 1/2 3/4
p= "¢ n1/2<2C(3)> (1> (7.13)

3 2 2
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After defining x = I /2T, (7.12) simplifies to

N B e

- s e _ —12
e S VTV 1.24 x 10 (7.14)

which can be solved numerically to give
x=26.6 (7.15)

or

Tyec = \/ OyeneMp = 3000 K = 0.25 eV (7.16)

Unsurprisingly, Ty is of the order of the Rydberg energy, where we would expect the Boltzmann
suppression to kick-in. The decoupling temperature is sometimes referred to as the recombination
temperature, reflecting the fact that protons and electrons combine together to form neutral atoms
at that temperature. It corresponds to the redshift

—1=1100 T7.17)

Top = 2.73 K is the current CMB temperature. We have made various assumptions in deriving
this result, including but not limited to not accounting for the Hydrogen-photon cross-section and
the full spectrum of bound states other than the ground state. However, the result turns out to be
pretty accurate. Incidentally, zgec happens to have the same order of magnitude as the redshift of
matter-radiation equality, zeq = 3000. Whether this is a pure coincidence or whether there exists
some explanation connecting the two remains to be investigated.

Summary:
The photons that we see today as the CMB decoupled from the rest of the universe at the
temperature of Ty = 0.25 eV corresponding to the redshift zgec ~ 1100.
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Lecture 8

neutrino-decoupling temperature; present temperature of relic neutrinos; cosmological con-
straints on neutrino masses

Freeze-out and present temperature of neutrinos

Neutrinos are weakly interacting particles which come in three flavours: electron neutrino V,, muon
neutrino v, and tau neutrino v;. Each neutrino type carries a lepton number L = 1 and a conserved
number of value 1 associated with its type, e.g. a muon neutrino has muon number n,;, = 1 and so
forth. This ensures that different neutrino types do not mix in interactions (but they may mix when
they propagate). Neutrinos most probably have masses, though they must be very small (~ eV
or less). One of the strongest bounds on the neutrino masses comes from cosmology. Later in
the lectures, we will derive this cosmological bound. Neutrinos are spin-1/2 particles, but unlike,
say, electron which has two degrees of freedom (corresponding to left-handed and right-handed
helicity), they have only a single degree of freedom, g = 1. The reason being that all neutrinos that
we have observed so far have left-handed helicity, i.e. their spins are antiparallel to their momentum
(similarly, the antineutrinos that we have observed are all right-handed). The possibility that there
exist right-handed neutrinos is not entirely ruled out. However, if they do exist, they must interact
extremely weakly with the particles that we have observed.

Apart from the CMB photons, the present universe is also filled with relic neutrinos that were
once in thermal equilibrium but decoupled at some point. Let us estimate the present temperature
of these relic neutrinos. We will see that it turns out to be different from that of the CMB. For
the current purpose, we will assume that the neutrinos are massless. Before their decoupling,
the neutrinos were held in thermal equilibrium mainly by the charged-current and neutral-current
interactions, both of which are depicted in Figure 8.1. The cross-section for these interactions are

Figure 8.1: Charged-current (left) and neutral-current (right) interactions involving neutrinos.
I/:LL 67 Ve €+

W= Z
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roughly
(owv) ~ GEE? (8.1)

with Gr = g% /M3, ~ 107> GeV 2. For E ~ 1 MeV, we have oy ~ 107'® GeV~2, which is tiny
in comparison to typical cross section for electromagnetic interactions at the same energy Ggm ~
a’/E* ~ 107 GeV 2. Neutrino decoupling happens when the rate of reaction

Ty = (owmv) ~ (GET?) (T°) (1) = G+ T° (8.2)
is equal to the Hubble parameter (5.39). This happens at

)_1/3

T, ~ (GFMy ~2MeV (8.3)

which is incidentally pretty close to the correct value we would obtain if the O(1) factors are taken
into account. We found that 7, is much larger than the electron mass but much smaller than the
masses of all particles other than photons and neutrinos. It means that at 7 = T, the universe is
populated by a thermal equilibrium mixture of e*, ™, ¥, Ve, Vi, and v;.

Boltzmann H-theorem

Now, before going on and estimating the temperature of relic neutrinos, we want to consider in more
details the behaviour of entropy in an expanding universe. Without expansion, the total entropy is
conserve. As long as we have a "close-too-adiabatic" expansion, we would expect the entropy to be
closed to conserved. And this is actually the case, as we will see in this section and the next. In
this section, we will look at Boltzmann H-theorem, which shows that the entropy defined from the
number density cannot decrease over time. We begin from the definition of the entropy density s in
terms of the occupation number n(p):

3
5= — / (gﬂl)’g n(p)log (n(p)/e). 8.4)

(Check dimensions: at the left hand side we have one over a volume, so mass dimension 3, at the
right hand side the only dimensionful quantity is d> p, so also mass dimension 3.)
In thermal equilibrium we have (using the non-relativistic distribution for simplicity)

nip)=e 7, (8.5)

but the relation in eq. 8.4 is also valid out of thermal equilibrium. Now, the Boltzmann theorem
states that the dynamics of the macroscopic system is such that % > 0.
Boltzmann’s proof comes from his kinetic equation. Take a simple reaction (elastic scattering)

P11+ p2 <> p3+ pa, (8.6)

and ignore (just as in Boltzmann’s time) all further subtleties like Fermi suppression, Bose en-
hancement, relativistic effects and the expansion of the universe. (Note that for fixed volumes, s is
proportional to S.)

For the kinetic equation we then have (Zp = dp_)

dn(p)
dt

= Ion(p1)

B /@pz@p3@p4 | i) > 8D (p1+ pa— p3 — pa) x [n(p3)n(ps) —n(p1)n(p2)].
(8.7)
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The intuitive understanding here is that when the densities of particles 3 and 4 are higher than those
of particles 1 and 2 (“when the equilibrium in eq. 8.6 is shifted to the right"), the system responds

by creating more particles 1 and 2, so then % is positive.

For the change of entropy density contained in this system we now have

B 3
R =)

- - / Dprleon(p1) log (n(p1) /) — / Dpii(py)
= — [ Zpikapi)tog (n(pr) o), 58

where we have dropped the second term because is is the time derivative of the total number of
particles [ Dpin(p;), which is conserved.
Now, replacing log (n(p1)/e) by a general function ®(p;) for the moment, we have

[ = /.@pllcon(pl)q’(m)

- /9P19P29P39P4 | Mri* 8 (p1+ pa— p3 — pa) x [n(p3)n(ps) — n(p1)n(p2)) @(p1).
(8.9)

Now we just change notation. When we set p; <> p» and p3 <> p4 (all momenta are integrated over,
so we are free to exchange p;’s as we want) we get

1= [ 29123 Dl s> 89 (p1+ p2 = p3 = pa) X n(pa)n(ps) = (1 )n(p2)] ()
(8.10)

Interchanging p; <+ p3 and ps <+ p4 in eq. 8.9 gives an additional minus sign:

I=— / Dp1D 2D p3 D pa | Mii* 8D (p1 + p2 — p3 — pa) x [n(p3)n(pa) — n(p1)n(p2)]| @(p3),
(8.11)

and the same happens when we interchange p; <+ p4 and p; <> p3:

I=— / D\ D2 D3 D ps| M 8D (p1 + pr — p3 — ps) X [n(p3)n(ps) — n(p1)n(p2)] D(pa).
(8.12)

Summing these four equations clearly gives

I = /-@m@pz@m@ml//lfﬁilzﬁ‘”(p1+p2—p3—p4)><[n(pa)n(m)—n(pl)n(pz)]

X [®(p1) +P(p2) — P(p3) — P(p4)]- (8.13)
Reinserting ®(p) = logn(p) and inserting eq. 8.13 into eq. 8.8 then gives
ds
il —/9P19P2@P39p4 | M 8% (p1 + pa — p3 — pa) x [n(p3)n(ps) — n(p1)n(p2)]

x [logn(p1) +logn(pz) —logn(ps) —logn(pa)]

= —/919191?291739]74!///f—>i|25(4) (P1+p2—p3—pa) x [n(p3)n(ps) —n(p1)n(p2)

/

Vv Vv
b a

n(p1)n(p2)
x log <n(p3)n(p4)>. (8.14)
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Boltzmann arrives at his result by recognizing that the dynamical part of this last integral can be
written as
ds

(b—a)-logggo = 2>0 (8.15)

Estimate of entropy increase

Now, what kind of entropy increase can we expect? Let’s think about the entropy of the universe,
that for now we take to be closed (i.e., finite) for simplicity. When the expansion is not too fast, we
can try to develop % in powers of H:

ds

E:(CO+01H+C2H2+---)Q3- (8.16)
(Here we have used that we expect the entropy to scale proportional to a>, § = s-a>.) Now, we
have to take co = 0, as in thermal equilibrium we have I.o,; = 0, which gives % =0. Alsoc; =0,
because when we go from expansion to contraction, the sign of H changes, and we don’t want the
entropy to decrease. So we conclude that in first approximation

o= e Ha’. (8.17)
Note that since entropy is dimensionless, the left hand side of this equation has mass dimension one.
To have the same dimensionality on the right hand side, it is clear that ¢, will have mass dimension
plus two (H has dimension one over time, which means mass dimension one, the scale factor a has
dimension length which means mass dimension minus one).

Our next challenge is to estimate ¢, again from using eq. 8.14. We consider the plasma
consisting of electrons, positrons and photons!, and identify three processes:

ete” & vy

ey & ety

ey < ey (8.18)
For simplicity, we will again restrict ourselves to the non-relativistic case, even-though the result
generalizes to the relativistic case. Introducing the notation ny = n,+(p), n— =n,-(p) and ny =

ny(p), we can write three collision integrals for n., n_ and ny and compute the total entropy density
as

d*p
o= [ 7 tog /04 Tog o /e +mlog 1] (5.19)

Clearly, the entropy change will be given by eq. 8.14, but with the last factors given by

[ny(p3)ny(pa) —ns(p1)n—(p2)] -log [W; for ete” < yy
[”+(P3)”Y(P4) - ”+(P1)”y(P2)} -log [W: for ety ety
[n—(p3)ny(ps) —n_(p1)ny(p2)] -log {m for ey ey  (8.20)

1Our approach here is completely general and can handle all types of particles that are present, but for simplicity we
focus on the three most abundant particles in the plasma after neutrino decoupling: ¢~, e* and .
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Close to thermal equilibrium, we have

H H
nA Neg <l+ﬁ<r>> = (n,-ni—n,-ni)':ngq.F
- log <” ”l> ~ 8.21)
n; n; r

Therefore, eq. 8.14 will give something like (note that now we have the full entropy at the left hand
side, S o< 5-a’(t), with a(t) the (slowly changing) scale factor)

ds H?
7 = /91?1 DP2Pp3 D pa| Miil” 8 (p1+ pa— p3 — pa) x nly - ™ @
HZ
~ ?I’leq <8 a3
1dS H?
sa S T (822

(Check dimensions: the left hand side goes as one over time, so mass dimension 1. And the same
for the right hand side, since both I" and H have mass dimension 1, while the occupation number
is dimensionless. Actually, we have inserted s o< 73 to get the dimensions right. The qualitative
conclusions will not change if instead we use other quantities, like m, or T, to get the dimensions
right.) As anticipated we have found something proportional to H?.

Now we use that

['=0nm =~ oneg-Tv (8.23)

(note that the first n is a particle density (mass dimension three), while neq is (the dominant
contribution to) the occupation number (dimensionless), which we integrate over d>p to get a
particle density). We arrive at

1dS H?
s = o7 (8.24)

Now we can compute how much the entropy changes between the moment “in" (decoupling of
neutrinos, T ~ 2 MeV) and “out" (freeze out of eTe™ > yy, T ~ Z¢, see eq. 6.19 of the lecture

~ 76,
notes). Using that we have
1 T?
Ho —~T'=— (8.25)
t My
we can relate time ¢ to temperature 7'
My M
t= 72 = dt = _FdT’ (8.26)
with My = ﬁ. Then we can compute the entropy change as
.66g.
Tout f]2
AlogS o< / dt —
8 Jtin (o) T3
Tt M, T4/ M?
« _ / Mo /Mg
7, T3 oT3
1 (T dT
— (8.27)

MO T()llt T 2 G .
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. . 2 .
Estimating ¢ o« %; gives

m2
1 m2 (Ta dT
Alog§ «~ My o - 72
oo Lmg 1
N VOE.Tout
1 om? 40
Mo o m,
ome 40
ST
. 5-100% 40
T 10 104
~ 10716, (8.28)

Even if this was a rough estimate, the conclusion is clear: we can, with high accuracy, assume
that the entropy (or the entropy density times R>) is conserved in this period.

Temperature of Relic Neutrinos

Now let us turn back to physical observables. Not long after the neutrino decoupling, the temperature
of the universe goes below electron mass due to the expansion, and e*’s and e~ ’s annihilate into
photons. By the time 7' < m,, the remaining particles are ¥, V,, vy, and v;. The e*-¢~ annihilation
process increases the temperature of photons but not that of neutrinos, thus creating a difference
between the two temperatures. Let us work out explicitly how much they differ. Suppose that at
a time long before the annihilations, when the scale factor is aj,, both the photons and neutrinos
have a temperature 7;,. And, long after the annihilations, when the scale factor is agy, the
temperature of photons and neutrinos are 7y and T, respectively. Assuming that the universe
expands adiabatically, H < I, we can make use of the conservation of entropy to determine the
change in the photon temperature. During the e*-¢~ annihilation, the entropy of e™’s and e s,
which possess 7/8 x (2+2) degrees of freedom, is transferred to photons, which possess 2 degrees
of freedom. Therefore, the entropy conservation for e, e™, and Y reads

[seJr +S67 +Sy] ‘a:am ai3n = Sy‘a:aout agut

7
[2 +5 2+ 2)} Ty, = 2T, ay, (8.29)

Neutrinos, on the other hand, are unaffected by the annihilations, so their temperature simply
rescales as

Tv,inain = Tv,outaout (8.30)

Combining (8.29) and (8.30), we find the present temperature of relic neutrinos to be

4\ 13
Tyo = <11> T,0=2K (8.31)

where T, o = 2.73 K.

Independently of whether the neutrinos are relativistic or non-relativistic today, we can estimate
its present number density. The electron mass, and therefore the temperature at which the electrons
and positrons annihilated, is much larger than the known upper bounds of the neutrino masses. So,
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the neutrinos can be assumed to be relativistic close to the time of electron-positron annihilations.
We can thus relate the number density of neutrinos with that of photons at a time not long after the
annihilations as follows

3g,T3 3/4 (T,\° 3
_3 _ Ly, -3 32
o T 2 \,) T 2" (8-32)

Since both the number density of neutrino and photon scale in the same way as n o< a—>, the above
relation is preserved until today.

3
nyo= E”y,o (8.33)

Cosmological constraints on neutrino masses

The main constraint on the neutrino masses from cosmology comes from the requirement that the
total energy density of the neutrinos is smaller than the observed energy density of dark matter
(neutrinos become non-relativistic recently). The energy density of dark matter is

PDM = Pc-QDM (8.34)

where Qp) is the dark matter abundance and for the Hubble constant Hy = 1004 (km/s)/Mpc the
critical density p, is
L

Pe=g & = 1.88x10"Phgem™ = 10*A’eVem ™ (8.35)

The total energy density of neutrinos today is given by

3
Pvo = vanv,o = va X (22”7’0> ~ va x (54 cm™?) (8.36)

In the last step, (8.31) and the observed number density of CMB photons ny = 400 cm > was used.
Requiring that 2py o < ppwm (the factor of 2 accounts for antineutrinos), we obtain a bound on the
sum of the neutrino masses

Y my < 100R*Qpy eV ~ 10 eV (8.37)

where we have used 4 = 0.7 and Qpy ~ 0.2. This bound is more stringent than the direct constraints
from particle physics:

<0.17MeV, m,_ < 18.2MeV (8.38)

~ ~

my, S3eV, my,

Summary:
Shortly after the neutrino decoupling, which occurs at T ~ 2 MeV, electrons and positrons in
the universe annihilate to produce photons. As a result, the temperature of photons is increased
relative to that of neutrinos by a factor of (11/ 4)1/3. The requirement that the total energy
density of the neutrinos is less that the observed dark matter energy density gives an upper
bound (8.37) on the sum of masses of the neutrinos.
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Roughly speaking, the baryonic matter sector of the current universe consists of

e 75% hydrogen

e 25% helium

e others
in terms of mass. Thermodynamic cooking in stars is far from sufficient to explain the observed
amount of Helium and other light elements in the universe, suggesting that a cosmological expla-
nation is needed. Big bang nucleosynthesis (BBN) is our best cosmological explanation for these
abundances. With only one parameter as an input, namely the baryon-to-photon ratio 1, it explains
the observed abundances to high degrees of accuracy.

Neutron-proton ratio and the BBN temperature

The binding energy B of a nucleus with atomic number A (the number of nucleons comprising the
nucleus), charge Z (the number of protons in it), and mass m is given by

B=Zmy+ (A—Z)m, —m 9.1)

See Table 9.1 for examples of binding energy and binding energy per nuclei. The most stable
element, one with the highest binding energy per nuclei B/A, is iron (Fe). Given enough time, all
nucleons would channel all their resources to form iron. However, it takes an extremely long time
for that to happen and consequently most of the nucleons will settle on less stable elements such as
deuterium, helium, and lithium.

Due to the difficulties in overcoming potential barrier, heavier elements are produced from
lighter ones most effectively through a chain of reactions. Starting from the lightest elements, it
goes as follows

p+n—D+vy

D+D—H+p; D+D—’He+n

SH+D — *He+n

SHe+n— *H+p

etc 9.2)
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Table 9.1: Binding energies and Binding energies per nucleon of some light elements.

nucleus | B(MeV) | B/A(MeV)
’H 2.22 1.11
H 6.92 2.30
SHe 7.72 2.57
“He 28.3 7.08
12c 92.2 7.68

In order to describe this chain of reaction, we need to know the starting amount of n and p. These
protons and neutrons are those that survived the baryon-antibaryon annihilation occurring in the
past, so the sum of their number densities satisfy

nE_Mptin o isi10-10 (9.3)

oy My
In fact, the strongest constraint on this number comes from the BBN itself. For the present
discussion, all we need to know is that it is a tiny number.
The initial relative abundance of protons and neutrons depends on the details of their freezeout
process. The binding energies of light elements are of order 1 MeV, so at 7 >> 1 MeV but much
less than 300 MeV (above which the quarks are free) the particle content of the universe is: p, n,

e, e, v, v,and V. The reactions converting protons to neutrons and back are

n<pte +V,
n+ve<>p+e
ntet < ptv,

Assuming all the species are in thermal equilibrium, we have

g o< €Xp [_(mﬂ_““)] 9.4)
T
1y o< exp [—(mp_“*’)] 9.5)
T
and
Hn + Hy = Up + U 9.6)
Combining the last three equations, we get
mo_ (O ety
"o = exp ( T + T > 9.7)

with Q = m, —m, = 1.293 MeV. If we further assume that the universe is neutral, n, = n,, the
chemical potential of electron

He Ne— — Mot —10
e T ~n~10 9.8
T  ne +n+ 1 ©8)

can be neglected. The chemical potential of neutrino (, could in principle be large, but we will also
neglect it here. Not much is known about the uy, but this assumption is at least justified a posteriori
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by the overwhelming success of BBN in explaining the abundances of light elements in the universe.
Since the processes involve only weak interactions, we expect the freezeout temperature of proton
and neutron to be roughly the same as what we found earlier in neutrino-decoupling case (8.3),
re. T ~ (Mo / G,z,-) '3 2 MeV. More exact calculations gives the proton and neutron freezeout
temperature of

T, ~ 0.8 MeV 9.9)

which corresponds to 7, = 1 s. Note that ¢, is much shorter than the lifetime of neutron 7, ~
15 minutes, so its safe to neglect neutrino decay at this stage. After the decoupling, the ratio
of proton and neutron abundance essentially freezes at its value at the point of departure from
equilibrium

Ny Nn

—_——

np — Np |y,

— ei(mniml’)/T* ~

(9.10)

| —

This is just the freezeout ratio. As we are going to see now, the ratio will become a different number
by the time the BBN starts.

For definiteness, we define the starting point of BBN as the point when the first process in the
chain reaction p +n <> D + 7 becomes effective, that is, when the balance of the reaction starts to
shift from the left hand side to the right hand side. We have done a similar calculation when we
studied the decoupling of photons. The relevant Saha’s equation in the present case is

3/2
Npln mpT —Ap/T 1
o <2717 > e (9.11)

with Ap = m, +m, —mp = 2.23 MeV. The p+n <> D + ¥ process is said to be effective when
np, ~ np. When the latter condition is satisfied, the above Saha’s equation reduces to

3/2
My ~ <mPT> e 0/T 9.12)
27

Comparing it with (9.3) and using ny ~ T3, we find that it occurs when the temperature is
TBBN =70 keV (913)

corresponding to the time fggN ~ 4.5min, which is comparable to the lifetime of neutron. Thus, a
significant portion of neutrons must have decayed by then. By the time the deuterium production
becomes effective at Tgpy;, the ratio of neutron and proton density has reduced from 1/5 to

Ty Ap IBBN 1
n_ _=2b _ ~ 9.14
e (e () =5 o1

Soon after that, most of the neutrons in the universe will be hidden inside deuteriums, preventing
them from decaying any further.

BBN’s prediction for the “He abundance

The abundance of nuclei with atomic number A is often presented in terms of the quantity

A
xq =4 9.15)
np
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where ny4 is the number density of the nuclei in question and np is the total number density of
baryons. Throughout this section, when we say the abundance of an element we mean exactly
this number. By definition, the abundances of all nuclei should sum to 1, ¥4 x4 = 1. The “He
nucleon is special because its binding energy per nucleon B4 /A =7 MeV happens to be a local
maximum among the neighboring nuclei in the (A,Z) space. Consequently, a large part of the
protons and neutrons end up forming “He (see the remark at the end of this section for a more
rigorous justification). Considering that a *He nucleon consists of 2 protons and 2 neutrons and
that there are less neutrons than protons, the formation of “He will stop once all the neutrons have
been exhausted. Knowing this, we can estimate the amount of *He as follows

1

Nage = =My 9.16)

2
The corresponding abundance can be computed with the aid of the neutron to proton ratio (9.14)
we obtained earlier

4nage 2n,/n,  2x1/7 1

= = = =—-=25% 9.17
x4 n,+n, l+n,/n, 141/7 4 ’ ©-17

which accurately explains the observed value if the calculation is done carefully. This prediction
is robust in that it does not depend on the baryon to photon ratio 1. The abundances of other less
abundant elements, e.g. deuterium, lithium, etc, hinge solely on 11 and are well explained if 1] is
given by (9.3), thus providing one of the strongest evidences for the big bang theory.

Remark: more rigorous reason why essentially all the neutrons end up forming nay,.
We start by writing down the equilibrium number densities of the species we want to consider

(mD;IJD):|

(mt — HT)}

Ty o< eXp {—

np o< exp [—

T

(m3He - “3He) ]
T

(Mage — /~‘4He)]
T

nT o< eXp {
N3ge < €EXP {—

Nage < EXP {—
etc

The more species we include, the better. Then, list reactions keeping them in thermal equilibrium
and the corresponding chemical equilibrium conditions

p+n<D+y, Hp + HUn = Up
*H+p < D+D, Ut + Up = Hp + Up
*He+p +» D+D, Mape + Mp = Mp + UD
SH+D «*He+n, UT 4 UD = Magge + Un
etc

For an arbitrary element A, we have the following relationship

Ua = Up X (num. of protons) + t, X (num. of neutrons) (9.18)
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Thus, the number density of the element is given by

maT >/ Za(my — e — B

Knowing the total numbers of protons and neutrons, we impose the following conditions

Y naZy = —2—nn ~% (9.20)
AA—nn+npn7N7Y :

1
Y na(An—24) = nn+npn”7 R Sny (9.21)

Combining (9.19) for protons and (9.20) gives

3/2
mpT  (mp—p)
(M ) exp { o )]y,

B 32
exp [—(mp“p)] ~n (T) 9.22)

T myp

Similarly, combining (9.19) for 4He and (9.21) gives

3/2 _ _
(’"pT> exp {_Q(MpT #p)} exp {_2(mnT #n)} exp <B4TH5) ~nn,

2r

°xp {_ T ) ynoP\ " ar
(9.23)
At T ~ 100 keV, we have
exp {— (’"“;”“)} ~107%3 (9.24)

which is extremely small and typically gives more dominant effect than the factor (9.22). Having
(9.22) and (9.23) in hand, we can estimate the number density of any element. For instance, the
number density of deuterium relative to “He is

np mp—Up my—Uy Bp  Bap,
~ PD e ) | exp(—118) < 1 9.25
0 oxp (Mot Mt B B ) exp(-118) < 9.25)

which is essentially zero. Doing the same to all the other elements will lead us to the conclusion
that pretty much all the neutrons end up in “He.

Summary:

BBN is our best cosmological explanation for the observed abundance of light elements in the
universe for which thermodynamic cooking in stars does not account. Before their decoupling,
the protons and neutrons that survived baryon-antibaryon annihilation were held in thermal
equilibrium by the process p* +e~ <+ n+ Vv, and its variants. After the decoupling, the neutron
to proton ratio essentially freezes at its value at the departure from equilibrium, n,/n, ~ 1/5.
Once the temperature of the universe reduces to below the binding energy of helium, it becomes
thermodynamically favourable for the helium nucleus sector to eat up all the protons and neutrons
they can. While the lifetime of proton is longer than the age of the universe, significant amount
of neutrons decayed in the mean time, changing the neutron to proton ratio to n,/n, ~ 1/7.
After the eating up, the total mass of helium makes up 25% of the total mass of baryons, in
agreement with observations.
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Baryon to entropy ratio

It is an observed fact that the present universe has overwhelmingly more baryons than antibaryons.
Rather than taking this fact for granted, most physicists find it more natural to assume that the
universe started in a baryon-symmetric state and somehow produced baryon asymmetry as it
evolved. This process of creating baryon asymmetry is dubbed baryogenesis. Once the temperature
goes below the electroweak scale, ~ 100 GeV, the baryon number is known to be conserved to a
very good approximation. In an expanding universe, this translates to

(ng —ng)a® = const (10.1)

Furthermore, we found before that as long as the universe expands adiabatically, the entropy is
conserved

sa® = const (10.2)

If we take the ratio between (10.1) and (10.2), the scale factors would cancel and we get

n= @ = const (10.3)
Thanks to this fact, while the process of baryogenesis is not well understood one could skip its
details and take the produced baryon to entropy ratio 1 as an input parameter for the subsequent
evolutions. This was exactly what we have done when we studied BBN. In this lecture, we will
attempt to understand the origin of the baryon asymmetry in our universe.

At temperatures larger than the masses of nucleons, i.e. T 2 1 GeV, photons, baryons, and
antibaryons were all thermally populated with number densities ng ~ ng ~ ny ~ T3. At that time,
the baryon to entropy ratio is given by

np—ng ngp—ng np—ng
~Y ~Y

n (10.4)

s T3 nB+Ng|7>1 Gev

In this sense 1 gives a measure of the baryon asymmetry at 7 = 1 GeV. Then as the temperature
cools down pass 1 GeV, the baryons and antibaryons annihilate to produce photons. They, of course,
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Figure 10.1: Schematic behaviour of (ng —ng)/(ng + ng) as function of time.
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corresponds to ~ 1 GeV

did not annihilate completely. The observed baryon to entropy ratio of 1 ~ 107! indicates that
for every 10'° baryons and antibaryons, there were about one baryon which could not annihilate,
resulting in about 10'° more photons than baryons today (see Figure 10.1). Since the current
temperature of the universe 7y ~ 1 meV is very low, the entropy density is accurately given by the
contribution from photons, the only relativistic particles at the time

3
s A Cjiz)gyﬁ ~ 1y (10.5)

This, together with the fact that we have np > nj today, allows us to write

n~"E (10.6)

ny

10.2 Sakharov’s conditions
Reminder: P, T, and C.

e The parity transformation P is a spacetime transformation that inverts space x — —x while
leaving time unchanged ¢ — ¢. Different physical variables transform differently under P,
e.g. the momentum p transforms as p — —p and the angular momentum M transforms as
M — M.

e The time-reversal transformation 7 is a spacetime transformation that inverts time ¢t — —¢
while leaving space unchanged x — x.

e The charge conjugation C turns particles into antiparticles and vice versa.

People used to believe that C and P were exact symmetries until the 1956 discovery of C and
P non-conservation in decay processes involving a neutrino showed otherwise. If C and P
were respected, all four different processes shown in Figure 10.2 with different directions of
momentum and spin of the neutrino decay product would occur equally likely. It turns out
that only two of them could happen. Thus, in this case both C and P are maximally violated.
After that, physicists no longer regard C and P as fundamental symmetries, but still expected
the combination CP to be exact. In 1964, CP-violation in decays involving Kg mesons were
observed, shocking the community once more. Among the possible ways Kg could decay are

K) > n +et+v, (10.7)
K> at4+e +7, (10.8)

CP transformation converts the decay products of the first process into those of the second one.
Thus, if we prepare equal amounts of KB and Kg, we expect to see equal amounts of, say, e~
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Figure 10.2: Discovery of C and P violation.
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et —Np—

~0(1073 10.9
ner +m, ~ OU07) (10.9)

which implies that CP is violated. Now that CP is known to be broken, we are still hopeful that
CPT is an exact symmetry. CPT conservation implies that the mass and lifetime of a particle
must be the same as those of the antiparticle.

Remark: a universal way to distinguish particles from antiparticles.

The choice of labeling a particle pair which are related to each other via CP transformation as
matter and antimatter is obvious when one member of the pair is much more abundant than the
other, in which case we simply name the more abundant one matter and the less abundant one
antimatter. Now, the question is how do we single out what we have been referring to as matter
from antimatter somewhere in the universe where they are equally abundant? One way to do so
is to make use of the CP-violating decays of KI?: prepare an equal amount of Kg and KB, and
let them decay; call positron a charged lepton which appears more often in the decay and call
proton a baryon with the same sign of charge.

From the viewpoint of particle physics, in order to produce a net baryon asymmetry in the
universe the three so-called Sakharov conditions must be met:

1. Existence of baryon number violating process.
Although it seems inconsistent with the stability of matter, e.g. the lifetime of proton was
found to be longer than 103! years, baryon number violation might occur at high energies.

2. Departure from thermal equilibrium.
Otherwise, we would have ng(p) = nz(p) = eﬂmlﬁ and no baryon asymmetry would be
created. We did not include any chemical potential because in this context the baryon number
is assumed to be not conserved.

3. Violation of C and CP.
This is simply because while baryon-symmetric states are C and CP invariant, baryon-
asymmetric states break C and CP. So, in order to go from a baryon-symmetric state to a
baryon-asymmetric one, the laws of physics have to break C and CP.

10.3 GUT baryogenesis

Reminder: a particle physics interlude.



10.3 GUT baryogenesis 63

Figure 10.3: A possible decay mechanism of proton in GUT.

"
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A way to specify a theory in terms of its Lagrangian, which is required to be invariant under
every symmetry of the theory. To write down the Standard Model, we begin by choosing the
symmetry group. In addition to the Poincare symmetry, the Standard Model respects the gauge
symmetries

G=SU(3)xSU2)xU(1)

Once we specified the gauge group, the gauge bosons in the theory are fixed. For each generator
of the group there is a gauge boson that transforms according to the adjoint representation of the
group. We have one photon, three W bosons, and eight gluons gauge bosons corresponding to
the U(1), SU(2), and SU (3) symmetries respectively. Next, we choose the matter content of
our model, together with how they interact, i.e. the way they transform under the gauge group G.
Particles are representations of the Poincare group which are classified by their spins (scalars,
fermions, gauge bosons) and the way they transform under the symmetries (the charges). For
some unknown reason, each of the fermions of the theory comes in 3 copies (generations), which
are identical to one another apart from their masses. For example, the fundamental building
blocks of baryons are quarks, which come in pairs: (u,d), (c,s), and (¢,b). The "up" quarks
(u, ¢, t) each carries an electric charge of ¢ = 2/3 and a baryon number of b = 1/3, while the
"down" quarks (d, s, b) each carries an electric charge ¢ = —1/3 and a baryon number b = 1/3.
Each nucleons consists of three quarks p = uud, n = udd. Mesons are constructed out of a
quark and an antiquark gg. Due to the so-called quark confinement, quarks do not exist freely in
ordinary conditions (small temperature and density).

The economy of description or simplicity has always been a quality that physicists sought after
in their theories. Looking at the group theoretic structure of the Standard Model, one is naturally
led into questioning whether the electromagnetic, weak, and strong interactions would merge into
one at some high energy scale. Grand unified theories (GUTs) are models that realize such a
unification. As a bonus, GUTs are also attractive because they often automatically provide possible
baryogenesis mechanisms. In one of the simplest GUT models based on the SU(5) symmetry,
there are particles called leptoquarks, denoted by X, which can undergo baryon-number violating
processes into quarks and leptons. For example, X could decay through the following processes:
X — u+dand X — e* +ii. As a consequence, the model predicts that proton is unstable. It could,
for instance, undergo the process shown in Figure 10.3, with a decay width

4 azms
TS omd =2 (10.10)
M3 M

The current experimental constraint for the lifetime of proton is 7, 2 10*! years, meaning that the
leptoquarks X must be very heavy if they exist, i.e. My > 10" GeV.

A possible baryogenesis scenario based on the SU(5) GUT goes as follows. At T 2, 10'° GeV,
both leptoquarks and antileptoquarks were presumably in thermal equilibrium, having equal
abundances. The idea is that their decay would slightly favor particles over antiparticles, thus
creating baryon asymmetry in the universe. There are four types of (CP-violating) leptoquark decay:
X — qq, X — gl, X — @3, and X — g¢. While CP-violation allows

[(X — qq) #T(X — 4q) (10.11)
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The CPT theorem demands

I(X — qq) +T(X — gf) =T(X — 44) +T(X — g¢) (10.12)
or

[(X = gq) —T(X = gg) =T'(X — q0) —T(X — g) (10.13)

Now, suppose that we have one X and one X. Let us see how much baryon number asymmetry will
be created after their decays. On one hand, the decay of X produces

_2T(X qq) 1T(X - 4D)
3 T 3 Tl

X (10.14)
The factor 2/3 and —1/3 in the first and second terms are there because two quarks are produced
in the X — gq process and one antiquark is produced in the X — g/ process. On the other hand, the
decay of X produces

2T (X —-q3) 1T(X =gl

3 Tiot 3 Dot

By =

So, overall, we have

(X = qq) —T(X — 39)

Byt = Bx — By = (10.16)
Ftot
If there were ny leptoquarks and antileptoquarks, we would have
"B By X (10.17)
Ny Ny

Particle decays in GUT baryogenesis

We found in the previous section that if the baryon asymmetry in the universe was originated from
the decay of leptoquarks, then it would depend on the starting amount of the leptoquarks ny, more
specifically on the ratio ny /s, at the moment of decay. Assuming the leptoquarks were in thermal
equilibrium, we have

(10.18)

nyx 1, T >>MX
ny

(%) exp (%), T <My
If the leptoquarks continues to be in thermal equilibrium, the processes X — gg and X — G/ and
their reverse processes gg — X and g/ — X would remain equally likely. Thus, in order for the
GUT baryogenesis to work the leptoquarks must have decoupled from the rest of the thermal bath
before they start to decay, which is basically one of the Shakarov’s conditions. The decay rate of

leptoquarks is roughly given by
(10.19)

The factor Mx /T ~ 1/7yis a Lorentz factor that captures the fact that, due to time dilation, relativistic
particles decay at significantly slower rates. A priori, the leptoquarks could either decay when they
are relativistic or when they are non-relativistic. Since My is a very weakly constrained quantity,
we should consider both possibilities.
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Figure 10.4: Rough behavior of ny /ny in the T,
nx
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Comparing (10.19) with the now familiar H = T? /M, we find that the decay happens at

ToMxMo)'?, T.>M
T ~ (CotMxMp) /7, > Mx (10.20)
VI otMo, T. S My
Thus, at T, the leptoquarks are relativistic ( 7, > My ) if
Mx
> 1 (10.21)
1—‘tot]MO
and non-relativistic (T, < My) if
M
X< (10.22)
1—‘totjuo

Let us first explore the non-relativistic 7., S My case. Figure 10.4 shows the behavior of ny /ny in
this case. As we can see in the figure, the thermal equilibrium ratio ny q starts to be Boltzmann
suppressed at T ~ My, but at that time the leptoquarks cannot decay fast enough to track the thermal
equilibrium value. Consequently, ny /n, maintains its initial value ~ 1, thus departing from the now
Boltzmann-suppressed equilibrium value, until the temperature drops down to T ~ T}, at which
point significant amount of leptoquarks start to decay within a Hubble time. At the moment of the
decay ny /ny ~ 1 and so by (10.17) we find the baryon to photon ratio created in the decay process
to be
ng  T(X —qq)-T(X—gq) 1

N 1 10.23
ny Lot 8x ( )

where g, is the effective number of relativistic degrees of freedom. If we count all quarks, leptons
and gauge bosons, g, ~ 100.

We now turn to the relativistic T, > My case. As shown in Figure 10.4, nx / ny has no trouble
following its thermal equilibrium abundance closely with nx /ny ~ ny q/ny until T ~ T. So, at the
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moment of decay, one of the Sakharov conditions, namely departure from thermal equilibrium, is
not fulfilled. We are therefore led to conclude that no baryon asymmetry is produced in the decay
process. Strictly speaking, due to the finite time it takes to achieve thermal equilibrium ny /ny is
bound to slightly lag behind its thermal equilibrium value. The deviation from thermal equilibrium
is roughly given by

X TMe o <H> _ T M,y My (10.24)
ny Ftot Ftot Mortot

In the last step, we have set T ~ My, which is roughly the point where ny oq/ny starts to drop
rapidly due to Boltzmann suppression. The amount of baryon asymmetry created in this case will
be suppressed by a factor of M)% /MoL'ior < 1 relative to what we found in the 7, < My case. So, in

~

conclusion significant baryon asymmetry could only be created if the leptoquarks decay occurs
when they are non-relativistic, i.e. 7, < My. The constraint on My coming from this requirement

~

can be calculated by imposing (10.22) and taking

ot ~ 0cMx (10.25)
with @ ~ 1072, These give

Mx > aMy ~ 107 GeV (10.26)

which is incidentally quite close and compatible to the current bound coming from proton the decay
experiments.

Remark: some comments on baryogenesis in general.

Qualitatively speaking, the Standard Model has all the necessarily ingredients to create baryon
asymmetry: the CKM matrix that describes the mixing among the different quark flavours
contains a CP-violating phase, departure from thermal equilibrium can be achieved naturally in
an expanding universe, and baryon-number violation may occur through the so-called sphaleron
process. The sphaleron process is a non-perturbative process that does the following conversion

9g + 3¢ — bosons

The process takes place when there is a transition from one minimum to another. At 7 = 0, the
transition could happen through quantum tunneling, but with a highly suppressed probability
~ exp(—4m/a). However, if the temperature is finite 7 # 0 and sufficiently high, the transition
if feasible classically by climbing over the barrier with the help thermal fluctuations with
probability ~ exp(—Mpn/T ), where Mgy ~ My /a is the mass of sphaleron. The probability
becomes significant when T 2 M, ~ 150 GeV. These are all fine qualitatively, but when we
actually calculate the amount of baryon asymmetry created through the said process, the number
is far too small to account for the asymmetry that we observed.

The conclusion we draw from the preceding discussion is that, in order to explain baryogenesis,
new and stronger sources of CP violations coming from beyond the Standard Model (BSM)
physics are needed. One possibility is by extending the Standard Model with three right-handed
neutrinos. Since these additional neutrinos are very weakly coupled to the Standard Model
sector, they are naturally out of equilibrium. Their decay produce lepton asymmetry, which
could then be converted to baryon asymmetry via sphaleron processes.

Another possibility is to extend the scalar and fermionic sectors of the Standard Model in such
a way that first order electroweak phase transition could occur. Suppose that an electroweak
phase transition took place at some point in the cosmological history. When the transition took
place, it would not occur simultaneously everywhere in the universe. In the beginning of the
transition, the regions where the phase transition had taken place showed up as bubbles. These
bubbles would then grow in size and eventually percolate. When the bubbles were growing in
size, the surfaces (domain walls) of the bubbles sweep over quarks and antiquarks they come in
contact with. The bubble surface lets leptons enter more easily than antileptons. So, in the end
we would have a universe with excess leptons over antileptons. This lepton excess could then be
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converted to baryon excess that we see today through sphaleron processes. Unfortunately, with
the recent measurement of the Higgs mass we found out that the electroweak phase transition
should not have happened, unless we are still missing something in the Standard Model that
significantly changes the electroweak-sector phase diagram.

Summary:

The universe as we observe today appears to be populated exclusively by matter rather than
antimatter. This poses a puzzle if we start with the assumption that the early universe has
equal amounts of matter and antimatter. To produce a net baryon asymmetry we require three
conditions (Sakharov conditions): the existence of baryon violating process, C and CP violation,
and departure from thermal equilibrium. The first two are expected to happen at high energies
and the third one is achievable in an expanding universe. There are many viable mechanisms of
baryogenesis, but experiments are yet to single them out. One possible baryogenesis mechanism
is through the decay of leptoquarks in the SU(5) Grand Unified Theory (GUT).
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Evidences for dark matter

The existence of non-luminous and non-absorbing substance, dubbed dark matter, making up about
27% of the mass of the universe is now an established fact. Our confidence on its existence has
been built on many independent observations pointing to the same conclusion. Here we discuss
some of them.

Rotational curves of spiral galaxies

The first compelling evidence for dark matter concerns the orbital velocities of stars located on the
disk of a spiral galaxy, see Figure 1.1 for a rough sketch of a spiral galaxy. The mass distribution of
luminous matter in such a galaxy can be inferred by measuring its luminosity as function of radius.
Observations show that the luminosity follows a rough radial dependence of the form

r

I(r) = Ipexp <_7’0> (11.1)

Based on that, we can infer that most of the mass in a spiral galaxy is concentrated near its center.
If we assume that only luminous matter gravitate, we expect the velocities of the stars on the disk
at the outer side of the galaxy to fall off according to the Kepler’s law (v « 1/4/r). The reason is
that, since most of the mass is clumped near the center of the galaxy, stars located at different radii
sufficiently far from the center of the galaxy feel essentially the same amount of mass pulling them
towards the center. Mathematically,

M
mv? ~ G—m
r
GM
VR — (11.2)
r

In reality, what we see is a flat profile

v /& constant (11.3)
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suggesting that the M in (11.2) is not a constant but varies as
M(r)ocr (11.4)

which could be explained by the presence of a dark matter halo with mass distribution

1
Pdark (1) o< — (11.5)

r

Based on observations, the dark matter density close to the center of a spiral galaxy is roughly
uniform. A better form of ppy(r) that captures it qualitative behaviours at r — 0 and r — oo is

2 2
Yo Te (11.6)

pom(r) & AnGr? r? +r?

Gravitational lensing

Gravitational lensing is a phenomenon where massive objects located between us and distant light
sources act as a lens, bending the space around them and consequently bending any light passing
nearby. When the effect only causes slight shear deformations in the images of distant luminous
objects, it is called weak gravitational lensing. By measuring the amount of such shear deformations
on distant galaxies, and combining it with appropriate statistical analysis, we can infer the total
mass of the intervening galaxy clusters causing the deformations. This led to the same conclusion
that the galaxy clusters are more massive than the total mass of the visible objects belonging to
them.

Bullet Cluster

The Bullet Cluster is an aftermath of a collision between two galaxy clusters. The mass distribution
of the colliding clusters can be inferred by gravitational lensing. It was found that the non-luminous
matter simply pass through one another, showing that the dark matter has essentially no pressure.
Furthermore, it was observed that the location of the center of mass inferred from gravitational
lensing is significantly displaced from that of the (luminous) baryonic matter, a fact that can be
explained easily by the presence of dark matter but not by modifying the theory of gravity, thus
favouring the former over the latter. In particular, the Bullet Cluster observation ruled out the
simplest version of MOND.

Big Bang nucleosynthesis

The BBN scenario predicts the abundances of light elements in the universe depending on the
abundance Qp of baryons in the universe. Requiring the predictions to match with the observed
values put a stringent bound on the value of Qp. It was found that Qg is smaller than the observed
abundance ), of non-relativistic matter in the universe, which suggests the existence of dark
matter.

Combined data from SNe, BAO, and CMB

The combined data from supernovae (SNe), baryon acoustic oscillation (BAO), and the cosmic
microwave background (CMB) constraint the abundances of non-relativistic matter s, non-
relativistic matter in the form of baryons Qp, and the cosmological constant Q4 to have the
following values

Qu~0317, Qp~0.049, Q4 ~0.683 (11.7)

The fact that Qp < Q) by a significant amount suggest the presence of non-baryonic matter, i.e.
dark matter.



11.2

113
11.3.1

11.2 Standard Model (failed) dark matter candidates 71

Standard Model (failed) dark matter candidates

The particle nature of the dark matter is not yet known. For the reasons that we will provide below,
we can at least say that, most probably, the dark matter is not made of Standard Model particles.

The only electrically-neutral and stable objects in the Standard Model are atoms and neutrinos.
The dark matter cannot be in the form of atoms (baryons) because the abundance Qp of baryons in
the universe has been pinned down by BBN considerations to around one fifth of the observed dark
matter abundance, Qp ~ Qpwm/5; if Qp were to increase only slightly, the BBN predictions on the
abundances of light elements in the universe would differ significantly from the observed values.

The dark matter cannot be the Standard Model neutrinos for the following reason. The Pauli
exclusion principle gives an upper limit on how densely neutrinos can be packed in the phase space
(p,x). Consequently, the number of neutrinos N, with typical velocity v contained within an object
of size r, e.g. a galaxy halo, is bounded from above

1

N, <
" 2m)

/ dpd’xn ~ p’r’ (11.8)

In the last step we have assumed that n has the form of a window function with momentum and
coordinate extent of p and r respectively. It follows that the total mass of neutrinos in a galaxy M is
also bounded from above

M < myNy ~myvr? (11.9)

At the same time, the Kepler’s law states that V2 ~ GM /r, which, when combined with the above
bound, gives an upper limit on the masses of neutrinos in terms of measurable quantities v and r

1 1/4 1 k 1/4 1k 1/2
va< 2) va120< 00 mls) < pc) (11.10)
Gvr % r

This constraint is known as the Tremaire-Gunn limit. For example, in our galaxy r ~ 10 kpc and
v ~ 220 km/s, giving the neutrino mass bound of m, = 30 eV, which is marginally compatible with
the bound from neutrino-oscillation experiments and from the observed dark matter abundance of
the whole universe (8.37) we found earlier. A more stringent bound is given by dwarf spheroidal
galaxies whose typical masses are around M ~ 10°M,. Those galaxies give the neutrino mass
bounds of m, = 300 — 500eV that is highly incompatible with (8.37), thus suggesting that the
Standard Model neutrinos cannot be a dark matter candidate.

Beyond the Standard Model dark matter candidates

AXxions

A priori, there are good reasons to think that the QCD sector of the Standard Model violates CP.
The most apparent consequence of the CP violation is expected to manifest in the form of a nonzero
electric dipole moment of neutron, a quantity which has been measured to be zero to an extremely
high accuracy. This puzzle of surprising absence of CP violation in QCD is known as the strong
CP problem. A simple way to solve the strong CP problem is to introduce a new symmetry called
the Peccei-Quinn (PQ) symmetry which, paired with appropriate cosmology, naturally drives the
theory to a CP-conserving vacuum. Axion is the pseudo-Nambu-Goldstone boson generated by
the spontaneous breaking of the PQ symmetry. In order for the axion to be a viable dark matter
candidate, its mass must be in the range m, ~ 107> — 107> eV. Most axion detection experiments
utilize the so-called Primakoff effect @ — 7y and its variants. In the Light-Shining-through-Walls
(LSW) experiments, a light beam is directed towards a wall that is opaque to photons but transparent
to axions. If light is detected on the other side of the wall then presumably some photons have
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converted into axions which easily went through the wall and converted back into photons. In the
Axion Dark Matter eXperiment (ADMX), a microwave cavity is immersed in a strong magnetic field
which, through a variant of the Primakoff effect, could stimulate axion conversions to RF-photons
which can then be resonantly amplified. The Cern Axion Solar Telescope (CAST) is based on the
same principle as that of ADMX but is focused on detecting axions emitted by the sun, instead of
those making up the dark matter.

Sterile neutrinos

There are two big puzzles pertaining neutrinos. Every known type of fermion has been observed
with both left- and right-handed chirality, except neutrinos; all the neutrinos that we have observed
so far are left handed. Neutrinos are also observed to oscillate from one flavor to another, which
indicates that the different neutrino flavours have different masses, which, in turn, means that at
least two of the three flavours have non-zero, albeit very small, masses. The introduction of sterile
neutrinos solves both puzzles and, possibly, also explains the dark matter. Sterile neutrinos are
right-handed neutrinos which are expected to be present to complement the left-handed neutrinos
that we have been observing. The addition of right-handed neutrinos allow us to add Dirac mass
terms in the Lagrangian in order to explain the source of neutrino masses. The word "sterile" reflects
the fact that the sterile neutrinos must be singlet representations of the Standard Model (or else
we would have seen them by now), distinguishing themselves from the "active" Standard Model
neutrinos. Having no charge of any kind, the sterile neutrinos could be their own antiparticles
(majorana), and this allows us to add majorana mass terms for them. If we give large majorana
masses to the sterile neutrinos, we could also explain the smallness of the masses of the Standard
Model neutrinos naturally by the so-called seesaw mechanism. Very heavy sterile neutrinos are
good dark matter candidates. The sterile neutrinos Vg could decay through the process vg — V.7,
which could be detected with x-ray satellites for the mass range that is compatible with them being
the dark matter.

WIMPs

WIMPs stands for weakly interacting massive particles. It is a particularly compelling type of dark
matter that deserves a special attention. Suppose that there is a heavy particle X which cannot
decay to the Standard Model sector but can annihilate among themselves and assume that X and
its antiparticle X are equally abundant. The abundance of X today is determined by its freezeout
temperature, which happens when

Ty = (on) ~H (11.11)

If the mass and annihilation cross-section of X are M and Gun, = 0p/v respectively, its equilibrium
abundance is given by

3/2
MT _
X = gx (M) e M/T (11.12)
FI‘CCZC out occurs when

I'~H

oony ~ H

3/2 2
— ~— 11.13
08X < 2n ) ¢ My ( )
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After taking the logarithm of the above, the approximate freeze-out temperature can be found by
iteration

M
T, ~ <M 11.14
7 log (exMMoyoy/ (2m)3/2) ~ (11.14)

The present-day relic density can be calculated by rescaling the density at freeze out

a’(tr) S0 2T + 63T,
nx<t()):flx(t ) :nx(t ) :I’lx(t —_— (1115)
" a Vst~ )T
where the entropy today and at the moment of freeze out can be calculated as follows
212 7 -
s0_45<2Ty3+68Tv3> ~28x102 cm™? (11.16)
2m?
s(tr) = =—g.(Tp)T} (11.17)
45
From last four equations and (4.11), we obtain the present relic abundance
to)M GeV? 1 MoMoy
Q, - () :3><1010< ¢ > log(g 032°> (11.18)
¢ 6o 8x (Tf) (27[) /

As we can see, Qx depends most sensitively on oy, the only variable that is not suppressed by
roots or logarithms. To get Q, ~ 0.3, we need 6y ~ 10~ GeV 2, which is incidentally close to the
typical cross section of weak interactions

2
E
ow ~ GEE*~ 10710 <> GeV 2 (11.19)

GeV
This interesting coincidence, known as the WIMP miracle, raised people’s confidence on WIMP
dark matter. Unfortunately, dark matter with cross-section of that order has been largely ruled out.

Massive compact objects (MACHOs)

MACHOs are compact non-luminous classical objects formed by baryonic or non-baryonic particles.
Possible candidates include Q-balls (solitons whose stability are ensured by charge-conservation),
wimpzillas (very heavy WIMPs which could be produced during the preheating), primordial black
holes (black holes formed by the gravitational collapse of high density regions of the density
fluctuations seeded by inflation). The detection method for MACHOs vary depending on the model.
For example, Q-balls passing the Earth could be detected by the simultaneous observations of
transient signals at all stations of the Global Network of Optical Magnetometers for Exotic Physics
(GNOME).

Modified gravity

Another possibility for accounting the dark matter is by modifying the general theory of relativity at
large scales. The only evidence for dark matter so far is through its gravitational interaction, which
has only been tested at scales much smaller than the present Hubble radius, and so might not be
correct at large distances. One attempt at modifying general relativity is the modified Newtonian
dynamics (MOND). Normally, the non-relativistic equation of motion is given by the Newton’s
law F = ma. In MOND, the Newton’s law is modified to F = m%a, where qag is the universal
acceleration with the order of ag ~ Hp. The simplest version of MOND has been ruled out by bullet
cluster observations. The possible generalizations of GR are not well constrained and most likely
requires introducing new particles to fit the data.
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Known properties of dark matter

The dark matter must be highly stable with a lifetime that is much longer than the age of the universe,
or otherwise they would have decayed. If the dark matter were relatively light, M < 1 TeV, then it
must be neutral and very weakly interacting, otherwise we would have easily detected its cosmic
flux. In order to not break apart the large scale structures, the dark matter must not be relativistic at
the onset of structure formation. If the dark matter are fermions, their mass must be below 400 eV
(the Tremaine-Gunn bound we obtained earlier).

Unknown properties of dark matter

The mass of the particles making up the dark matter is so far unknown. The predictions of dark
matter masses from different models vary wildly, they go from as light as 10733 eV (stringy axions)
to as heavy as 10** GeV (supersymmetric Q-balls). Neither fermion nor boson has been ruled at
as a possible dark matter candidate, i.e. the spin of the dark matter is not yet known. Since the
presence of dark matter has been based entirely on its gravitational effects, not much is known
about its non-gravitational interactions other than they must be very weak. For the same reason, the
production mechanism of the dark matter and how they are embedded in the big picture of particle
physics are still subjects of speculation.

Summary:
Various independent observations suggest the presence of non-luminous non-absorbing sub-
stance, called dark matter, which makes up around 27% of the mass of the universe. The
Standard Model does not seem to provide any acceptable candidate for dark matter. Possible
beyond the standard model candidates for dark matter include: axions, sterile neutrinos, WIMPs,
MACHOs, and modified gravity.
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Problems of the ACDM model and inflation as their solution

The theory of inflation is best understood as a paradigm rather than a specific model built from
well-established physics. The paradigm can be defined as the acceptance of the conjecture that the
universe, at its early stage, underwent a period of accelerated expansion to which various features
of the observable universe can be attributed. Including such a period solves the horizon, flatness,
and unwanted relics problem classically and at the same time provides the seeds of the large
scale structures quantum mechanically. To date, no known alternative model can explain the same
features of the universe as well as inflation does. Although the exact mechanism of inflation remains
speculative, the strength of inflation is that it is a very natural phenomenon whose explanatory
success does not depend sensitively on the details of its model. In addition, the possibility that there
are many problems with a common explanation is highly encouraging.

Horizon problem

In a Minkowski spacetime, two events separated by A/ spatially and Ar temporally are causally
independent if A¢ > cAt; they cannot affect one another even in principle. How do we get an
equivalent statement in an expanding universe? In short, the expansion of the universe allows light
to travel more distance than it could on its own. The distance ¢ of a photon relative to a specified
comoving point it is moving away radially from changes as

% —ct ZE (12.1)

which can be solved easily by rewriting it as

d (1 c

— === 12.2

dt < a ) a ( )
Integrating the above equation from an initial time #q to an arbitrary time ¢ gives us the total distance
¢ (1) a photon can travel between the time interval

talt) = / t Zg)) ar (12.3)
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Recall that in a radiation dominated (RD) universe a(z) ~ t'/2 and in a matter dominated (MD)
universe a(t) ~ t2/3. In those cases, /() converges when we set 7y = 0 (the initial singularity)

2t, RD

th(t) = {3t D (12.4)

The finiteness of £ tells us that only points separated by distances less than £z have a chance to be
in causal contact. In other words, /g sets the radius of the particle horizon beyond which a particle
has no influence over and cannot be influenced by. The fundamental reason behind the existence
of particle horizon, i.e. the finiteness of /g, is our assumption that the universe has a beginning
(the big bang). If the universe has no beginning, then the past light cones of various parts of the
universe can extend infinitely far into the past and must overlap at some point.

The temperature profile of the CMB shows that the temperature of the universe at the point
of photon decoupling was uniform within 1 part in 10°, suggesting that the whole patch of the
observable universe were once in thermal equilibrium. Peculiarly, the backward extrapolation of
the ACDM model for as long as the age of the universe indicates that most CMB spots apparently
have non-overlapping past light cones and thus were never in causal contact. To see this explicitly,
the size of the particle horizon ¢y (¢;) when photons decoupled is given by (12.4)

gH(ld) =3t (12.5)

with £; = 5 x 10° years. Due to the expansion of the universe, its size today is bigger by a factor of
ao/aq

10\ 22
EH(l‘d)f =3t (> (12.6)

which spans an angular size of

g, — tlid)av/aa _ 3t <l0>2/3 _ <’d> 1 (12.7)

e(lo) N 3t0 \ ty %

on the sky. Plugging o ~ 15 x 10° years, we get 8y ~ 1/30 ~ 2°. The number of causally separated
regions within our horizon today is roughly given by

3
[ £(t0) } 3% 10° (12.8)
V4 H (td)a() / ag
We expect temperatures in these regions to be uncorrelated, but the CMB was found to be isotropic
to a high accuracy (1 part in 10°) over angular scales much larger than one degree. This so-called
horizon problem calls for an explanation for the physical mechanism that was responsible for
coordinating the temperatures in the seemingly causally-disconnected parts of the universe.

As we will soon see, the horizon problem can be solved if we conjecture a period in the early
universe where the universe was expanding at an accelerated rate, i.e. a period of inflation. The
existence of such a period implies that the early universe was much smaller than its expected size
according to the backward extrapolation of ACDM model. Hence, the different parts of the present
observable universe could once be in causal contact, and the observed homogeneity and isotropy is
nothing remarkable, but rather an expected outcome.
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Flatness problem

The Friedmann equation (4.9) can be rearranged as

Prot K
—l=5
Pec a‘H

(12.9)

where pior = Pa + Pm + py. The quantity K/ a’H? can be taken as the curvature abundance pg /p,
at an arbitrary time, which can be taken as a measure of the curvature of the universe. In the RD or
MD epoch, we have H ~ 1/t and a ~ t* with o« = 1/2 (RD) and o« = 2/3 (MD). Hence, the above
measure of curvature evolves as

K 2(1-a)

~t 12.10
i (12.10)
i.e. increasing with time. At the present epoch, observations tell us that the universe is flat to a high
accuracy

K
—— <1072 (12.11)
a2H2 =ty

The fact that the current universe appears to be flat is surprising because in the ACDM model any
deviation from the flatness would increase with time. Apparently, in order to have K /a’?H? < 102
now, K/a?H? must be fine-tuned to extremely small numbers in the past. For instance, we
require K /a’H? ~ 10~13 at the time of nucleosynthesis in order to be consistent with the present
observations. This puzzle of surprising flatness of the universe is dubbed the flatness problem.

A plausible solution to the problem shows itself when we realize that if for some reason the & in
(12.10) is effectively less than 1, a deviation from flatness would decrease rather than increase with
time. Again, this can be achieved by introducing a period of inflation. If the universe underwent a
sufficiently long period of inflation before the radiation domination, K /a*H? could be driven to an
exponentially small value that the amplification it receives since the radiation domination era is
not enough to make it significant today. To get a better grasp of the idea, let us see how it works
explicitly.

Suppose that the universe was dominated by the vacuum energy at some point before the
baryogenesis, BBN, and photon decoupling. As we found earlier, a vacuum-energy dominated
universe expands as

a(t) =apexp [H(t —to)] (12.12)

with H = 1/81Gpp /3 = const, where p, is the vacuum energy density dominating the energy
budget of the universe during the period of inflation. Then, at ¢ = ¢ the vacuum-energy dominated
epoch ends with a transition to radiation-domination epoch. After that, the scale factor continues to
evolve as

A\ 12
a(t) = apexp [H(l‘] —t())] <l‘1> (12.13)

Hence, using (12.3) we can calculate the horizon size at photon decoupling as

1 , , tq , t 1/2
ly(ty) = t di'exp [H(t —1")] + t dt (t—/)
0 1

= %exp [H(t; —19)] +2(ts —11)

1
~ g €XP [H(t; —19)] (12.14)
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where in the last step we have assumed that the period of inflation was sufficiently long that
H(ty —19) > 1 and H "exp [H(t; —10)] > 2(t4 —11). If, for example, pp ~ (10" GeV)4 (GUT
scale), the horizon problem is solved if the particle horizon at the time of photon decoupling as
seen today ¢ (t4)ao/ay is at least as large as the present Hubble radius H;; !, The latter requirement
gives a lower bound on the number of e-foldings during inflation H(t; —ty) = 65. The flatness
problem is also automatically solved since

K
— < K —2H(t1 — ¢ 12.15
2, exp [—2H (t1 —to)] (12.15)
becomes exponentially suppressed if H(¢; —ty) > 1. The time-dependence of K /a*H? is, of
course, more complicated than displayed above, but the point is that as long as H(t; — o) > 1 the
exponential suppression will most likely be the dominant factor.

Summary:

Unsurprisingly, such a simple model as the ACDM model has a number of shortcomings. Among
others, (1) the model does not provide a physical mechanism for coordinating the different parts
of the universe that seem to be causally disconnected (if we extrapolate ACDM backwards) to
within 1 part in 10° (horizon problem) and (2) it does not explain why the current universe is
very flat, especially considering that within the ACDM model any deviation from flatness in
the past would grow (flatness problem). Both problems can solved by introducing an era of
accelerated expansion, dubbed inflation. The horizon problem is solved because a sufficiently
long period of inflation implies that the universe at its earliest stage was much smaller than
suggested by the ACDM model, allowing the past light cones of the different parts of the current
universe to overlap, and the flatness problem is solved because inflation drove the universe
exponentially close to flatness and for that reason the deviation from flatness stays small despite
being amplified afterwards.
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Chaotic inflation

Inflation is a very natural phenomenon that could occur in many typical circumstances. So, even if
it were not to explain anything, one should still seriously consider the possibility of its occurrence.
To demonstrate how easy it is to give rise to a period of inflation, here we consider arguably the
simplest model of inflation, chaotic inflation. Consider a free scalar field with the action

S:/d“x\/?g Bgﬂvamav(p—;mzqﬂ (13.1)

with m < M), and "chaotic" initial condition at the Planck scale r ~ Mp L1074 s, by which we
mean that the initial energy density is given by

1., 1 1
p= 5¢2+5(V¢)2+§m2¢2~M§ (13.2)

Inflation is expected to happen in regions where the potential energy V (¢) = m>¢>/2 dominates
the energy density

m?> 9% > ¢> ~ (Vo) ~ M} (13.3)

That would require

M2
¢~ ;” > Mp (13.4)

Let us now focus on those regions. For simplicity, in what follows we will assume that the scalar
field is homogeneous. Note that this assumption is not a strong one. If the scalar field was not
initially homogeneous, there are always regions in which the ¢ field satisfies (13.4). Even if these
regions are initially extremely small and rare, they would inflate exponentially and soon dominate
the space. The ¢ field obeys the classical equation of motion

¢ +3HY+m*¢p =0 (13.5)
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which is an equation for damped harmonic oscillator, where

8nG [1,, 1 dm®¢?
H> = "= |Z¢*+-m*¢?*| ~ 13.6
3 [2¢ e M3 (130

where we have assumed that the potential energy dominates the energy density. The motion of the
¢ field is overdamped (slow-roll) if

i

H> — (13.7)
¢
In that case, the acceleration term in (13.5) can be neglected, leaving us with
V12Tme ¢
V299 2 g (13.8)
Mp
The solution is a constant velocity motion
M
0= 00— et (13.9)

V127w

where ¢ must satisfy ¢ > M3 /m. The inflation ends when the the potential energy m?¢? becomes
comparable to the kinetic energy ¢* ~ mZMI%, that is when

¢ ~ Mp (13.10)
or
M,
te ~ m—g (13.11)

By the time the inflation ends, the universe has inflated by a factor of

M3
exp (Ht.) ~exp | — (13.12)
m

If one takes inflation to be the correct theory, there is still a “dark age" to be filled between
the end of inflation and the beginning of big bang nucleosynthesis. At the end of chaotic inflation,
the energy that drove inflation is in the form of the potential energy of the ¢ field. In order to
switch to the hot Big Bang cosmology, at some point, this energy density is expected to decay
to produce radiation particles, heating up the cold, diluted universe. This transition process is
known as reheating. Note that the term reheating is a potential misnomer implying that the universe
was once hot before the inflation. As a matter of fact, we do not have enough theoretical and
observational knowledge to make reliable inference about the epoch before inflation.

Physicists’ creativity at cooking up theories that give rise to inflation has given birth to assorted
models of inflation, e.g. hybrid inflation, power-law inflation, new inflation, old inflation, etc. These
models are beyond the scope of these lectures. Since the constraints on the mechanism of inflation
are still pretty loose, there is no point in stressing too much on any of these models.

Density perturbation from inflation

The theory of inflation was originally motivated by its ability to solve the horizon problem and
flatness problem simultaneously via its classical dynamics. Later, physicists realized that, as a
bonus, the quantum aspect of the same idea could provide the appropriate initial conditions for the
primordial density perturbation. We have a pretty good understanding of how the initial density
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perturbation evolves to the profile captured by CMB, provided that the initial perturbation is scale-
invariant, Gaussian, and adiabatic; the most general form of density perturbation can be obtained
from a linear combination of isocurvature perturbation (fluctuation in relative densities of different
species) and adiabatic density perturbation (fluctuation in the total density without interchanges
between the densities of different species). Remarkably, generic models of inflation could prepare
primordial density perturbation with all these features granted that the accelerated expansion occurs
at nearly constant H.

Qualitatively, inflation seeds the density perturbations in the universe in the following way.
Quantum fluctuations ¢ in the inflaton field results in spatial variation in the duration of inflation
Otinf, Which, in turn, gives rise to a curvature perturbation {. By an appropriate choice of coordinates,
the curvature perturbation { can be re-interpreted as an adiabatic density perturbation dp on top of
the homogeneous background density p.

Now, consider the Fourier transform & of the density perturbation dp /p

Spp = (2;)3 /d3k5kexp(—ik.x) (13.13)
where k is the comoving wavenumber. By definition, (&) = (6p) = 0, but the following quantity
(correlation function) is in general non-zero

op(x) 5P(Y)> 1 / 313 - ~
, = d” pd’qexp (—ip.x—iq. 0, (13.14)
< , , amyps | 4Pt p(—ip-x—iq.y) (6p8q)
Translation invariance or momentum conservation implies that
(8p0q) = (27)°5 (p+q) || (13.15)

and consequently the correlation function reduces to

op(x) & 1 .
< pp( . pp(Y)>: (2::)3/d3pexp[—tp-(X—Y)]IGp2 (13.16)

The newly introduced quantity o}, is called the power spectrum. Inflation predicts that for x and y
located within a causal domain |x —y| < ¢y (1)), the correlation function is constant

o 0

<p(x),p(y>> — const (13.17)

p p
Comparing this with (13.16) and (13.15), we find that the power spectrum must be of the form
1

2

Oyl? < — (13.18)

opf e

in order to give a constant correlation function. Such a scale-invariant power spectrum is called the
Harrison-Zeldovich power spectrum. In reality, due the impossibility of having perfectly constant
Hubble parameter during inflation, there is a slight tilt in the power spectrum

1
|op|* o< Fp”s’l (13.19)

where ng ~ 1 is called the scalar spectral index. In addition to scalar perturbations §p /p, inflation
also predicts tensor perturbations. It is common to measure their size relative to the size of the
scalar perturbation in terms of the tensor-to-scalar ratio

P2
r=—
Po

(13.20)
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where p; is the energy of spin-2 fluctuations (associated to the gravitational waves created during
inflation) and the energy in the scalar fluctuations.

To explain the observed CMB fluctuations, inflation gives as an input the form of the power
spectrum |Gp|2, which then get modified by various "ordinary physics" effects, e.g. photon
scattering, gravitational lensing, plasma waves, etc that we know how to incorporate. Once these

effects are accounted, we obtain a prediction for the present form of temperature fluctuation

<6T(x> 5T(y)
T °» T

many parameters, e.g. ng, r, Qp, Qy, etc, enabling themselves to be determined by measuring
the CMB temperature anisotropy. Since different physics took place at different length scales,
the best way to disentangle the information carried by the CMB is to break it down into different
length scales, which are projected onto the sky as different angular scales. Formally, we do that
by expanding the temperature fluctuation AT /T in terms of the spherical harmonics (reminder:
spherical harmonics are orthogonal sets of natural functions on which we can decompose any
function on a sphere)

> which we can compare with CMB measurements. The predicted form depends on

5T Zng ¢)apm (13.21)

where the multipole moment £ tells us how fast the function oscillates around the sphere and m
tells us how the oscillating function is oriented around the sphere. So, each term in the ¢ expansion
captures increasingly finer angular features of the temperature profile. When the same expansion is
done on the correlation function, we get

<6T(9,¢> 70" > Y X Vi (6,0 Yio (8'.6) (i) (13.22)

)
r o mm’

If the fluctuations are spherically symmetric, different £’s and different m’s are uncorrelated, i.e.
(omapy) = CoOpp Oy (13.23)

The above relation can be understood as follows. For a given ¢, all the 2¢ + 1 different ay,,’s are
independently drawn from the same distribution whose variance is C;. Note that it is this C; that
experimentalists like to plot when presenting the temperature-temperature power spectrum data.
Since the universe allows us only a finite number of chance (2¢ + 1 for each ¢) to draw samples
from the distribution, there is a limit to how accurately we can define C,’s. This unavoidable source
of uncertainty is famously known as the cosmic variance. The uncertainty in ay,,is higher for lower
£’s because for smaller £’s we have smaller number of a,’s to average over. Using (13.23), we can
write (13.22) as

0T (0, 0T (6, ¢
< (T ¢) ) (T > Z Z Yém YW / 9 7¢/)C€51{'€/5mm’
20 mm!

20+1
=Y = p(cosa)Cy (13.24)
4r

14

where P;’s are the Legendre polynomials and o is the angle between the directions (6,¢) and
(6',¢). Noting that P, o< (cos )’ ~ cos(fa) + ..., we see that P, captures angular fluctuations
of size 8 ~ m/2¢, or, in degrees 6 ~ 100°/¢. It can be shown that C;’s are related to the power
spectrum A% via

o et

r=—5Cr T2 (13.25)
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Summary:

Although the exact mechanism of inflation remains speculative, the strength of the theory of
inflation is that it is a very natural phenomenon whose explanatory success does not depend
sensitively on the details of its model. The chaotic inflation model demonstrates that a theory
consisting of a free scalar field with the most generic initial conditions, i.e. with kinetic, gradient,
and potential energies of order M3, can give rise to inflation if the initial vacuum expectation
value of the scalar field is much larger than Mp. Apart from solving the horizon problem and
flatness problem, inflation also lays down the appropriate initial conditions (scale-invariant)
for the primodial density perturbation which would grow to produce the observed large-scale
structures.
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Lecture 14

I perturbations in an expanding universe; growth of perturbations in a static universe; Jeans
mass

Perturbations in an expanding universe

We have seen in the previous lectures that at the point of recombination, the temperature fluctuations
8T /T in the universe are at the level of 10>, On the other hand, today’s observations indicate that
the universe is full of large scale structures, i.e. density perturbations with p/p ~ 1. The aim in
this lecture is to understand how to go from the former to the latter.

For the purpose of studying the perturbations in the universe, we can characterize the universe
by its: gravitational potential ¢ (x), energy density p(x), pressure p(x), and velocity field v(x). The
evolutions of these quantities are dictated by: the Newton’s law of gravity

V3¢ =4nGp (14.1)

the continuity equation

)
5 +V(pv) =0 (14.2)

and the Euler equation

v 1
o (V)v= V=9 (14.3)

The least trivial of them is the Euler equation. It may seem complicated, but it is nothing but the
Newton’s 2nd law. To see this, consider a small volume element. The force acting on it is given by
the sum of the force due to pressure gradient and the force due to gravitational potential gradient

F=FK pressure + F grav

—— [av(Vp+pV9) (14.4)

By the Newton’s 2nd law, this force must be equal to [ dVpdv/dt, i.e. the "ma” of F = ma. The
velocity field v(x,y, z,¢) at a specified point can change both due to its explicit time dependence
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and the effect of different parts of the fluid with different velocities continuously replacing one
another
dv Jdv dvdx dvdy dvaoz
— =+t t55+t5
dt — dt  Jxdt dyot dzot
av

=2 (V) (14.5)

Substituting the above expression into the dv/dt in [ dV pdv/dt and equating the result with (14.4)
gives us the Euler equation we sought after.

The aforementioned treatment must at least reproduce the Friedmann equations in the case
where the universe is homogeneous if we are to trust its results. Let us check if this is indeed the
case. If we take the gravitational potential, energy density, and pressure to be homogeneous with
values ¢p, po, and pg, and take the fluid to be comoving with velocity field vy given by vo = HX,
(14.1) reduces to

which can be solved by the gravitational equivalent of the Gauss law

2rnG

The continuity equation (14.2) reduces to

dpo

a +V(p0HX) 0

P)
% +3Hpy = (14.8)

which is the familiar energy conservation equation (2.17) for a pressureless fluid, and finally (14.3)
reduces to

. 4G
Hx,-+(ij8j)Hx,~+—3 poxi =0
. 4G
H—i—Hz—i—%po:O (14.9)

which is one of the Friedmann equations, i.e. (2.12).
Now, we start to actually perturb the four fields

p(x,1) = po(t) + 6p(x,1)
p(x,t) = po(t) + 6 p(x,1)
v(x,1) = vo(t) + 6v(x,1)
¢(x,1) = ¢o(t) + 80 (x,1) (14.10)

Inserting them to (14.1), (14.2), and (14.3) and keeping only the terms linear in the perturbations,
we get

V289 =4nGdp (14.11)
d0

Tp +V(8pv0) +V(podv) =0 (14.12)
gv—l-(vo V)Ov+ (Sv. V)V0+p Vép+Vép =0 (14.13)

If the tiny fluctuations at the point of recombination are to yield the large scale structures that we
see today, the above set of equations should tell us that some of them must grow with time. We will
show this in the next section.
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Growth of perturbations in a static universe

Perturbations in the universe can grow in a static universe. The expansion of the universe only
complicates the matter. So, to start with, we will assume that the universe is static, i.e. vo = Hx =0,
and so (14.11), (14.12), and (14.13) reduce to

V289 = 4nGSp (14.14)
ajp +V(podv) =0 (14.15)
aa<5v+; Vép+Vsp=0 (14.16)

The Euler equation (14.16) can be rewritten in terms of the speed of sound v% =06p/6p as

a6y

2
vis =
-+ pOVSp +V8p =0 (14.17)

Next, to relate the continuity equation (14.15) with the above equation, we take the time derivative

of the former
2%8p v
aﬂ'+mv<at>—
228p
S +poV <—vsp Vop — V5¢>
*5p

= ViV238p — ppdnGp =0 (14.18)

From the first to second line (14.17) was used and from the second to third line (14.14) was used.
Injecting the ansatz p o< exp(ik.x — iwr) into the last equation, we get

©* = vik® —4nGpy (14.19)

Thus, we learn that perturbations with K> V/4rGpg/vs are stable and those with k< VArGpo/vs
grow exponentially with time. It is the latter modes which went on to become the structures that we
observe. The wavelength separating stable and unstable wavelengths

2
A= V8 (14.20)

VArGpy

is known as the Jeans wavelength.

Now we turn to the question: what happens to the perturbations in an expanding universe? In a
matter dominated universe, the stability/instability condition remains unchanged, but instead of
growing exponentially the unstable modes grow according to a power law 8p o< >/3 due to the
Hubble friction. In a radiation dominated universe, on the other hand, even the unstable modes do
not grow significantly; they grow logarithmically dp o logt. Therefore, we conclude that structure
formations must have occurred during the matter domination epoch.

In ways analogous to the Jeans wavelength, we can define a number of other quantities. In
particular, the Jeans mass M; is defined as the total mass inside a sphere of radius equals to the
Jeans wavelength A; (14.20)

3/2
_ 47, 4j s
My = —-AjPo=—<Po (Gp > (14.21)
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The Jeans mass Mj; tells us the minimum amount of mass within a Jeans volume (volume of a
sphere with radius equals to the jeans wavelength) above which the density grows. In the radiation
domination epoch, p = p/3, and so v} = dp/dp = 1/3, which means
4n M3 M3
My =——L L 10"M, (14.22)
3 /Po T?
where we have set T to its value at the recombination. This M; is huge in comparison to the mass
of a typical galaxy, 10*M.,, meaning that a typical galaxy would not collapse gravitationally.

Classification of dark matter: cold, warm, hot (not presented)

The dark matter can be classified based on its ability to flatten out perturbations. A good measure
of this feature is the free-steaming scale Ags, which is defined as the distance a dark matter particle
would have traveled in ¢g (the age of the universe at the matter-radiation equality, at which point
perturbations start to grow)

Aps = Vig (14.23)
Structures with wavelengths smaller than Ags cannot grow due to the free-streaming of dark matter.

‘We can then define the

4
Mys = 7155 (14.24)

and classify dark matter in the following way

1014M@ < Mgs hot dark matter
10°M, < Mgs < 10"M,, warm dark matter
Mgs < 10° Mg cold dark matter

For sterile neutrino, we find

1GeV\® [g/T\°
MFS:2.6><10“M@th2< me > <§/15) (14.25)
v .
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14.4 Overall summary of cosmology (not presented)

Now that we have discussed at length about different parts of cosmology, let us briefly recount the
history of the universe according to our current best understanding

Table 14.1: Cosmic history.

Temperature / redshift / time key event
T > 10 GeV inflation
T ~ 10> — 10" GeV baryogenesis
T ~1MeV/t~1s—afew mins Big Bang nucleosynthesis
T ~0.7eV/z~3000/t~ 8 x 10* years radiation-matter equality
T ~0.25eV,z~ 1100/t~ 2.7 x 10° years | recombination and photon decoupling
today / f ~ 14 x 10° years matter - dark energy equality
Summary:

To study the growth of perturbations in an expanding universe, it is sufficient to keep track of its
the gravitational potential, energy density, pressure, and velocity field, which evolve according
to the Newton’s law of gravity, continuity equation, and Euler equation. If the universe is static,
we found there is a critical wavenumber above which the perturbation is stable and below which
the perturbation grows exponentially. As far as the ACDM model is concerned, perturbations
can only grow in the matter domination epoch. Hence, it follows that structure formation must
take place during the period of matter domination.
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