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1 SPECIAL RELATIVITY

1.1 REMINDERS

1.1.1  Natural systems of units and Einstein convention

For historical reasons, the most widely used system of units today is the Centimeter-
Gram-Second (CGS) system and the International System (SI). In the CGS system,
for instance, there are 4 fundamental units (cm, g, s, K) and 4 fundamental con-
stants:

speed of light: ¢ =29979245800 cm s~
Planck constant: h = 1,054 x 10’27erg S
Newtonian constant of gravity: G=667cm3g 1572
Boltzmann constant: kg =1,38 x 1071 erg K~!

where erg = gem?s~2. To simplify their equations, some physicists, especially in

High Energy Physics (HEP), prefer to work with a system of units where part or
all of these fundamental constants are set to 1. Since such systems of units are
defined directly in terms of the fundamental constants of nature, they are often
called natural systems of units. The two most commonly used systems are

e The extreme choice: c=h=G =kg = 1.
All quantities are dimensionless in this system. It is typically used in theories
of quantum gravity, e.g. string theory.

e The HEP choice: c =h =kg = 1.
Having set three fundamental constants to 1, we are left with one physical
dimension which is shared by mass, temperature, inverse length, and inverse
time. The unit of the remaining dimension is conventionally chosen to be
1 GeV = 107 eV. Conversion factors relating the HEP units to the CGS units
are shown in Table 1.

Throughout this course, we will be using the HEP choice.

Another convention which makes life easier when one manipulates complicated
expressions wit a lot of indices is the one introduced by Einstein, which we will
follow here. Whenever in an expression the same index appears twice, once up and
once down (i.e. i in AchuBgé)' this index is understood to be summed over. One
often calls such indices dummy indices.

Quantity Conversion HEP quantity

Length GeV ! =198 %10 " cm
Time GeV ! =658x107 %5
Mass GeV =1,78x10"%%¢g

Temperature GeV =116 x10"3K

Table 1: HEP to CGS system of units conversion.
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Figure 1: The cube of physics.

1.1.2 The cube of physics

In 1928, to illustrate how the different fields of physics fit together, Gamow and
Ivanenko introduced the cube of physics (see Fig. 1). It shows a coordinate system
with 1/c, i, and G as its axes, where different fields of physics lie:

e At (0,1,0) lies non-relativistic Quantum Mechanics,
o At (%,0,0) lies Special Relativity,
o At (%, h, 0) lies Quantum Field Theory.

Although strictly speaking c, G, and h are constants, here we imagine varying them
to certain limiting values to see how the laws of physics look like in that limit. We
should keep in mind that this practice of varying the fundamental constants is not
to be taken too literally. When we say 1/c — 0, we actually mean that we are
looking at a physical system in which the particles” velocities are extremely small
compared to the speed of light.

1.1.3 Symmetries, Newtonian mechanics and Maxwellian electrodynamics

Here we briefly review Newtonian mechanics and Maxwellian electrodynamics,
putting the emphasis on the symmetries they respect. In particular, we recall how
comparing their symmetries naturally hints towards special relativity.

Consider a system of N massive particles interacting with a central potential
U(x). The dynamics of this system is described by the Hamiltonian

2

_y Pi ]

H—Zﬁ+iiu(\xi—le) (1.1)
i i#

from which we can derive the equations of motion

d?x; ou -,
a2~ ox Vi (1.2)

One can check that the form of the above equations is left unchanged under the
following transformations:
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e Translation: x; — x; + a.
i.e. space is homogeneous.

e Rotation: (x;)* — og (x{)P with 00T =1
i.e. space is isotropic.

o Galilean transformation: xt — x' + vt, t—t

i.e. physics does not depend on our choice of inertial reference frame and
time is absolute.

If spacetime is symmetric under a Galilean transformation then a particle whose
velocity is v in one inertial reference frame has a velocity

v =v—vy (1.3)

in a different inertial reference frame which is moving with velocity v( relative to
the initial reference frame. We refer to this as the Galilean law of velocity transfor-
mation.

Let us now turn our attention to Maxwell’s equations

0E

V-E=p —a+VxB:]
0B
V-B=0 aJerE:O (1.4)

Maxwell’s equations are invariant under translations. But, unlike the Newtonian
equations of motion, they are not invariant under Galilean transformations; they
are instead invariant under Lorentz transformations’. Gallilean transformation are
replaced by Lorentz boosts. For example, a Lorentz boost in the x-direction trans-
forms the spacetime coordinates as

t/ Yy —By 0 0 t
x| _|-By v 0 0] [x
z! 0 0o 0 1 z

The charge density and currents transform in a similar way. Electric and magnetic
field transform in a slightly more complicated way, see later.

In particular, the simple Gallilean composition law for the velocities (1.3) be-
comes

r_ V7 Vo (1.6)

V7T — W
when an inertial reference frame is moving with velocity vy in x-direction relative
to the initial reference frame. Note that a general Lorentz transformation is param-
eterized by 6 numbers (3 boosts and 3 rotations). The combination of a Lorentz
transformation and a translation is called a Poincaré transformation.

We are now faced with a conundrum. On one hand, Newton’s equations of
motion are invariant under Galilean transformations but not under Lorentz trans-
formations. On the other hand, Maxwell’s equations are Lorentz invariant but not
Galilean invariant. In order to determine which of the two symmetries, Galilean or
Lorentzian, is more fundamental, we need to resort to experiments. A key observ-
able is the speed of light, as (1.3) predicts it is frame dependent whilst (1.6) predicts
it to be frame invariant.

The famous Michelson-Morley experiment attempted to measure this potential
dependence of the speed of light on the velocity of the observer, but found no such
dependence, thus favouring the Lorentz symmetry over Galilean symmetry. As

' Rotations are a subgroup of Lorentz transformations

3
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of today, a countless number of experiments has confirmed this result. This has
led us to modifying the laws of motion to that of special relativity, where time is
not absolute and the speed of light is frame-independent. The discovery of special
relativity, however, does not undo the success of Newtonian mechanics in the low
velocity regime. It merely clarifies the scope of Newtonian mechanics and goes
beyond it.

1.1.4 Lorentz Tensor

To effortlessly make sure that our equations are Lorentz invariant, we express
them in terms of Lorentz tensors. Lorentz tensors are objects which transform in a
well-defined way under Lorentz transformations. The simplest non-trivial Lorentz
tensors are contravariant and covariant four-vectors. A contravariant 4-vector is a
set of 4 quantities v¥* which transform under a Lorentz transformation as

v vH =AY for u,v=0,1,2,3 (1.7)

with repeated indices summed over and A", being any matrix satisfying

Npv = nocB/\‘xu/\Bv (1.8)
and
1T 0 0 0
0o -1 0 0
Nuv = 0 0 -1 o0 (1.9)
0 0 0 -1

is the Minkowski metric. A covariant 4-vector is a set of 4 quantities w,, which
transform under Lorentz transformations as

wy = w, =A wy for p,v=0,1,23 (1.10)

where A,V is a shorthand notation for ((/\“\,)*1 )T which is in general different
from A",. An example of a contravariant 4-vector would be the 4-velocity uh =
dx*/dt and an example of a covariant vector would be the derivative 9,,S = 9S/9x"
of some function S. A covariant 4-vector v, can be constructed from a contravariant
4-vector v* with the help of the Minkowski metric

Ve =M. (1.11)

Conversely, a contravariant 4-vector w* can be constructed from a covariant 4-vector
wy, as follows

wh =ntYw, (1.12)

where "V is the inverse matrix of nuv. A contravariant 4-vector v can be con-
tracted with a covariant 4-vector wy, to give a scalar S (a quantity that is invariant
under Lorentz transformations)

S=vhw,. (1.13)

A Lorentz tensor is a set of quantities, written compactly as a symbol with (in gen-
eral) both covariant and contravariant indices THY- g ., which transform under a
Lorentz transformation as

THY - g o THY = a = AR LAY L A A TY g (1.14)

Invariant Lorentz tensors/pseudotensors, i.e. tensor-indices carrying objects
that remain unchanged under Lorentz transformations, play important roles in
physics. Other than the Minkowski metric 1y, which is invariant under Lorentz
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transformations by definition (see (1.8)), there are two more invariant tensors/pseu-
dotensors:

éxznuomow :dlag(]/]/1/1) (1'15)
+1 if pvpo is an even permutation of 0123
€uvpo = § —1 if pvpo is an odd permutation of 0123 (1.16)

0 otherwise.

It is important to understand that not every object with tensor indices is automati-
cally a tensor. For example, €y carries tensor indices, but it does not transform
as a tensor. For another example, although the Lorentz transformation matrix Aty
carries tensor indices, it makes no sense to say that A", is a tensor because it rep-
resents a transformation and not a coordinate-dependent set of quantities.

1.1.5 Covariant formulation of Maxwellian electrodynamics and Newtonian me-
chanics

Armed with the knowledge of tensors, we can reformulate Maxwellian elec-
trodynamics and Newtonian mechanics in terms of manifestly Lorentz-covariant
equations, i.e. equations whose left-hand side and right-hand side transform in the
same way under Lorentz transformations.

In order to write the Maxwell equations in a covariant form, we introduce an
antisymmetric field-strength tensor

Fuv = 0uAy —OvA, (1.17)

with A, the potential four-vector

Ay = (X) (1.18)

where ¢ and A are the scalar and vector potential. Note that Fy is a gauge-
invariant quantity, meaning that it remains unchanged under a gauge transforma-
tion

Ay — Ay =Ay -0y
When expressed in terms of F,, the four Maxwell equations reduce to two covari-
ant equations

0. F*Y (1.19)

:]V
€uvpa0 FP =0 (1.20)

vV = (‘;) . (1.21)

Recall that in special relativity the spacetime interval between two events is
defined as

where jV is the four-current

ds? =mydxYdx = dt? — (dx2 + dy? + dz?) (1.22)

which is invariant under Lorentz transformations. It defines the causal structure of
the spacetime interval. Intervals split up in three categories

o Time-like: ds? > 0
e Light-like/null: ds =0

» Space-like ds? < 0.

5
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Figure 2: Spacetime regime that may influence particle A (labeled “past") and spacetime
regime that may be influenced by particle A (labeled “future") in Newtonian me-
chanics (left) and special relativity (right).

While time-like separated points may influence one another (causally connected),
space-like separated points are completely out of contact (causally disconnected).
In the At-Ax plane of the two events, the set of all possible null intervals form
future and past light cones. A particle may only influence particles inside its future
lightcone and can only be influenced by particles inside its past lightcone, see figure
2.

For a particle moving with speed v, the spacetime interval is given by

d d

2 2 23,2 —2 3.2
= dt* —v2dt? = t — =y :
ds d ved vy “d — s 2% e (1.23)
We can then define the 4-velocity and 4-acceleration as follows
dxH
(T )
u s (1.24)
d2x*  duM
PL = — = .
ds? ds (125)
and, from the 4-velocity u", we can define the relativistic momentum as
p* = mut (1.26)

The relativistic equation of motion for a particle of mass m and charge q in an
electromagnetic field can be written in a covariant form as

dp*
% =qF*Vuy (1.27)
or 5
i
mddsx2 =qF*uy (1.28)

In the special case of constant and uniform electric field and zero magnetic field,
the above equation describes a constant acceleration motion.

1.2 SPECIAL RELATIVITY IN ARBITRARY COORDINATE SYS-
TEMS

1.2.1  Coordinate transformation

While a Lorentz transformation is a linear transformation

xF=A*,x¥ — linear
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a general coordinate transformation
x* =f*(x¥) — non-linear in general

is not necessarily linear. Therefore, it cannot be expressed as a simple matrix multi-
plication. To see this, take a look at the example below.

Example 1.1. Consider a charged particle in a constant and uniform electric field
E = EX and zero magnetic field. The particle obeys (1.28) which in this case reduces
to

dZxH
m d:z = qEuM (1.29)
whose i = 1 component (x component) is
L IR a (1.30)
at [ Vi) " m 3

where v = dx' /dt. The solution to this equation is

) = ——2 (131)
V1 + a2t2 3

x(t) = xo + 15 [\/ 1+ a?t? — 1} . (1.32)

Now, we would like to perform a coordinate transformation from the lab frame
to the rest frame of the particle. We have just found that the space coordinate x’ in
the rest frame of the particle is related to the space coordinate in the lab frame x as

x’:xf%[\HJraztzf]}. (1.33)

To do so, we need to relate the time measured in the rest frame of the particle T,
i.e. the proper time, to the time in the lab frame t. In the lab frame, we have

ds? = dt? — dx?
= dt?(1 —2). (1.34)
Since dx' = 0 in the rest frame of the particle, we have
ds? = dt?. (1.35)

The invariance of the spacetime interval ds? gives

dt =V dt?2 —v2dt2 = dty /1 — a?t? = dt . (1.36)
T+a?t? /14 a2t2

Integrating the above equation, we get

1
- 242
T= alog(at—i— 1+ast ) (1.37)

Note that T < t, as we would expect from time dilation. Putting our results together,
the coordinate transformation from the lab frame to the rest frame of the particle is
given by

1
t—t =1= - log (at+ 1+ aztz) (1.38)
1
x—>x/:x+a[\/1+a2tzf1} (1.39)
As we can see, both transformations are non-linear. This should not come as a sur-

prise, the more familiar transformations from Cartesian to cylindrical coordinates
and from Cartesian to spherical coordinates are non-linear as well.

7
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So far, we have mainly studied special relativity in Cartesian coordinates. How-
ever, in many cases it is not convenient to work in a Cartesian coordinate system.
For instance, if the system under consideration has a spherical symmetry then it is
more convenient to use spherical coordinates. This motivates the study of special
relativity in arbitrary coordinate systems. We will adopt the following notations:
latin indices are used to label Cartesian coordinates while Greek indices will denote
coordinates in an arbitrary system.

In general, the Cartesian coordinates x' can be expressed in terms of the coordi-
nates x’" in an arbitrary system as

xt = fH(x"), (1.40)
or, in differential form .
d i _ axl d /]_,L
Xt = (1.41)

The transformation is one-to-one if the Jacobian

oxt
] = IH (1.42)

has non-zero determinant. If we know how to write x' in a Cartesian system in
terms of x’* in an arbitrary system

oxt m
—mdx , (1.43)

xt=xt(x"),  dxt
and how to write the same x! in terms of XV in another arbitrary system

B oxt
SRy

xt=x1(®Y), dx ds™, (1.44)
then we can work out a direct connection between the coordinates of the two arbi-
trary systems:

axe

B xH(xY), dxM =
xt=x"(xY), dx %

axv. (1.45)
In other words, this shows how coordinates transform when we go from one arbi-
trary coordinate system to another. One consequence of this is that the derivative
of a scalar function ¢ transforms as

A ap
OxM XY oxk’

(1.46)

Previously, we have seen how contravariant and covariant Lorentz 4-vectors
transform under Lorentz transformations. For a general coordinate transformation
of which the Lorentz transformation is a special case, a contravariant 4-vector A"
is defined as an object that transforms in the same way as dx" under coordinate

transformations, i.e.
oxH

= aXIV
and a covariant four-vector A, is defined as an object that transforms in the same
way as the derivative of a scalar function 9, ¢ = d¢p/0x", i.e.

v

AH

(1.47)

v
0x ,

Ap= 3 AL

(1.48)

Similarly, a rank (2,0) tensor TH" is defined as an object that transforms as the tensor
product of two contravariant four-vectors, i.e.

_oxM oxY Al

wv _ 99X
A Txe ox/o

Pe. (1.49)
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By now, the generalization to arbitrary rank tensors should be obvious. As before,
we can also contract a contravariant 4-vector and a covariant 4-vector to form a
scalar which is invariant under coordinate transformations

6x’°‘A, oxH

o
AuBY = oxH " *9x’B

B'P =A/B'™ (1.50)

where in the last step we used

ox’'* oxh ox’

_ —
Ix™ ox/B ~ ox/B T o%p. (1.51)
1.2.2 Metric in arbitrary coordinate systems
In a Euclidean space, the spacetime interval can be written as
ds? = Nij dxtdx. (1.52)

The same spacetime interval can be written in terms of the coordinates x’'* in an
arbitrary coordinate system as

oxt
ox/x 9x/PB

Jup

ds? =my dx'*dx’'B. (1.53)

Therefore, the metric of an arbitrary system of coordinates g,p is related to the
Euclidean metric n; as

oxt o
Jap = ﬂijmm- (1.54)

This gives us a prescription for determining the metric in an arbitrary coordinate
system, as demonstrated in the following example.

Example 1.2. Let us determine the metric in 3D spherical coordinates. Starting from
the Euclidean metric

ds? = dx% + dx% + dxg, (1.55)

one obtains the metric in spherical coordinates by making the following change of
variables:

x1 =rsinBcos P
X2 =rsin0sin¢ (1.56)
X3 =r1cosb
which yields
ds? = dr? +r2d8? + r? sin? Gdcbz. (1.57)

Alternatively, we can arrive at the same result using (1.54). We find that the non-
zero components of the metric are

oxt oxJ
gr =M 5y oy
oxt oxJ
goo = Mjij 76); 76)(6 = 12 5in? 0 4 1% cos? 0 cos? ¢ + 1% cos? Osin? ¢ = 2
oxt ox)
9o = Nij %% — 12 sin? 0 sin? ¢ + 72 sin? sin? b= 2 sin? @,

in agreement with what we found earlier.

9
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1.2.3 Volume element in arbitrary coordinate systems

When we go from Cartesian coordinates x! to arbitrary coordinates x’*, the
volume element is multiplied by the Jacobian of the transformation

7

0x
dx'dy’dz’ = ( det —
x'dy’dz (eaXl

) dxdydz. (1.58)

Here u,i=1,2,3. The Jacobian can be obtained by taking the determinant of (1.54)

ox'H 1
det — = — .
N T o (1.59)
where g = detg,v and we have used the fact that the determinant of n;; =
diag(1,1,1) is 1. Thus
Vgdx'dy’dz’ = dxdydz (1.60)

and the invariant volume form is given by
dV = /gdx’'dy’dz’ = dxdydz. (1.61)

When we add time to the picture, we have a similar expression, but with \/—g
instead of ,/g:

Vv—gdt’dx'dy’dz’ = dtdxdydz. (1.62)

Example 1.3. Volume element in spherical and cylindrical coordinates.
The metric in 3d spherical coordinates is

de? = dr? +12de? + r? sin’? 0d¢? (1.63)
which translates to
guv = diag (l,rz,rz sin? 6) (1.64)
whose determinant is
g =r*sin? 6. (1.65)

Hence, the volume element in spherical coordinates is
dV = 12 sin0drdodd. (1.66)

On the other hand, the metric in 3d cylindrical coordinates is

at? = dz% + dp? + p2d¢? (1.67)
which translates to
Iuv = diag (111/ PZ) (1.68)
whose determinant is
g=p%. (1.69)

Hence, the volume element in cylindrical coordinates is

dV = pdzdpdd. (1.70)



1.2 SPECIAL RELATIVITY IN ARBITRARY COORDINATE SYSTEMS |

1.2.4 Basis vectors, Christoffel symbols, and covariant derivatives

Let us consider for simplicity a 3D Cartesian coordinate system. We denote basis
vectors in this system as ey, ey, e;, or simply e; with i = x,y, z. These basis vectors
satisfy

e - ej =T1ij. (1.71)
An arbitrary vector V can be projected on the Cartesian vector basis as

V = Vlie;. (1.72)

Let x* = &,1m, p be the coordinates of an arbitrary coordinate system, whose basis
vectors are e’ = e’g, ey, e’,. The same vector V above can be projected into the
basis vectors of the arbitrary coordinate system as

V=Vte,. (1.73)

Equating the above with (1.72) and recalling that a vector transforms as V' =
V/Hox'/ox'", we find that the basis vectors transform as

oxt
e,u = mei (1.74)

i.e. like a covariant vector, where it is understood that there is a one-to-one mapping
between the coordinates in the arbitrary system and the Cartesian coordinates

x(&m,p)
y(&m, p) (1.75)
z(&,m, p).

X
Y
z

The basis vectors provide us with an alternative way of defining the metric tensor

Jap = (ex-ep). (1.76)

Example 1.4. Using (1.74), we can relate the basis vectors in spherical coordinates
to those in Cartesian coordinates

_0x oy 0z

e, = aex + gey + &ez = sin 0 cos @ey + sin 0 sin pey, + cos Oe,
0x Jdy 0z . .
eg = %ex + @ey + %ez = cos 0 cos pey + cos 0 sin ey — sin Oe,
Ox +aye +aze in pex + e (1.77)
eg = e — —e, = —sin cos . .
0 o x o y o z Ppex pey 77

We know that if V! are the components of a vector V = V'e; in Cartesian co-
ordinates, then the derivative dV1/9x) is a tensor. While this is true in Cartesian
coordinates, the equivalent expression in arbitrary coordinates 0V*/9x" is not a
tensor. Indeed, it transforms as

ov/H  oxP d (87('“ G)

x/V  ox/Y oxP \ dx©

OxP XM OVT  OxP 32x'H

— o
COX/Y 9xC OxP dx/V OxPOXC
£0
oxP ox'* Ve
#+ X ox —> not a tensor (1.78)

ox’vY 0x9 0xP

This does not come as a surprise. The problem arises because we are not taking
the derivative of a vector properly. Taking the derivative of a vector amounts to
taking the difference between the vector at two neighbouring points, dividing it by

"
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a parameter representing the separation of the two points, and taking the limit in
which this parameter goes to zero. What we have done above was comparing only
the components of a vector at neighboring points, which is not the full story. The
full story must account not only for the changes in the components of a vector but
also for the changes in the basis vectors of the coordinate system. To do it properly,
we start by writing a vector V in terms of its components in an arbitrary coordinate
system

V = V%e,. (1.79)
Then we take its derivative:
oV ovx de
FR R (180)

Note that 9V/9xP is a vector because the difference between two vectors is a vector.
Since ey span the vector space, we can write

e
oxPk

where the coefficients F&/B are known as Christoffel symbols. Thus, (1.80) becomes

= Flﬁey, (1.81)

ov aV‘x
oxP — oxB

ovY

efx—f—V‘XFVBey (a B

+Vvery ) ey, (1.82)

where in the last step we simply relabeled the «’s in the first term as y’s. In terms
of its components, the above equation reads

ovY xry

Now VBVV, called covariant derivative, is a tensor. The covariant derivative can also
be written in a shorthand notation as V. In the same spirit, the normal partial
derivative can be written as V. It is also useful to define the covariant differential as

DV* =V*g axP. (1.84)

Before going any further, let us try to understand what we have done in (1.82),
physically. First, suppose that the arbitrary coordinate system we are using is a
Cartesian one. What we did in (1.82) was the following. We identify two vectors,
V(x0) and V(x, + dx), and we want to take their difference. To do so, we parallel
transport V(x, + dx) from its original position x, + dx to x,, that is, we move the vec-
tor while maintaining its direction parallel to itself throughout the process®. Once
V(xo + dx) is successfully transported to x,, we take the difference between the
transported V(x, + dx) with the V(x,) that is residing there. This difference is the
covariant difference DV. As mentioned above, in an arbitrary frame, the basis vec-
tor changes. To stay parallel to itself, it needs to evolve accordingly to these changes.
The aforementioned procedure can be summarized mathematically as follows

DV = V¥(x + dx)eq (x + dx) — V¥ (x)ey(x)

ov«
(a 5 +VYFBY> eqdxP. (1.85)

Remark 1.1. The relation (1.81) can be understood as a generalization of the Poisson
formula
dei
dt
which you have presumably seen in classical mechanics. It describes how the basis
vectors of a coordinate system that is rotating with angular velocity w change with
time.

=wAey, (1.86)

As mentioned previously, in an arbitrary coordinate system, the basis vectors change from place to place
and so to stay parallel to itself means to evolve accordingly to these changes.
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Remark 1.2. Here we show that the identity relating a covariant vector V« and its
contravariant counterpart VP

Vo = gap VP (1.87)

is preserved under a coordinate transformation. Recall that V# and gp transform
as

VP = %V’P (1.88)
Jop = %%QLV- (1.89)
Plugging these into (1.87), we get
Vo = gopVP

Coxmoxv o axP
= ox* oxP Invoxie
_ooxmoox™Y
T oxx ox/e Inv
~——
:5"/’3
ox'*
= xex Jne
ox'"_
= Ox & w

Ve

p

1p

(1.90)

which is how a covariant vector is expected to transform. Therefore, the relation
(1.87) is preserved under a coordinate transformation. One can check that the same
is true for the inverse relation

VB = gBxy,. (1.91)
Remark 1.3. The covariant derivative of a scalar field is equal to its partial derivative

_ 99
X dxe”

Qi =P (1.92)
This is simply because the value of a scalar field does not depend on the coordinate
system we are using. As a direct consequense, the derivatives of the basis vectors,
which are the source of the difference between covariant and partial derivatives, do
not enter the picture.

From the covariant derivative of a contravariant vector (1.83), we can derive
the covariant derivative of a covariant vector. To that end, we start by taking the
covariant differential of the contraction V4 U%, making use of the last remark

D(VaU%) = (DVg)U* + Vi (DUY)

scalar

0Vy ou« B ou« B
from which we can read off that
oV
DV, U = (E)xg —vxrgr:,,) u*dxP (1.94)

and using (1.84) we find the expression for the covariant derivative of a covariant
vector

oV
Vap =35 — MgV (1.95)
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1.2.5 Christoffel symbols and metric tensor
Remark 1.4. Since both V{5 and VB are tensors, the following relation

V:x;[S = gocuvu-ﬁ (1.96)

’

holds in any coordinate system because we know that it is true in Cartesian coordi-
nates. Using this relation, we can derive an important fact: the covariant derivative
of the metric vanishes. The derivation goes as

VBV(X = g(xuVﬁV}’L
Ve (gapV*) = gan Vi V*
VHVB Jop + gocuvfs\ﬂL = gocuvﬁvp- (1.97)

Vegau =0. (1.98)

Up to this point, the covariant derivative of a rank (0,2) tensor is not yet known.
We can deduce it by first contracting the tensor with a contravariant vector to get
a covariant vector, whose covariant derivative we know how to evaluate. It can be
shown that

It follows that

oT,
Tocﬁ;u = To;f - roli},LgKf) - rBKp,gK(X' (1.99)

Combining this result with (1.98), we get the following equations

0gap

G = 5B g 9ux — MipGoax =0
ap;n = axocu —TXu9xB — réugxcx =0
99
9B = axﬁocILL —Tha9ux — Magxp =0. (1.100)

To find the Christoffel symbols from here, we need an extra piece of information
relating F;/B with Fg o which we are going to derive in the following remark.

Remark 1.5. Since partial derivatives commute, the following holds in Cartesian
coordinates

(P,i,j = (P,i,j . (1.101)

Without leaving the Cartesian coordinates, the above identity can be written in a
tensor form as

P8 = P;p;x (1.102)

Now that it is written in a tensor form, the identity is guaranteed to hold in any
arbitrary coordinates3 Next we simplify the relation by citing the fact that covariant
derivatives reduce to partial derivatives when applied to a scalar field

Pop = P, (1.103)
Writing the covariant derivatives explicitly brings us to
P, _rqus(PK = (P,B,oc_rgoc(\o,w (1.104)

Since the above equation is valid for any ¢, we obtain the following identity

F&(B =TX,. (1.105)

Rewriting an equation that is known to hold in a specific frame in a tensor form, thus making it valid in
any coordinates, is a very useful trick in General Relativity. We will see it being used repeatedly.
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Adding the first two equations in (1.100) and subtracting the result from the last
one, we get

9o, T 9o, — 9B = (r()x(ﬁ - r%(o()gux(rff‘x - rzfoc)gx(?) + (FZB + rgu)gxoc
— — —

= =0 _orX
0 *Zruﬁ

where we have used (1.105). Hence, we can express the Christoffel symbols in terms
of the metric as

1
e =39 (9apu T 9onp —9IBua) (1.106)

1.2.6 Christoffel symbols and coordinate change

The aim in this section is to derive an alternative definition of the Christoffel
symbols in terms of basis vectors and in terms of the relations connecting the coor-
dinate system in use to the Cartesian coordinate system. First, we take the scalar
product between a basis vector es with (1.81)

Oe
<e61 axg) = FZB (es, ey)

=595y, (1.107)

where we have used the definition of the metric in terms of the basis vectors (1.76).
Next, we multiply both sides by g®°

de
g (es, a)j;) = F;’nggg&p, (1.108)

This brings us to yet another definition of Christoffel symbols in terms of basis
vectors

de
Top = g°° (96, axg> , (1.109)

We can go further to express the right hand side in terms of coordinates only. Using
the relation between the basis vectors in arbitrary and Cartesian coordinates (1.74),
which also allows us to write

dey 0 [0 92X
3B 3P (ax“ej> = Wej, (1.110)
we can write
(e6 aeo‘) = aixlﬂ (ei e-) :nl.aixiﬂ (1.111)
" oxB ox® xxaxB V) Y oxd oxxoxh
and so the Christoffel symbols become
i 324
Topg = gépnii%a,ixig;s' (1.112)

In this form, the symmetry property of the Christoffel symbols under the inter-
change of the lower two indices, i.e. & and 3, is manifest. By rewriting the metric
in arbitrary coordinates g°° in terms of the Cartesian metric, we can write it in a
simpler form

o (BPE  ad ad
xp oxk oxt'V ) M 5x® axxoxP
_0x® i ke 02X
BTN N N
5k
)
xP 3%

~ 9 ox*oxP (1.113)

15
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where in going from the first to second line we combined 9x%/9x! and 9x!/dx® to
form a 6%.

1.2.7 Newtonian equation of motion in arbitrary coordinates systems

Remark 1.6. Levi-Civita tensor.
We have previously defined €;x¢ in Euclidean space as a completely antisymmetric
set of numbers with the convention €1234 = 1. The exact same set of numbers
€xpys can also be defined in arbitrary coordinates. As €iji¢ and e g5, so defined,
have the same values in any coordinate system, they are not tensors. For this reason,
€ijke (and eypys) are called Levi-Civita symbols (instead of tensors). The question
we are going to address now is: how do we turn the Levi-Civita symbol into a
tensor? Let us define the Levi-Civita tensor E*PY® as a tensor whose values in
Cartesian coordinates match with those of the Levi-Civita symbol €ij¢. Hence, we
have the relation

FaBYS _ ax"f axﬁ’. oxY ox® ikl

Ox/t ax/1 dx/k dx/t

Since, collectively, the derivative factors are completely symmetric with respect to
changes of the type o — B and i — j (both carried out at once) and e*! is com-
pletely antisymmetric, E¥FY® must also be completely antisymmetric, which means
that E*PY?® is proportional to e*PY®:

(1.114)

E*PYS — CeBYO (1.115)
To determine C, let us multiply both sides by eyps

E“Byéeo‘gy‘s =C €“By5€o¢‘3y5
—_————

=41
x* axB axY ax® i
Ox/t ox3 Ox'k dx/t e €apys = 4!C
ox%
! =41
4! det <8x’j) 41C,
L =C (1.116)
V=9 |
where the identity
det(A) = aeﬁ,...,ine;'],...,jn(ail,j1 S Qi i) (1.117)
and the 4D spacetime analog of (1.59), namely
ox* 1
det P Ve (1.118)
were used. Thus
1
EXBYS — —_xBYS (1.119)
V=3

If we start with the indices at the bottom and repeat the same steps we would get

Expys = V—9€uapys- (1.120)

Remark 1.7. Dimensionality of space.

Recall that the existence of a one-to-one relation between the coordinates in an
arbitrary system and those in the Cartesian system requires the Jacobian of the
transformation to be nonzero, det(dx'/dx*) # 0. This can be true only if the number
of x! coordinates n is the same as the number of x* coordinates N. Let us check
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what happens if the latter is not satisfied by supposing that N > n. In that case, the
metric o
_oxt oY

Jap = 5y« gxB N (1.121)

could still be defined. The problem is that its determinant would vanish, det g«p =
0, meaning that the volume form would be zero.

Now, we turn to the following question: suppose that you are given a metric
Jdap, how can you tell from it the dimensionality of the space it describes? For
example, the following metric

ae? = dx? + dy? + 2dxdy (1.122)

may appear as if it describes a 2 dimensional space. However, by defining z = x +y,
we can rewrite it as

ae? = (dx + dy)? = dz? (1.123)

which clearly describes a 1 dimensional space. In general, the dimension of the
space described by a metric g4p is given by the rank of gug.

Now that we have studied various aspects of the connection between Cartesian
and arbitrary coordinates, we are ready to rewrite the Newtonian equation of mo-
tion in arbitrary coordinates. As a starting point, we write the Newtonian equation
of motion for a free massive particle in Cartesian coordinates

d’xt
Fro i 0, (1.124)

with ds? = MNij dx'dxJ. Using the relation (1.43), we rewrite the above as

d /9dxt dxM oxt d2xH 2xt  dxM dxY
— — )= ¥ —————— =0 (1.125)
ds \ 9x* ds oxH ds? OxVoxH ds ds
Next, we multiply it with dx*/dx!
XM oxt d?x* xM 9%xt dxM dxY
_— +— —— =0. (1.126)
oxt oxH ds? oxt 0xVOoxH* ds ds

Noting that (Ox? /oxt)(dxt/oxH) = éi‘u the above equation simplifies to

dzx> E 2xt dx”di\’
ds? oxt OxVoxH* ds ds
—_

i

=0 (1.127)

and the equation of motion for a free massive particle in arbitrary coordinates reads

dzx)‘Jr 5 dxModxY
ds? MY ds ds

=0. (1.128)

The above equation, however, does not apply for a massless particle because in that
case ds = 0. To obtain an analogous equation for a massless particle, we simply
replace the ds’s with the differential of time do in a local Cartesian coordinate
system:
a2\ dxMdxY
do? ' "V do do
It is quite straightforward to include the electromagnetic field in (1.128). If in-
stead of (1.124) we had started with

=0. (1.129)

d2xt i dx;
2 4 Ug (1.130)

17
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we would have arrived at

> dxMdxY 5 dx*

- = Fil
q(XdS

a2 WV ds ds (r131)

which should be complemented with the Maxwell equations to complete the pic-
ture. The tensor forms of the Maxwell equations are obtained by the following
replacements

Fuv,v — jv N Fuv;v — ]-v
EuvaFpG'v =0 — Euvpo-FpU;V =0. (1.132)
1.2.8 Summary of mathematics

One-to-one relations x* = x'(x*) between Cartesian coordinates x* and arbitrary
coordinates x* exist if the Jacobian of the transformation is nonzero:

i
0x 20,

det
¢ ox%

The length of a space interval is coordinate independent and is given by
de? = ngjdxtdd = gopdxdxP,

with
Nij :dlagU/]/]) or dlag(],—1,—],—])
~—

Euclidean Minkowskian
If we know how to relate two sets of arbitrary coordinates to the Cartesian coor-
dinates, x* = x}(x’*) and x; = %*(xP), then we can directly relate the two sets of
arbitrary coordinates
x® = x"*(xB)

and their differentials

d I
dx'* = (;;—deﬁ

and their derivatives
23 P 2
ox/x T x/x xB”
The last two relations allow us to define contravariant and covariant vectors. Con-
travariant and covariant vectors are objects that transform as dx* and 0/9x* respec-

tively

aX/(X
V& 5 VvIx = G VB contravariant
X
oxB
Vo — Vi = a;‘—,avﬁ covariant.

Similar definitions apply for tensors, e.g.

ox'*ox'B_ o
oxY 0x®

VP yreB —

Contracting a covariant vector Uy and a contravariant vector V* gives us a quantity
that is invariant under coordinate transformations

UL V% = Ug V.

Basis vectors e« in arbitrary coordinates are related to those in Cartesian coordi-
nates e; as follows
ox'

€x — TX‘X (S
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In Cartesian coordinates the metric can be expressed in terms of basis vectors as
Nij = (ei, €j)
and, similarly, in arbitrary coordinates we have
gup = (e, ep).
The change in a vector field can be written as
V(x+dx) =V =dV = Vieqdx",
where the covariant derivative V. is given by

%

— B
M 9x M + rguv

which is a tensor. The Christoffel symbol I'g', is defined by the relation

axiu - rgp_eoc.

It obeys the symmetry property I's|, = I'{3 and can be expressed in terms of the

metric or in terms of coordinate transformations.
The spacetime volume element in arbitrary coordinates is given by

AV = /—gdx%dx' dx?dx3.

Any covariant equation in Cartesian coordinates can be rewritten as a covariant
equation in arbitrary coordinates by replacing the ordinary partial derivatives by

covariant derivatives. For example,
o J"=0 — JL =0

QY =]V = B =]V

19
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2 GENERAL RELATIVITY

2.1 THEORY OF GRAVITY BEFORE EINSTEIN

There were many attempts at describing the movements of planets in the solar
system before the development of the Newtonian theory of gravity. Most of them
do not even come close to describing reality as we know it today. Nevertheless, a
few principles remain (more or less) accurate even today, namely the three Kepler’s
laws:

1. Every planet in the solar system moves in an elliptical orbit with the Sun
located at one of its foci.

2. The orbit radius of a planet sweeps equal portions of the ellipse area in equal
time intervals.

3. The squared period of a planet is proportional to the cube of the semi-major

axis of its orbit: T? = ca3.

Then, Newton came along and introduced his theory of gravity which, among other

things, reproduces the three Kepler’s laws. The theory states that two masses, m;

and m,, attract each other with a gravitational force that is inversely proportional

to the squared distance r between them

mimz
r3

F=-Gn r. (2.1)

Furthermore, the theory also states that the inertial mass (one that appears in the
right hand side of F = ma) is equivalent to the gravitational mass (one that appears
in Gmy mz/rz), ie. my =mg.

2.2 GENERAL REQUIREMENTS FOR A RELATIVISTIC THE-
ORY OF GRAVITY
At this point, we are of course tempted to find the relativistic version of the New-

ton’s law of gravity. The first problem we are facing is that (2.1) is not manifestly
Lorentz invariant. Incidentally, the Coulomb’s law

F:—q1§2r (2.2)
T

whose relativistic formulation we know well (the Lorentz force law plus Maxwell’s
equations), has a form very similar to (2.1). Let us see if we can extract a few hints
from it. To go from the Coulomb’s law to its relativistic formulation, we would need
to: introduce the electric field E and magnetic field B (to ensure all interactions are
local), introduce non-trivial equations the E and B fields must satisfy (Maxwell’s
equations), and specify how the E and B fields exert forces on charges (Lorentz
force law). In analogy with OJAY = j# of electrodynamics, we expect the relativistic
formulation of gravity to include a field which obeys a differential equation of the
form

(some diff. operator)lfield] = [source] (2-3)

and, in analogy with the force law F* = F*Yu,, a gravitational force law of the form

[force] = [combinations of fields and 4-velocity of the particle] (2.4)
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is expected. In electrodynamics, the fields are A, (4-vector) and Fv (antisymmetric
tensor) and the sources are j* (4-vector). To sum up, a relativistic theory of gravity
must have the following ingredients:

o Representation of gravitational field (Scalar? Vector? Tensor?)
e Representation of the source of gravitational field (Scalar? Vector? Tensor?)
e Covariant equation for the gravitational field.

o Covariant expression of the gravitational force.

2.3 FAILED ATTEMPTS AT CONSTRUCTING A RELATIVIS-
TIC THEORY OF GRAVITY

2.3.1  Gravity as a 4-vector field

Since the Coulomb’s law looks almost like the Newton’s law of gravity, one
would be inclined to introduce a 4-vector field G, to represent the gravitational
field and consider the correspondence: G,, <+ A, and m < q. Bringing the analogy
further, we expect the equations for G, to be the Maxwell’s equations with A,
replaced by G, and q replaced by m. However, without even writing the equations,
we can see why this will not work. While a vector field may give both attractive and
repulsive forces, the gravitational interaction between matter is always attractive.
So, we conclude that representing the gravitational field as a 4-vector field does not
work.

Remark 2.1. The gravitational interaction between antiparticles, e.g. positron and
positron, is also attractive. This was the outcome of the analysis of KK® mixing
experiments occurring in Earth’s gravitational field.

2.3.2 Gravity as a scalar field

This time, instead of starting from the inverse square law, let us start with the
Poisson’s equation for gravity sourced by a point mass M

V2 = —53(x)GM, (2.5)

where @ is the gravitational potential. The equation motion of a test particle m in
this gravitational potential is

d?x
mﬁ =-—-mVe. (2.6)

One possible relativistic generalization of (2.5) and (2.6) can be obtained by making
the following substitutions

o x = xM

e V2 — 0O

o dt — ds = \/dxdx”
o V—VH=35%

With these substitutions, the equation of gravitational potential and the equation of
motion become

—Oe = Gp(x) (2.7)

=mV+e (2.8)
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where p(x) is the mass density. In the limit of small time derivatives and speeds,
these equations reduce to the non-relativistic equations we started with.
Unfortunately, this formulation of gravity is not consistent. Indeed, contracting

both sides of (2.8) with %, we get
b B0 b
ds ds? = O ds
1dxH*d
md (dXXu> _mie

ds\2 ds ds / = ds
—_—
e
dé
0=—. .
s (2.9)

This result tells us that, regardless of the physical system under consideration, the
gravitational potential does not change along any trajectory of the test particle,
which is absurd. One way to overcome this problem is by modifying the right

hand side of (2.8) such that it automatically gives zero when contracted with e

ds
d?xM dx* dxY 0¢
_ p, 94X dx 09
gz — ™ (V ®7ds Tds ax\’>' (2:10)
Indeed,
(20 &EAT 00 b do | duddt ﬂi’i@)
oxy ds ds ox¥V/) ds ds ds?2  ds ox¥
ds?
ds7 =1

_ de do\ 0

—m (ds - ds) _
The pair of equations (2.7) and (2.10) now form a consistent relativistic theory of
gravity, at least theoretically.

The true test of scalar gravity is whether or not it agrees with experiment. The
answer turns out to be no. As we will show below, scalar gravity predicts no light
deflection (ie. modification of the light trajectory due to the presence of massive
objects) while experiments show otherwise. Consider a massive but very light par-
ticle moving in a static gravitational field due to a massive body in Minkowskian
coordinates. The p = 0 component of (2.10) reads

d ( dx° ) B I0) 1 1 de
- ot B 212 dt
ds \ ds It VI—v2V1—v NP
=0 for static potential #0 along the trajectory

1 d/ 1\ 1 do
e () = e
1d  do
yat' T T at
where we have used ds = V1 —v?dt and v = 1/v/1 —v2. The u = i component of
(2.10) reads

(2.11)

1 d vy 0@ vi do
\/]_\;Zdt<\/]_v2>_axi_mds
1 dv; vy d 1 0@ vi do
T—v2 dt +\/1v2dt<\/1\;2> T xt V12 ds
1 dvy vi deo 09 vi do
T—vZdt 1-—vZdt oxt 1—v2dt
dvi 2,00
E:U—v )a—Xi

(2.12)
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where from the second to third line we have used (2.11). Integrating (2.11) gives

logy+¢@=C (2.13)
or
y=Ce @ (2.14)
or, written in terms of velocity
v2:1—(1—vg)ez“’ (2.15)

where we have picked the C that satisfies the boundary conditions that ¢ — 0
and v — vp as x — oo. The above equation says that if vo = 1 then v = 1 at all
time. According to (2.12), this implies that dv;/dt = 0, meaning that scalar gravity
predicts no light deflection, in contrary to what experiments tell us. Thus, scalar
gravity cannot be the theory of gravity.

As we will see in the next section, Einstein’s theory of gravity, our current best
theory of gravity, is based on the equivalence principle (gravitational mass = inertial
mass).

2.4 EQUIVALENCE PRINCIPLE

We call the mass m; that appears on the right hand side of the Newton’s law
of motion F = mja inertial mass and the mass mq that appears in the formula for
the force of gravity in a uniform gravitational field F = mgg gravitational mass. The
equivalence principle states that the inertial and gravitational mass are the same. If
the equivalence principle is respected, then the speed of free falling objects does not
depend on their (inertial) masses. This was (roughly) demonstrated by Galileo in
his famous Leaning Tower of Pisa experiment. However, it may still be possible that
the two masses are nearly the same but not quite. If the two masses are different,
then the acceleration of a free falling object is given by

a=—>g (2.16)

instead of simply g. The Eotvos experiment in Hungary looked for possible devia-
tions of m; from mg. In this experiment, we hang a dumbbell with different masses
attached at its two ends. These masses experience two types of forces: Earth’s grav-
itational pull and inertial force due to Earth’s rotation. The dumbbell’s arm lengths,
{a and {g, are chosen such that the following is satisfied to a high precision

m3a = mylp. (2.17)

This ensures that the horizontal torques caused by the vertical gravitational forces
balance. On the other hand, the net vertical vertical torque due to the horizontal
inertial forces is given by

Ty X (m}\(’,A — m’gEB). (2.18)

If the inertial and gravitational mass are the same, that is, if

my  mi

A B

T =g (2.19)
my Mg

then (2.18) together with (2.17) imply that the vertical torque is zero Ty = 0. There-
fore, by attempting to measure the possible rotation of the dumbbell due to nonzero
Ty with intricate optics, we can constrain the fractional difference between the iner-
tial and gravitational mass. The current constraint is very stringent

m; —m

mi =mgl < 5 10713 (2.20)

Mg

For this reason, we can rely on the equivalence principle as the basis of general
relativity with a high confidence.
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Remark 2.2. Scalar gravity with electromagnetism.

As an example of a theory of gravity that violates the equivalence principle, here
we consider a modified scalar gravity with electromagnetism incorporated. Below,
we modify (2.7) by adding the only Lorentz invariant terms we can construct out of

Fuv
O@ = —Gp(x) + aFu v F*Y +be v oo FHYFPO. (2.21)
gravity source
Recall that
FuvF*Y o E2 —B? (2.22)
€uvpoF*VFPY x E-B (2.23)
1
€EM = 5 (Ez +BZ) (2.24)

This means that different EM configurations which have the same electromagnetic
energy €em will gravitate in different manners (e.g. take |[E| = |B| = 1 and vary the
relative orientation). We thus expect the equivalence principle to be violated in this
theory.

In order to see an important consequence of the equivalence principle, consider
the following configurations:

1. A particle in an inertial frame under the influence of a gravitational field g.

2. A particle in a non-inertial frame that is moving with acceleration g in the
absence of gravitational field.

In both cases, any particle, regardless of its mass, would follow the exact same tra-
jectory if released with the same initial conditions (spacetime position and velocity).
Therefore, as far as the motion of the particle is concerned, the two configurations
are indistinguishable. This observation may serve as a starting point to state the
equivalence principle in other terms: there is no means for an observer which ob-
serves a free particle moving with a constant acceleration to determine whether they
are themselves accelerating or the particle is subject to a gravitational force.

Remark 2.3. Lift experiment.

The Lift experiment is a gediinken experiment (thought experiment) proposed by A. Ein-
stein to illustrate an important consequence of the equivalence principle: that the
effect of gravity can be removed locally by going to an appropriate frame of ref-
erence. This can only be done exactly at one point, or approximately in a small
region around that point. Consider an observer confined in a free-falling box with
no window. The coordinates £* belonging to the coordinate system which is falling
together with the box is related to those of the (inertial) laboratory coordinates x'
as

EX = g% (x'Y), (2.25)

If the equivalence principle is respected, there exists a coordinate system, namely
the free-falling coordinate system, where the gravitational force on a particle is
exactly canceled by the inertial force exerted on it, leaving the particle free of all
forces. In that reference frame, the equation of motion of the particle is given by

dZ E,i'
dt?

=0 (2.26)

with i =1, 2, 3. Its relativistic generalization is

2rx
d-¢§ 0

ds2 (227)
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with x =0,1,2,3 and
ds? = nepdE™deP (2.28)

where 14p is the Minkowski metric. Comparing (2.27) with the equation of motion
in arbitrary coordinates

a>x* L dxMdxY

W + HVKE = (2.29)
which we have derived in (1.128), we see that (2.27) resembles the equation of mo-
tion of a free particle in Minkowskian coordinates with Fév =0and guv = Mpv.
Therefore, as far as the equation of motion of a particle is concerned, the free-
falling coordinate system is effectively a Minkowskian coordinate system. Notice
that the presence of gravitational/inertial force comes hand-in-hand with the depar-
ture from the Minkowski metric, which suggests that gravity could be encoded in
the metric.

Remark 2.4 (important). In general, we cannot get an arbitrary metric field g (x)
from a globally Minkowskian one g,,v(x) =Ny~ and vice versa via a single coordi-
nate transformation.

We have just seen in the previous remark that, in the presence of an arbitrary gravita-
tional field, we can always find a local free-falling coordinate system in which the ef-
fect of gravity is removed. In such a coordinate system, the effective metric inferred
from the motion of a test particle is Minkowskian. The required coordinate transfor-
mation to cancel the effect of gravity is in general different from point to point and
we would need infinitely many different coordinate transformations to completely
remove the effect of gravity at all points. Similarly, one can prove by counting de-
grees of freedom that there is no single coordinate transformation that brings an
arbitrary metric field §(x) to a Minkowskian one g,,v(x) = nuv, or vice versa. The
best that one can hope to do is to set g,v(xp) =npv and dpgu~(xp) = 0 at a point
Xp, but there is not enough freedom in making coordinate transformations to allow
us to also set the higher derivatives to zero: 9,059y (xp) =0, 09050y guv(xp) =0,
etc which are required if we are to have a globally Minkowskian metric. This sug-
gests that the presence of gravitational field can be tied with non-Minkowskian
metric, giving us a further motivation to describe gravitational field in terms of the
metric gpv.

Remark 2.5. Examples of curved spaces.

To study a curved space, i.e. a space whose metric is not equivalent to the Minkowski
metric, it is often helpful to embed the space in a higher-dimensional flat space,
where things are better understood. For simplicity, let us take a two-dimensional
curved space and embed it in a three-dimensional Euclidean space, in which the
curved space appears as the surface defined by F(x,y,z) = 0. Particles constrained
to this surface would “feel” a different metric from that of the Euclidean space. We
call such a metric induced metric. Let us try to calculate the induced metric on an
arbitrary two-dimensional surface. Taking the differential of the surface equation
F(x,y,z) gives

oF oF oF

ader@dera—Zdz:O. (2.30)

Using it to eliminate the dz in the Euclidean metric

de? = dax? + dyz + dz? (2.31)
we get
2
1 OF OF
ae? = dx? +d 2+<dx+d > (2.32)
Y Rz \ox T T oy Y ) Ly 3

which is the induced metric on the surface. As an example, consider a sphere

defined by

X2 +y? +22 =R% (2.33)
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The above constraint is automatically satisfied if we work with the following para-
meterization

z =Rcos 0
Yy = RsinBcos ¢
Xx = Rsin 0 sin ¢.

Plugging these into the Euclidean metric (2.31), we get the induced metric
de? = R2 (dez + sin? eaqﬂ) (2.34)

with 0 < 8 < mand 0 < ¢ < 2. We can bring the metric to the Euclidean form
locally but not globally by a single coordinate transformation, e.g. for the points
close to the line ® = 7t/2. The then metric reduces to

ae? = R? (0% + d¢?) (2.35)

which looks like the 2d Euclidean metric, apart from the R? factor, which can easily
be rescaled away by a further coordinate transformation. In fact, for each point
on the sphere we can find a coordinate system where the metric is Euclidean by
shifting the coordinates 8 and ¢ appropriately. However, we stress here that this is
only doable for one point at a time.

2.5 GEODESIC EQUATION FROM THE LEAST ACTION PRIN-
CIPLE

Recall that in classical mechanics a particle moves from one point, say A, to
another point, say B, following a motion which minimizes the action

-
S:/O L(x,x)dt, (2.36)

with the boundary conditions x(0) = A and x(T) = B. Requiring that the action is
stationary leads us to the Euler-Lagrange equations

d (oL oL
a (o) 2, = )

Our aim now is to construct the curved-spacetime version of the free-particle least
action principle. Considering that the action must be a scalar, i.e. Lorentz invariant,
arguably the simplest action we can write down is proportional to the spacetime
interval [ ds. By convention, the proportionality constant is taken to be —m, so that
the action is given by

S = —m/ds (2.38)
or
dx* dxv\ /2
S=— d —_— .
m/ T (gm T an ) (2.39)

where T can be any variable that parameterizes the trajectory of the particle , x* =
x* (7). Varying the path as

xH = x4 oxM
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has the following effect on the action

| 1 dxH dxV dxH\ dxV
58S = dt——m——+——— | & - 12 S =) =/
/ TZ( ww)%(g”VdT dT+9“V<dT)dT>

9nvdr dr

1 10guy 5 dxt dxY d dxV
=/ d = Xt ——— — (oxH) —
/ Tds/dr (2 o O ar ar 9w g ) T

2
dt [ds 109,y . 5 dx* dxY d dxY
= [adr— (= _ v e ATt TR & ety S
/ T ds <dT) (2 A Y Tds ds +gwds( ) ds

109y oy dxM dxY d dxY
= [ ds (2 Dmve A & £ ey .
/ 5(2 axr OF ds ds +9”Vds( x) ds (2-40)

Integrating the second term by parts

d dxY dguv dxY dzxv
ds — (ox™ —_— = déu(iu— —)
/ s ds( ) 9y ds / S ox ds ds t 9uy ds?
~—_——— —— ~—
f/ g 9gpv dxP
oxP “ds

brings us to

o v P v 2.V
65:/d56x}‘ <1agwdx dx¥  9gay dxP dx dex ):O

2 oxM ds ds oxP ds ds M a2

Therefore
100y A gy a0 a0 ad
2 ox* ds ds oxP ds ds IvTgsZ T
dx* dx¥ (19guy  Ogav d2xY
S x (2% g =0 .
ds ds <2 ar oxn ) IV T2 (241)
Using
0— _9%9uv e (2.42)
= Juvia = IxA uAa9ev AvIue 4

we can rewrite the first term in (2.41) as

dx™ dxY /1 ag ag}\ dx* dxY [1
( x )= 2 (rppmgpv + rfvgup) ~ X9y —Tivane

ds ds \2 ox*»  oxM ds ds
B P R P R o
T2 A9 g g T2 IR T s AP TR
_ e g, Sxtax”
T v g s

where the first two terms in the second line cancel. As a result, (2.41) becomes

dxH dxV d?xY
KEFSVQAQ Ttz = 0. (2.43)

Relabeling the dummy indices v with p, we arrive at

d2xY dx* dxP
a2 Thiegs g5 =0 (244)

This so called geodesic equation describes the motion of a free-falling particle in a
gravitational field which minimizes the action (if the particle is massive, this trans-
lates to maximal proper time).

Remark 2.6. The geodesic equation we just derived can be obtained from a simpler

action et do¥
xH* dx
S= */dTgquH (2.45)

dx* dxV
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where T must now be the proper time. The above action is essentially the same as
(2.39) apart from the square root. The fact the two actions yield the same equation
of motion can be understood by observing that for any non-zero function f, we

have & (\/?) o 5f/+/f. Hence, by extremizing the above action, whose Lagrangian
is the square of the Lagrangian of (2.39), we automatically extremize the original
single-particle action (2.39).

Remark 2.7.  We know that massless particles follow null paths, i.e. those with

ds = 0. Consequently, the action (2.39) we considered earlier ceases to be useful. To
account for the possibility that the particle in question is massless, we consider the

following action
1 dx* dxV m?2
S——E/dﬁ [ﬂ(c)guvdeGan(G)] (2.46)

where o is the time coordinate in a locally Minkowskian coordinates system and we
have introduced a new parameter n(0), which will eventually disappear. One can
check that demanding the above action to be stationary under a variation in n(o)

yields
m

n(0) = ——= (2.47)
dxH® dxV
9w do “do
which we can plug back in to (2.46) to give
dxH dxV
S= —m/ guyﬁgdc (248)

i.e. the action (2.39) we wrote down earlier if we choose T = 0. In other words, the
new action works well when the particle is massive. Now, if the particle is massless,
we can set m = 0 in (2.46), leaving us with

1 dx* dxY
S= _E/do— [n(g)guvd(rdo'} . (2.49)

Varying it with respect to 1 gives the null condition ds = 0 and varying it with
respect to x* gives the geodesic equation

dixH L dxY dxt

do? YA do do =0 (2.50)

2.6 GEODESIC EQUATION IN THE NEWTONIAN APPROX-
IMATION

One requirement for a successful theory of gravity is that it must reproduce the
results of Newtonian gravity and mechanics in the weak-field, non-relativistic limit.
Consider a non-relativistic (ds ~ dt) particle in a static gravitational field. The
particle’s geodesic equations (2.44) for p = i reduce to

a’xt

Tr i Mo =0 (2.51)

after neglecting terms quadratic in dx'/ds and substituting dx*/ds — dx'/dt. Math-
ematically, the weak gravitational field condition means that the metric g, can be
written as a slightly perturbed Minkowski metric 1.~

guv =Npv +0guv, dguv K 1. (2.52)
The Christoffel symbols '}, can be computed explicitly using (1.106) to first order
in dgyv
=0 static field

A . Sl 135900
Too = Eﬂlx(5gox,o +8950,0 —8900,x) = 5 J

T2 ot

(2.53)
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and so the geodesic equation becomes

d*xt  19(8g00)
dt2 2 oxi

=0. (2.54)
In this case, the equation of motion predicted by Newtonian gravity is

d?x

FTSl +Ve =0 (2.55)
where the gravitational potential ¢ can, for instance, be taken as that due to a point
particle ¢ = —G%. Comparing this with the geodesic equation (2.54), we find the
following weak-field correspondence

goo =~ 1+ 2¢. (2.56)

2.7 GRAVITATIONAL REDSHIFT

Consider a clock in a static gravitational field and pick a coordinate system
where the clock is at rest, i.e. where the clock has dx! = 0. The fact that the gravita-
tional field is static means the metric g,,+ does not depend on the time coordinate
x°. Since the clock is at rest, its tick rate dr is given by

dt? = dsz‘ ~=gooldx®)? (2.57)
dxt=0
and its reading (the proper time ) is
T= / Vgoodx® (2.58)

i.e. the amount of time elapsed as measured by a clock depends on the local gra-
vitational potential around the clock. However, we cannot measure the said effect
locally (by performing measurements where the clock is located) because any time-
measuring device placed near the clock of interest would slow down or speed up
in exactly the same way.

Nevertheless, it is possible to observe the effect of gravitational field on the time
flow rate by comparing the rates of two identical processes occurring at different
positions with different gravitational potentials. For concreteness, let us consider
identical substances undergoing identical atomic transitions at rest at two different
points: point 1 and point 2. The substances are set up such that every time there
is a transition a pulse of electromagnetic wave is emitted from the point where it
occurs. Suppose that there is an observer located at point 1 trying to measure the
time interval between two consecutive pulses coming from a common source. In
particular, the observer wants to compare the interval between pulses coming from
point 1 with that of the pulses coming from point 2.

In a static spacetime, we can have a well-defined global time coordinate x°. Tt
is the time coordinate of the coordinate system where the spacetime / gravitational
field looks static. The spacetime interval between two pulses is frame independent.
Suppose that this interval is known in the rest frame of the substance to be dt. The
frame-independence of spacetime interval then tells us that

4 = gool) (a8 = goolxa) (ax8)” (259)

If the observer measures at point 1 the rate of the pulses coming from point 1 and then moves to point
2 to measure the rate of pulses coming from point 2, then there would be no difference between the two
measured rates.
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where x? and x9 are the global time interval at x; and x; respectively. Now, let us
come back to the observer at point 1 we introduced earlier. The time interval dt;
between pulses from point 1 measured by the observer is

dt; =dt. (2.60)

On the other hand, by (2.59), consecutive pulses coming from point 2 are separated

from one another by

-4 (2.61)

goo (x2)
in the global time. At point 1, the time interval dt, between these pulses is mea-
sured by the observer as

dty = v/goo(x1 )dxg = 9007()(1)(117. (2.62)

goo(x2)

Therefore, the ratio of the frequencies of pulses coming from point 1 and point 2 as
measured by the observer is

vy dtp goo(x1)
L o R . 2.6
vy  dty goo(x2) (2.63)

Note that this is an exact relation. We did not make any approximation in the
derivation. In the weak field limit, we can use the correspondence (2.56) to write
the above as

V2 [goolx2) _ [14+2¢(x2) _ -
Vi \/900(X1) B \/1 +20(x1) T+ e(x2) —ox1)

or
Vo) —V
% ~ @(x2) — o(x1) (2.64)

i.e. the pulses coming from point 2 are redshifted relative to those coming from
point 1 if the gravitational potential at point 2 is lower than that at point 1.

Example 2.1. Suppose that point 1 is on the surface of the Earth and point 2 is on
the surface of the Sun. Since the gravitational potential on the surface of the Sun
is lower (more negative) than that on the surface of the Earth, we expect the light
emitted by the Sun to be redshifted when it is measured on Earth by the amount

YVE-Vo _ G Mo Mo | GMg _

~ 2 0 _ ~ —2x107°.
2%0) 2 | Roe+dsg  Rp c?Re
———

~0

Due to its smallness, this gravitational redshift effect is difficult to disentangle from
Doppler effects.

2.8 PRINCIPLE OF GENERAL COVARIANCE

It is natural to think that the laws of physics are independent of the way we view
them. We have seen by now different manifestations of this idea, e.g. in electrody-
namics and special relativity. One basic premise of special relativity is the principle
of Lorentz covariance, which states that the laws of physics are the same in all iner-
tial coordinate systems. In general relativity, this principle is extended to include all
coordinates systems and goes under the name of general covariance. Specifically, the
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principle of general covariance says that the laws of physics preserve their forms un-
der a general coordinate transformation x* — x’*. In practice, we effortlessly make
sure that general covariance holds by limiting ourselves to tensorial equations. Gen-
eral covariance allows us to rewrite any Lorentz-invariant equation in an arbitrary
coordinate system with an arbitrary metric, which is not necessarily related to a
Minkowskian one by a coordinate transformation.

2.0 CURVATURE

2.9.1 Dynamical equation of spacetime and Riemann tensor

Thus far, we have devoted most of our attention to studying the motion of a
particle in a curved spacetime. Our aim now is to figure out how the spacetime
itself behaves, i.e. we are looking for an equation dictating the dynamics of the
spacetime. Based on the clues we have gathered so far, such an equation must have
the following properties

e The LHS and RHS of the equation must transform in the same way under
coordinate transformations, i.e. it must be general covariant.

o Gravitational effects are encoded in the metric gpv.

e In the weak-field limit, the equation must reproduce the Poisson equation
V2@ = Gnp with the following correspondence goo = 1+ 2¢.

Based on these properties, we can guess that the equation of interest has the form
[second order derivatives] g,y = Tyv. (2.65)

If we take the above form for granted, what is left to be done is finding the explicit
form of the left hand side. It must be a tensor involving second order derivatives of
the metric g,v. The challenge here is that, as we have showed before, g,.;x» = 0.

The so-called Riemann tensor fits our criteria. At the very least, it is a tensor
that involves second order derivatives of the metric g,y and is non-zero when the
spacetime is curved. To construct the Riemann tensor, take a covariant vector field
V,, and compute the commutator of its covariant derivatives

Vigvio = Visev- (2.66)

This quantity is identically zero if the spacetime is flat, but not necessarily so if the
spacetime is curved. To compute the double covariant derivatives, starting from the
first term, let us group V,,;v together and call it a tensor W,,,,. We know well how
to compute the covariant derivative of such a tensor

oW,
0 aVH A aVX A avu A
= ﬁ (aXV - r}lvv)\) - rg’(}l <aXV — FXVV)\ — I?,(p w — FHXV)\
A
_ aZVp_ _arLLVV)\_r)\ %_ x %_ x %
OxPoxY oxP HY dxP PH 3V VO IxxX
————
symmetric v<+p symmetric v<5p symmetric v<p
+ (Mley + Rl )Vas (2.67)

PHIXY vp'ux
~——

Sym v<>p
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The quantity we are interested in is the difference between two such covariant
derivatives with the indices vp antisymmetrized. All the terms that are symmet-
ric in vp will vanish, leaving us with

V V =TX AV ar@vv rx v Lr&pv
wv,p — Visev — loulxv VA — JxP A7 Ivulxp VA + Y A
orx - arA
_ up wv A A
— ( P +TX, TR, — rgfvrxp> V),
=R 1vpVir. (2.68)

In the last equality we have defined the Riemann tensor R*, , we were after (we
know that it is a tensor because the left hand side is a tensor). When its first index
is lowered, this tensor is given by

A A
R = g AR ivp = Mo~ Miov e oA _px (2.69)
Xuve = IxAR uvp = gxA OxY JxP pp'xv uvixe |- 09

Using (1.106) we can rewrite it as

2 \ oxxox®  OxX9oxA  OxVOxH = 9xVoxH VATHXIXATHY

1( 92 92 02 92
RMXV:< Iavv O 9uv T | O 9ux + no (T — TS

(2.70)
clearly showing that it involves second-order derivatives of g+, as claimed earlier.
From the Riemann tensor, we can construct two more useful quantities: the Ricci
tensor and the Ricci scalar. The Ricci tensor Rk, the only (0,2) tensor (up to a con-
stant factor) we can construct from the Riemann tensor, is obtained by contracting
the first and third index of the Riemann tensor

Rux = RA HAK (2.71)

and the Ricci scalar R, the only scalar (up to a constant factor) we can construct from
the Riemann tensor, is obtained by contracting the sole two indices of the Ricci

tensor
72

Remark 2.8. Symmetry properties of the Riemann tensor Ry vy:

e Symmetry under simultaneous exchanges of the 1 <+ 3 and 2 « 4 indices :
Rauvx = Ryxau- (2.73)
e Antisymmetry under an exchange of 1 <+ 2 or 3 <+ 4 indices:
Rapvx = —Ruavx = Ruayy = —Rvuyv- (2.74)
e Cyclic property on the last three indices
Rapvyx + Raxpv + Ravyp = 0. (2.75)

Remark 2.9. Number of independent components of Ryvpo-

The indices pv are antisymmetric, so they represent (16 —4)/2 = 6 independent
components; the same goes for po. For the present counting purposes, we can take
uv as a single index with 6 possible values. Again, the same applies to po. Now, uv
and po are symmetric. So, at this point, we count (6.6 —6)/2 + 6 = 21 independent
components. Next, the cyclic property of R,y ¢ in its last three indices is worth 1
degree of freedom of constraint. Hence, we are now left with 21 —1 = 20 indepen-
dent components, that is, algebraically independent components. At a particular
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point, we still have a freedom to perform local Lorentz transformation, which is
parameterized by 6 parameters. So, in the end, there are only 20 —6 = 14 phy-
sically independent components that are invariant under Lorentz transformations,
meaning that there are 14 Lorentz-invariant scalars that we can form from Ryvpo.

If Rv =0, i.e. a condition that is worth (4.4 —4)/2 44 = 10 degrees of freedom,
there are only 20 — 10 = 10 algebraically independent components and 10 — 6 = 4
physically independent components of the Riemann tensor.

2.9.2 Necessary and sufficient conditions for a flat spacetime

How do we identify if a spacetime is flat? Due to general covariance, the flatness
of spacetime has a wider meaning than having a Minkowskian metric 1. Any
spacetime whose metric g, is related to 1, via a coordinate transform &*(x)

xf _ aaoc ag’ﬁ nv

XM XY (2.76)

is also a flat spacetime. The necessary and sufficient conditions for a flat spacetime
are:

1. RM vy = 0 everywhere.

2. For all x, the metric tensor g,.v(x) has one positive and three negative eigen-
values.

The first condition is obvious because we know that R? uwvyx = 0 in the coordinate
system where the metric is equal to 1y and, since RA wvy is a tensor, it must be
zero in any other coordinates. The second condition follows from a linear algebra
theorem which says if the matrix G is related to the Minkowski matrix 1 by a
transformation G = DnD, with detD # 0, then G and 1 have the same number of
positive, negative and zero eigenvalues.

2.9.3 Parallel transport and Riemann tensor

In a flat spacetime, the notion of parallel transport has a clear meaning: a vector
VH is parallel transported along a curve x"(t) if the vector remains unchanged
along the curve (see Figure 1)

w
dV“:o — v, dx

dt /HE =0. (277)

This condition can be generalized to curved spacetimes as

dx* dxH
dn g = 0 = (Vau-— F&(HVX) " 0 (2.78)
or
dV dxH
Vg 279)

Physically, one can carry out parallel transport in curved spacetime in the following
way. At each point along the path, we can go to the local flat coordinate system. In
this coordinate system, parallel transport has a clear definition and we can proceed
infinitesimally according to this definition.

One way to check if a spacetime is flat or curved is by parallel transporting a
vector around a closed loop. If the spacetime is flat then we would get at the end
the same vector we started with. If the spacetime is curved in general we will get
a different vector. To understand this better, let us work out explicitly the result of
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Figure 1: Parallel transport on a Euclidean space

parallel transporting a vector around a closed loop. The total change AV, in the
transported vector Vi can be obtained by integrating (2.79)

X dx*
AVy = rwvxﬁdx (2.80)
Consider a small loop connecting the points xg , xg + dat, xg + da* + db*, and
x§ + db*. Along this loop, the vector V) and the Christoffel symbols can be Taylor
expanded as

Vy (%) = Vi (0) + ijif(O)(x“ —x§) +O(x* —xh)?
= Vi (0) + T2, VA(0) (xH* —xf) + O(x* —x})? (2.81)
X
X, (x) =TX,(0) + aar;‘v” (0)(xY =x3) + O(x¥ —xy)?. (2.82)

Injecting these to (2.80), we get

X

af d

=0 since § dxH*=0

X
_ <arw(o) +r;<v(0)réu(0)) Vi) i =)t

oxY

=FxVdxh—x} ¢ dx+

ry
— ( o (0 + r;<v(0)r§u(0)> Vy (0) ?ﬁdexu. (2.83)

Integration by parts gives

ie. $xVdxH is antisymmetric in pv. Using this fact and the definition of Riemann
tensor, we can rewrite (2.83) as

AVy = %RXOWH(O)VX(O) yngdx“. (2.84)

S —
#0

In conclusion, parallel transporting a vector around a closed infinitesimal loop re-
sults in no change in the vector unless RX o, # 0 at that point. This finding can be
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generalized to the case of an arbitrary finite closed loop by noting that a finite-loop
integral can always be written as a sum of many infinitesimal-loop integrals. In
order to cover the full area of the finite loop, the infinitesimal loops must overlap
one another, and the contributions from those overlapping parts cancel as they are
line integrals in opposite directions, but otherwise the same. The remaining part
of the line integrals that do not get canceled are those that lie on the original finite
closed loop, as intended. Therefore, the same qualitative conclusion (that parallel
transporting a vector around a closed loop in a curved spacetime in general yields
a different vector from what we started with) applies regardless of the size of the
loop.

2.9.4 Bianchi identity

The Riemann tensor Rj.v« obeys yet another important identity called the
Bianchi identity, which reads

Rwa;n + RMLTW;X + RMLXH;V =0 (2.85)

where we have summed over the cyclic permutation of the last three indices. Before
proving this identity, let us derive a useful consequence of the Bianchi identity. First,
contract the identity with g¥? to get

A
0=9"" (Rapvn + Rapmvix + Raxn;v)
_ RA A A
= R% i T R%unaix PR imaa
——
=—RMianix
A A A
= R%uaxin — R iamx T R yman (2.86)
which can be expressed in terms of Ricci tensors
A
Ruxn = Runx +R%yma = 0. (2.87)
Then, we contract the above once more with g"X to obtain
A
0=g"x (Ruxm —Rumx +R uxn,?\)

_ _RM _RpA
—Rm Rn;u Rn;A

:*ZR”n;u
=Ry —2R" (2.88)
or 1
<R“V — S”VR) =0. (2.89)
2 i

Finally, we obtain the following expression by multiplying with g¥"
1
<R“" — g”"R) =0. (2.90)
2 H

The expression inside the bracket

GHY =RMY — %g”VR (2.91)

is known as the Einstein tensor. We will find it useful when writing the gravitational
field equation.

The strategy we are going to follow in proving the Bianchi identity (2.85) is to
show that it is satisfied in a local Minkowski coordinate system and then argue
that it must be valid in any coordinates because of its tensor form. Thanks to the
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equivalence principle, for an arbitrary point x, we can in principle go to the local
Minkowskian coordinate system where the following equations hold

Juv (x0) =m uv
Iy (x0) =0. (2.92)
With the Christoffel symbols being zero, the covariant derivatives reduce to mere

partial derivatives and hence the covariant derivative of the Riemann tensor reduces
to

R =R :1 639?\\/ . asguv o 6397\)( a3gux
Auxvin T BARVXN T 9 | 5xXdxHOxT OxMOxXOxT  OxYOxHOXT | OxYOx dxN

where we have used (2.70). If we sum the above expression over the cyclic permuta-
tion in the last three indices, pvy, we will get zero, thus proving the Bianchi identity.
Since this is a tensor equation and we started at an arbitrary point x(, the result is
valid in any coordinates at any point.

Remark 2.10. Local Minkowskian coordinates.
We can go from an arbitrary coordinate system to the local Minkowskian coordi-
nates by the following procedure:

e Start in an arbitrary coordinate system x" with metric g, and calculate the
corresponding Christoffel symbols I}, (xo).

e Introduce new coordinates x’" that are related to the ones we started with as

1
X'”ZX”+EWp(X—Xo)V(X—Xo)p- (2.93)

=0 for x=x¢

Since 0x’"/dxY = &% at xg, this transformation keeps the g,.v at xp unchanged.

One can check that the Christoffel symbols in the new coordinate system are
nmo_

zero, Iy, = 0.

o Diagonalize the metric so that it has the form
gyv = diag (—Ao, A1, A2, A3) (2.94)
by making the coordinate transformation
X/ = 0OMx"Y (2.95)
where O is an orthogonal matrix.

e Finally, rescale the coordinates as
M= —x"M (2.96)

to get what we are after

I, (x0) =0. (2.97)

Note however that in a general spacetime, there is no way to set simultaneously
the Christoffel symbols and their derivatives to zero, even at a given point. This
comes from the fact that the Riemann tensor is indeed a tensor and cannot be made
to vanish in a given coordinate system (as this would imply that it vanishes in any
coordinate system).
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210 ACTION PRINCIPLE FOR FIELDS

In analytical mechanics, one sees how to formulate the principle of least action
for a discrete set of generalized coordinates q; and generalized velocities ¢;i. In
describing gravity, the physical objects of interest are fields instead of discrete coor-
dinates. Therefore it is of interest to formulate the principle of least action for fields.
A field effectively assigns a generalized coordinate qx and a generalized velocity ¢x
to each spacetime point x. The generalized coordinates may come in different forms,
e.g. scalar, vector, or tensor. We write scalar-, vector-, and tensor-valued fields as
e(xH), AH(xV), and @~ (x*) respectively.

2.10.1  Scalar field in a flat spacetime

For simplicity, let us start by formulating the least action principle for a scalar
field @(x) in a flat spacetime. Given the boundary conditions

e(x, t) = @1(x)
o(x, t2) = @2(x), (2.98)

the field ¢(x) evolves in such a way that the action

S = / d*xL(e,00) (2.99)
is minimized. If we perturb the field ¢ slightly around a solution ¢¢(x,t) as
e(x,t) = @o(x,t) +0¢(x,t) (2.100)
where 5@ must obey the boundary conditions
dp(x,t1) =dp(x,ty) =0 (2.101)
and the locality condition
dp(x,t) -0, asx— o0 (2.102)

then the action does not change if

8S =/d4x (£ (9o +09,0,900 +0udp) — L (9o, 0,¢)]
oL oL

o—/d“x[é +———0,6 }
T TE N R

_ @t | 50— oL
o[ ()

|22 d @
oL t2 oL
+ [ d3x ( § ) +§I§dtdS. ( 5(p)
/ 2 (009)" " t d(0¢)
=0 boundary cond. =0 locality

which is the Euler-Lagrange equation for fields

oL oL
202 (5r0ug) = 9

Example 2.2. Consider the following action

S:/d4x(F((p)+ %auq)a“q) ) (2.104)

scalar kinetic term
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with the scalar potential

1

Flo) Z—Emchz—%q)“. (2.105)

Varying the field @(x,t) = @o(x,t) + d¢p(x, t) around the solution ¢¢(x, t) results in
the variation of the action

8S = S[po + 8] — Slpo]

1 1 A
0= / d*x (2%(@0 +8¢0)" (po + 5¢) — Emz(tpo +8¢)? — 200+ 6(9)4> —Sleo]
0 :M—/d“x (mchoécp A3t — au@oauacp) — Sleg] + O(542)
0= / d*x (awoa%(p —m2de —mpgzs(p) +O(592). (2.106)

Integrating the first term by parts and using the locality condition, we get

0= / d*x (auau@o +m?@o +?\(p8) Y0} (2.107)

or
Oe(x,t) + m2e(x,t) + A@3(x,t) = 0. (2.108)

Alternatively, we could have arrived at the equation of motion above directly, by
using the Euler-Lagrange equation.

Example 2.3. Lagrangian formulation of electrodynamics.
The free (without sources) Maxwell equations can be obtained from the following
action

S= —/d4x%FWF’“’ (2.109)

with
Fuv = 0uAy —0vA L. (2.110)

Varying the action and setting it to zero

dAS =S[AM +5AH] —S[AM]

0 :/d4x [M— % (Fyn SFHY + FHYSF . ) +M}

0 :—/d4x%FuV6F“V

0=— / d4x1§Fw (QHBAY —dVEAHM). (2.111)
Since T, is antisymmetric, we can rewrite the above as

0= / d*x (—Fuv0HdAY). (2.112)
Integrating by parts and imposing the locality condition gives
0= / d*x (0MFyv) 8AY

i.e. we arrive at the homogeneous Maxwell equations (Gauss law and Ampere’s law)

oMFy =0. (2.113)

The remaining two equations (magnetic Gauss law and Faraday’s law) are obtained
automatically from the symmetry property of the field strength tensor F,

€uvpo0 FPY =0. (2.114)



40

| CHAPTER 2. GENERAL RELATIVITY

2.10.2 Scalar field in a curved spacetime

The action for a scalar field in a flat spacetime can be generalized to its curved-
spacetime version by making the following replacements:

o d*x — \/=gd*x in the action.
e 0, — V (or,—;) in the Lagrangian and equations of motion.
e Nuv — guv in the Lagrangian and equations of motion.

For example, the curved-spacetime version of the action with the scalar potential
considered in the previous section is

5= [ Vet (39" b — ymPe? - o) (2115)

and the corresponding equation of motion is
oM —mid—Ad> =0. (2.116)

For another example, the curved-spacetime generalization of the free electrodynam-
ics action is

1
S = /w/—gd4x (—49“"99‘7FWFVG> (2.117)
and its equation of motion becomes

Fuv'Y =0. (2.118)

2.10.3 Einstein-Hilbert action and Einstein equation

We are now ready to formulate the least action principle for gravity. The action
describing gravity must be a scalar, as any action should be, and a function of the
metric g,v, as it is meant to describe gravity. The simplest of such actions is called
the Einstein-Hilbert action. It reads

1 A
SE = /d4X\/—g <_]67'[C:‘R_ 87‘[G> (2.119)

where R is the Ricci scalar we introduced earlier and A is a constant dubbed cosmio-
logical constant. It is not difficult to construct more complicated scalars out of the
metric. To the Einstein-Hilbert action above, we could add various contractions of
the Riemann tensor or Ricci tensor, e.g. R,.+R*Y. However, as we will see, in most
cases of interest such terms are suppressed, i.e. their contributions to the dynamics
are negligible.

The Einstein equations, our current best description of gravity, follow from vary-
ing the Einstein-Hilbert action with respect to the metric g,v. Before we proceed
to derive the Einstein equations, we would like to derive a few useful identities
related to the variation of the metric g,v. The variation of the metric g, and the
variation of its inverse 6g"" are related via

guvg’? =0,." =  guv89¥? +8guvg’P =0 (2.120)

Next, we are going to work out the expression for the variation of determinant of
the metric g = det g. Recall the following identity from linear algebra

g =exp (Trlog gpv). (2.121)
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Varying this identity gives
g+ 69 = exp Tr [ln(gpv + 59;4\/)]
=expTr |In(guv) + g;\],égw}

— eTr(gpvJ eTr(gaw]/‘Sguv)

(2.122)
=g
=g(1 +T1'(9HV69uv))
=g (1—guvdg™Y) (2.123)

where we have used the fact that g+¥6g,~ is a scalar and used the result (2.120) in
the last step. Therefore we can see that (as we did in the third problem in Problem

Set 4)

59 = —gguvog"”. (2.124)
The identity (2.124) allows us to evaluate the variation of the \/—g appearing in the

Einstein-Hilbert action

5(v=g) =~ 2F

Armed with the above identities, we can now vary the Einstein-Hilbert action

starting from the Ricci scalar R term
6/d4x\/—gR:6/d4x\/—gg‘”Rm,
:/d“xs(,/—g) MVYRuv +v—g8(g" Ryy)

_ 1
(21:25)/d4x\ﬁg —29ap89%% 9" Ruy +8(9"VIRuy + ¢V 8(Rywy)
—
=R

1
= / a*xv/—g (RHV — 2gm,R> dghY +/d4x\/—gg“V6Rm,.
(2.126)

To compute the second integral, we go to the local Minkowskian coordinates where
guv =Muv and FSV = 0. In these coordinates, the Ricci tensor can be written in the

form N
oy  olfy

Ry = . .
WY T T oy (2:127)

and so the expression ghv R, becomes

o8Iy, dore - ) dw?
. wv poe | Guv=Npy A A _
gmk”v_gw< o aw) = o |9 — 9T | = 5K
—wA
and hence
LV e 10 — 4y /= @
d"xv/—gg" oRy = [ d'xv/—¢g o

Gy TNy /d4x— (Fw )

divergence theorem

= yg dS;\\/—gwA =
S

since w™ = 0 at infinity. Therefore, the remaining term is

6/d4x\/—gR = /d4x\/—g (Ruv — ;g,WR> dgHY. (2.128)

\/ gwég (2.125)
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Notice that the expression inside the brackets is the Einstein tensor G defined in

(2.91). Furthermore, the variation of the cosmological constant term in (2.119) is
8 / d4x\/—gi A / d*x —Lég _ 1 / d*x (vV=ggu~v8g"Y)

8nG  8nG 2\/—g 2 i ’

(2.129)

Combining (2.128) and (2.129), we find that the variation of the Einstein-Hilbert

action is given by

1

16nG’

1
8Sg = _/d4XV_9 (RHV—ZQMVR_}\QLW> ogHY (2.130)
Suppose that in addition to the Einstein-Hilbert action S¢, we also have an action
Sm describing the behavior of matter. The variation of Sy with respect to guv can
be written as

1 &S
_ 4 = M uv

OSm = /dx v—g [\/TQ by 5g ] . (2.131)

Finally, demanding that the variation of the total action is zero
0Sg +8Sm =0 (2.132)

we obtain the Einstein equation
1

Ruv — EQLWR —Aguy = 8nG Ty (2.133)

where we have defined the energy-momentum tensor T~ as

T 2 3Sm
= S (2.134)
The energy-momentum conservation
Tuvin =0 (2.135)

follows from g,.v;p = 0 and the Bianchi identity in a way analogous to the current
conservation in electrodynamics (0, F*¥ =jv) — 0jY =0.

Remark 2.11. Canonical energy-momentum tensor and Hilbert energy-momentum
tensor.

You might have seen in the Quantum Field Theory lectures a different definition of
the energy-momentum tensor in flat spacetime

0L
TEY =
C 0 d),u
that derives from the Noether theorem in the presence of translational symmetry.
We call this version of the energy-momentum tensor canonical energy-momentum ten-
sot, in contrast to the one we defined earlier (2.134), which is known as the Hilbert
energy-momentum tensor. While the Hilbert energy-momentum tensor is symmetric
in pv and gauge-invariant, the canonical energy-momentum (2.136) is in general
not so. The two versions of energy-momentum tensor can in general be related as

0Vp—mtVL (2.136)

THY = TEY + %aﬂpﬂw (2.137)
where PV is an appropriate antisymmetric tensor with the property
PAY = Y, (2.138)
Thanks to this property, we have
oMY =0 (2.139)

and consequently adding 3" to the canonical stress-energy energy tensor does
not change the fact that it is conserved.
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Example 2.4. Energy momentum tensor for a scalar field.
A free scalar field in curved spacetime is described by the following action

1
/d4X\/ ( 9"V 0,92y — ym?e ) (2.140)

We would like to compute the energy-momentum tensor for this action using (2.134).

Varying the action with respect to g, yields
1 1
8Sg =/d4x5(\/—9) (29“%@%@—2“1 ® ) /d4xv ( 5gMY au(Pav(P)
1
:/d4x§\/—g(au(pav(p—gm,ﬁ)égw (2.141)

where we have used Eq. (2.125). Therefore the stress-energy tensor is

_ 0p 0@

WY T S R oy guvL (2.142)

which has the same form as in a flat space apart from the substitution 1,,v — guv.

Example 2.5. Energy momentum tensor for a system of point-like particles.

To start with, consider a point-like particle moving along a trajectory x* = x* (1)
where 7 is a parametrization of the curve. Such a system is described by the action
(2.39) whose variation with respect to the metric can be calculated as follows

58S :—m/((guv+5gw)dx“dxv)% +m/(gwdx“dxv)%
B /1 Sgwdx”dx

2\ /g~y dxtdxY

dxH dxY
=—m ,W—Tiﬂtd’t

dxH dx¥
—m/ 5(—9angpv09™ P)— el (2.143)
where from the first to second line we used v/x + dx ~ /X + from the second

z\f'
to third line we used dt = /guvdx*dxV; from the third to fourth line we used
the identity (2.120). To bring the above expression to a functional derivative form,
we include a 4-dimensional spacetime integral d*x at the expense of slipping in a
Dirac delta function 5% (x* — x*(t)) which makes sure that the particle follows the
trajectory x*(T)

dxH dxY
65—/d’t/d4x\/ \/7 > gcxugf,vég By=—_ gy Féél(x”fx”(”t))

dxH dxY
/d xzx/ gdg ( \/—g‘xuggv p— —d"(xt—x (T))) (2.144)
from which we can read the energy-momentum tensor for a point-like particle

m dx* dxP
Tuv = = [ dT0uadvp g — 80 (x* —x(1)). (2.145)

Due to the presence of the é-function and /—g, one may question whether the
energy-momentum tensor we just found is really a tensor. From the identity 1 =
Ik d*x6% (x* —x* (1)), we can deduce that §*(x* —x* (1)) transforms in a way that is
opposite to how d*x transforms

oxH

-1
8% (x* —xM(1)) = (det E)x“") 5 (x> —x'*(1)). (2.146)
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Furthermore, since the determinant of the metric det g, transforms as

oxH oxY oxH oxV
detg,v — det <ax’°‘ 5P -g’m,) = <det ™ ax’ﬁ) - det g'm, (2.147)

\/—¢g transforms as

I
v—g — det aa);u det+/—g’. (2.148)
/

Therefore the combination 54 (x'* —x'%(1)) /\/—¢ is invariant under coordinate
transformations and T, indeed transforms as a tensor.
2.10.4 Physical meanings of the components of T,

The physical meanings of the components of the energy-momentum tensor T,
can be seen clearly in the case of a point-like particle. In a flat space time, we have
v—g =1 and guv =nuv. Consequently, the energy momentum tensor (2.145) of a
point-like particle becomes

m dx* de dx,, dx
Ty = — —— & (x* — —E = (M —xM ().
nv \/T/dTT]HOCT]VB dt dt ( m/ dt dT ( x (T))
(2.149)

Substituting the definition of 4-momentum p, = m%, energy E =ym and proper

time dt = dx°V1—vZ = deo, and decomposing the d-function, we get

Tuv = / de%@ (xi —xi(’r)) ) (xo —XO(T)) . (2.150)
After performing the integration, we find
Tuv = Pupv 63( —x'(1)) (2.151)
from which we can read off that
o Too = E&3(xt —x1 (1)), i.e. Too represents the energy density.
o Toi = pid3(xt —xi(1)), ie. Tos represents the momentum density.

o Ty = PPis3(xt —x¥(1)), ie. the flux of momentum p* across the surface of
constant x*.

In general, the components of T,y can be understood as the flux of p" across a
surface of constant x¥. For example, the energy density Ty is the flux of energy
across the surface of constant time. The total energy E and the total momentum P;
can therefore be obtained by integrating Tpp and Tp; respectively over all space:

E:/d3XToo, P; :/dg’xTOi. (2.152)

The conservation of the total energy of a system follows from integrating the local
conservation of energy Tu+"Y = Tuv/Y = 0 (flat spacetime) for =0

d 3 36T017d7E_/3 7_/ dE
0= dt/TOOd X /d e m d’xV-P = dS-P T (2.153)

To understand the meaning of Ti; better, consider the following example.
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Example 2.6. Energy-momentum tensor of an ideal gas.

Consider a gas of non-interacting point-like particles in a flat spacetime. To describe
such a system, we define the distribution function f(x, p), which tells us the number
of particles in a volume dV around the point x and with momentum spread d3p
around the momentum p. The distribution function f(x, p) is related to the number
density n(x) as

n(x) :/d3pf(x,p). (2.154)

If the momentum distribution of the particles is isotropic, we can write the distribu-
tion function as

f(x, p) = n(x)f(p) (2.155)

with p = [p| and [ f(p)d3p = 1. The energy-momentum tensor of the ideal gas can
be computed by summing up the energy-momentum tensor (2.151) of individual
particles we obtained earlier

Tuw =n(x) [ & f(p) PP, (2.156)

We can easily see that

* Too =n(x) [ d®p f(p)E(p)

o Toi =n(x) [ d3p f(p)p; = 0 since this integral is odd for d3p —» —d3p

To simplify our discussion, let us assume that the ideal gas is non-relativistic and
in thermal equilibrium so that the f(p) obeys the Maxwell-Boltzmann distribution

2
- _
With this assumption Ty can be computed explicitly, yielding
Too = n(x)m +n(x)3T = p(x) (2.158)

i.e. the energy density at point x. It requires a bit more work to obtain Tij. First,
notice that due to the isotropy assumptions we can write

2 1
(pipj) = <(Pl) >ﬂij = ngTlij- (2.159)
Then, we can compute Tj; as follows
2 2

o 3 pipj _ 1 . 3 P P-
Ti; 7n(x)/d p f(p) T = 3n(x)n1]C/d pexp( 2mT> m (2.160)

The integral can be computed exactly and when the dust has settled we find that
Tij = 7TL(X)TH)'2T = PTH)' (2.161)

where P = 2Tn is the pressure (the force the particle bombardments would exert
on a perfectly reflecting unit surface) of the ideal gas. Therefore, we conclude that
the Ti; components of the energy-momentum tensor represent some sort of the
pressure.

2.10.5 Newtonian limit of Einstein equations

One test of the success of General Relativity as a theory of gravity is that it must
reproduce the results of Newtonian gravity in the limit where: the cosmological
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constant is negligible A = 0, masses are “small" (to be clarified), and velocities are
small v < 1. When we set A = 0, the Einstein equations (2.133) reduce to

Ruv — %gHVR =8nGTy. (2.162)

Taking the trace of both sides, we find

1
8nGTH = 8nGTuvg"Y = g" Ry -5 g"VguvR=—-R.

Thus, we can rewrite the Einstein equations as

1
Ruv = 871G (TILW — 2gm,T> (2.163)

with T = TH ;. Recall that in the case of a point-like particle at rest we have Tpg =
ms3(x) and Ti; = Toi = 0. In that case, the Einstein equation for u = v = 0 becomes

1 1
Roo = 8G | Too — 5 900 T| =8nG <m53 (x) — 2T> ) (2.164)

Since T=TH, =g" Ty, = g°°Tyo = Too, the above simplifies to
Roo = 4mGm&3(x). (2.165)
Now, Rpp can also be computed using (2.69)

A
_ al—‘00 _

Ran =
00 A

GIp e
0 — (T~ A (2.166)

where we have used

i 108900 8902 i
Moo = 7 oxt = Moo =
i.e. the only non-zero Christoffel symbols. Equating the newly obtained Rpo to

(2.165), we obtain

%¢
oxt

(2.167)

A = 4nGms3 (x) (2.168)

which is exactly the Newton equation of gravity for a point particle, as expected.

2.10.6 Other possible terms in the action describing gravity

Setting aside the cosmological constant A and dimensionless factors, the Einstein-
Hilbert action reads

Se ~/d4x,ﬁ—gG;,1R. (2.169)

As a modification to the above action, one could conceive terms like R? or RuvRHY.
We are going to show now that these terms are negligible in most cases of interest.
Since the action has no mass dimension (GeV°®) and the dimension of the volume
element d*x is GeV~*, each Lagrangian term must have the dimension of GeV*. The
R term of the Einstein-Hilbert action, for example, is made up of an R ~ 32g,,~ /9x?
whose dimension is GeV? and a G? = M% (where Mp is the Planck mass) whose
dimension is GeV? so that they together make GeV*. Any other term we wish
to add to the Einstein-Hilbert action which involves some scalar function of gp.v
must be multiplied with an appropriate power of the Planck mass Mp to get the
dimension right. For instance, consider the following two terms
~M2 (Ax)—2 ~(Ax)—*

(2.170)
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where Ax is the typical length scale of the system of interest. When we take the
ratio of the two terms

R? (Ax)~* M;?

MZR  M3(Ax)=2  Ax?

(2.171)

we see that the R? term is negligible as long as the length scale of interest Ax is
much larger than the Planck length M;] ~ 10733 cm. Similar arguments apply to
other higher-order terms that we can imagine adding to the Einstein-Hilbert action.
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3 TESTS OF GENERAL RELATIVITY

3.1 GENERAL STATIC ISOTROPIC METRIC

In many cases of interest, the spacetime is approximately static and isotropic.
It is therefore instructive to figure out the most general static and isotropic metric.
Specifically, static means that the metric is time-independent and isotropic means
that the metric is invariant under rotations. To ensure the former is satisfied each
component of the metric must not depend on the time coordinate t and to ensure
the latter we build the metric solely out of rotational invariants such as dx?,x - dx
and x2. The most general metric with the aforementioned properties has the form

ds? = F(r)dt? — 2E(r)dt(x - dx) — D(r)(x - dx)? — C(r)dx? (3.1)

where F(r), E(r), D(r), C(r) are arbitrary functions of r = y/x - x. Let us now take se-
veral steps to simplify the above expression. First, we go to the spherical coordinates

x! =rsinBcos ¢

x2 = Tsin 0 sin ¢ (3-2)
x3 =rcosH.
Since
X dx—ld( x2 )—1d(rz)—rdr (3-3)
2~ 2 - 33
=r

dx? = dr? +12d02 + 12 sin2 0d2, (3-4)

the metric can be written as
ds? = F(r)dt? — 2rE(r)drdt — r2D(r)dr? — C(r) (dr2 +12d6% + 2 sin? ed¢2) (3.5)

We can remove the cross-term drdt by shifting the time coordinate appropriately
t’ = t+ @(r) while keeping the remaining coordinates unmodified v’ = r, ¢’ =
¢$,0’ = 0. The time differentials are related as

oD (1’
dt=d(t' —®(r)) = dt’ — ag ar! (3.6)
and so the new metric becomes
2
) )
ds? =F(r') ( at’ — a—dr' —2E(r)r'dr’ ( dt’ — a—dr'
or’ or’

—r2D(r)ar? - C(r) (@r? +172d0"% +12sin? 0'dp? ) (37)
The drdt term vanishes if we choose @ (r) such that

do  r'E(r)

ar’ ~ F(r)

(3-8)

Making another coordinate transformation C(/)r’? = 1”2 while keeping the rest
of the coordinates unmodified, we arrive at the “standard form" of static isotropic
metric

ds? = B(r)dt? — A(r)dr? — r%(d0? + sin? 0ddp?) (3.9)
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where we have gotten rid of all the primes and A(r), B(r) are some combinations of
the functions of r introduced earlier.

For future convenience, let us derive some useful formulas related to the static
isotropic metric. We can read from (3.9) the non-vanishing components of the metric

Jrr = 7A(T), gtt = B(T)/ goe = 7T‘2/ 9o = 71‘2 Sil’lz 0
and its inverse
1 1 1 1
T tt _ 00 _ _ [OYOR .
g A’ 9 TBay 9 I 2sin? 6
From these components, we can calculate the determinant
g=detguy = —r%sin? 0A (1)B(r) (3.10)
and
V=g =12sin0/A(T)B(r). (3.11)
Using (1.106), we obtain the non-vanishing Christoffel symbols
A’ T
M =51 Mo =%
[T :_rsinzﬁ . :E’
b A oA
1
Free:; ng):—sinecose
¢ _ ] b _
Fq)r_; Fd)e—cote
BI
M=o (3.12)
from which we can compute the non-zero components of the Ricci tensor
[B” 1 /B A’ B’ 1A'
RT‘T‘:_ P e —t+ = |-
2B 4\BJ\A "B/) TA
Roo = — |1+ (-2 B L 1
O T2AaU A TB)TA
Rd)d) = SiI‘l2 eRee
e _[LBY 1B\ (A BN 1B )
“="1"2aTa\Aa)\A "B) T \A )] 313

3.2 SCHWARZSCHILD METRIC

In this section, we consider a special case of the static isotropic metric (3.9) in a
spacetime with a spherically-symmetric mass distribution concentrated around the
origin (r = 0). In particular, we are interested in spacetime regions sufficiently far
from the origin where matter is, for all intent and purposes, absent. The metric in
those vacuum regions has a special form and is known as the Schwarzschild metric.
In Newtonian gravity, such a system is described by the Laplace equation V2@ = 0
and the solution is ¢ = C/r which is valid everywhere except near the origin where
matter is present. Let us now derive the General Relativistic equivalent of it. The
Einstein equation (2.133) in the absence of matter (2.133) reduces to

1

Ryuv — EQHVR =0. (3.14)

Taking its trace

1
g”VRuV—ER guvguv =R(1-2)=-R=0

=R =4
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we find that the Ricci scalar R vanishes, which, in turn, means that the Ricci tensor
Ry also vanishes, owing to the Einstein equation (3.14). Since the Ricci tensor for
a static isotropic spacetime can be written in terms of two functions, A and B, as

found in (3.13), the condition Ry = 0 provides us with 4 equations for 2 functions.

There is, in fact, a redundancy. The Rgg = 0 equation and the Ry, = 0 equation
give the same constraint. Furthermore, as we are going to show now, the remaining
3 equations can be reduced to 2. Consider the following combination of the R, =0
and R¢¢ = 0 equations

Ry Rye 1T (/A" B\ A’ B’
(A2+AB =0 = +—==0. (3.15)

A B

When written in a different form
A'B+B’A = (AB)' =0

it clearly implies that
AB = constant. (3.16)

Far away from the origin at r — oo, we expect the spacetime to be flat and so A — 1
and B — 1. This implies that the constant in the equation above must be equal to 1

AB=1. (3.17)

This equation allows us to rewrite the Rgg = 0 and R, = 0 equations as

Re. _ _B"_ B/ __BrB"4B’ _ Rie _ (3.18)
T T 2B B — 2B ~ 2rB —

{Rge =1—tB’'—B =0

ex]

which demonstrates that these equations are equivalent in terms of the constraints
they give. It is therefore sufficient to consider only Rgg = 0. It can be written as

(rB)' =1 (3.19)
which can be solved easily

C
TB=r+constant = B=1+ p (3.20)

To determine the constant C, we use the weak-field limit correspondence B = g ~
1+ 2@, where in this case ¢ = —GM/r. Thus, we find

B(r)=1— ZA;LG (3.21)
and by (3.17)
1

A(r) = T 2GM/r (3.22)

All in all, the metric is given by

2GM dr?
2 _ (1_cbM 2 4 2402 2.2 2

ds® = (1 " ) dt 1 2GM/r °d0“ —1r° sin” 0d¢~. (3.23)

This metric is known as the Schwarzschild metric. The combination 1y = 2GM
is often referred to as the gravitational radius or Schwarzschild radius. Something
interesting happens at v = 14. At that point A = co and B = 0. We will come
back to this issue later. Furthermore, in the r < r4 region both A and B change
sign. As a result, the roles of the radial coordinate r and the temporal coordinate t
are interchanged; r behaves like a temporal coordinate and t behaves like a spatial
coordinate.
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3-3 MOTIONS IN SCHWARZSCHILD SPACETIME

3.3.1  Equations of motion

Now that we have computed the Schwarzchild metric

2MG 1
ds? = (1 — r) at? — 1_wdrz —12dQ (3.24)

T

with dQ = d6? 4 sin? 8dd? we can proceed to study the motion of a particle in a
Schwarzschild spacetime. When we want to describe the motion of a particle in a
curved space, the first equation that comes to mind is the geodesic equation

d2xM dxV dxP
o P e =0 (5.25)

Instead of using the geodesic equation, we take this opportunity to show the power
of the action principle, which makes the computations simpler. In fact, we will
also show in passing that the Christoffel symbols can be obtained relatively easily
by comparing the equation of motion obtained from the action principle with the
geodesic equation. Consider the action

1 dxM dxY
S= —Em/ dt QHVFE (326)
whose extrema describe the motion of a free particle. Knowing the Schwarzschild
metric, we can write the above action more explicitly

1 at\? ar\? 5 /de\* L . 5. [/dd\?
S:—im/d”c lB(r) (dT) —A(r) (dT) -7 (d’t) — 1< sin e(d”t) .

(3-27)
Note that we do not include the Einstein-Hilbert action in the action we are consid-

ering. This amounts to ignoring the backreaction of the particle to the spacetime. In
other words, we treat the metric as a fixed background.

Extremizing the action over variations in t, ¢, 6, and r, we obtain the following
equations of motion

d dt

a4 (. 2,dd
cb.Ode( sin Gd)

T

2
o 4 2d0 2 dé
G.O—de (r dT) T smScosG(dT)

pro_ & (4dr) 10B (dt 1dA (dr\* 2rsin0 (dg\®  (de)?

7 oat\'dr)  209r \dt/) 2dr \dt 2 dt dt
respectively. By deriving these equations, we have indirectly calculated the non-
zero Christoffel symbols. Take the first equation, for example. We can rewrite it
as

d’t B’ drdt
a7 " Barar (29
Based on the form of the second term, we can deduce that it corresponds to the
geodesic equation (3.25) for p =t and it follows that
B/
M= B (3-29)

Taking advantage of general covariance, without loss of generality we can go

to a coordinate system where, say, 0 = 7/2. According to the equation of motion
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obtained from varying 6, we have d6/dt = 0 in this coordinate system. Therefore,
in general the particle moves on a constant 0 plane, which in this case is chosen to
be the 6 = 71/2 plane. The equations of motion obtained from varying t and varying

¢ then reduce to
d dt
(B ) =
de ( dT) 0

d (2dd)
de(r dT>_O'

Integrating them gives us two integrals of motion E and ]

dt
E=mBo
m dt
d

J = mrzdfd;. (330)

E can be interpreted as energy and ] can be interpreted as angular momentum. The
expression for | agrees with the non-relativistic formula for angular momentum,
r x p, and in the r — oo limit the expression for E simplifies to

mBE B2l mﬁ S
dt  dr V12
which is the relativistic formula for energy.
Now, consider the following identity that follows from the definition of proper
time dt? = g, vdx"dx”

1= axt dx¥ (3.31)
- va dT dT : 33
Substituting in the Schwarzschild metric, we get
2 2 2
dt dr 2 dd) _

Using the conserved quantities (3.30) we recently found, we can rewrite it as

E\? a2 L/ 7\
#(s) A lae) 7 (ee) - 639

2 2 2
A<dr> +) Eo_ (3-34)

dt) " mZZ mZB

Notice that the derivative of this equation coincides with the equation of motion
from the variation of r, which is not a surprise as the 4 equations of motion are
enough to determine the dynamics of the 4 coordinates t, ¢, 6, and r. Adding
the proper time identity to the set of equations would only make the resulting set
redundant.

To recap, the motion of a particle in a Schwarzschild spacetime is dictated by
the following equations

or

0=m/2
dt
E=mB—
m dt
do

_ 22N
J=r dt

2 2 2
—1:A(dr> +- £

dt m2r2  m?2B’

The above equations, however, only apply to massive particles. This is because they
involve dt’s which are zero for massless particles. In order to describe massless
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particles, we need to parameterize the time with a different parameter than t. We
can choose the parameter to be the coordinate time t

0=m/2
J_ 1,49
E B dt
E2 /dr\? J? E2
0=As <dt> + 35 (3:35)

3.3.2 Open orbits: light bending

The trajectory of a particle in an isotropic static spacetime can be described by
the function r(¢) or its inverse ¢(r). Let us compute such a function. We can
rewrite (3.34) in terms of r and ¢ only by making use of the angular momentum
conservation equation | = mr2dd/dt

EZ A 2 d 2 2
) (d;>> —17 = m?. (3.36)

All that is left to be done is solving this equation. After rearranging it to

B r4

A 2 2 ] mz Ez
T‘T‘dr + do (7’2+]2_13]2 =4, (3-37)
moving one of the terms to the right hand side, and integrating, we get
VA
o(r) = i/dr iR (3.38)
2 (LZ _m2_ L) 2
B]Z ]2 r2

This equation is valid not only for Schwarzschild spacetimes but also for any static
and isotropic spacetime. If the particle in question is massless, we can simply set
m = 0.

Consider a particle of mass m moving towards the Sun from far away with an
approximately constant velocity v. We are interested in calculating to what extent
the particle’s trajectory is bent by the gravitational pull of the Sun. While the particle
is still far away, say at the coordinates r and ¢ < 1, its impact parameter b is given
by *

brrsing =1 (3-39)

and its radial velocity is given by

_d(vcosd) _dr
Tdt Tt (3-40)

Thus, the particle’s angular momentum and energy are given by

mvb
J= N (3.41)
m
Vs G4

However, our calculations would be simpler had we expressed the angular momen-
tum J in terms of 1p, the particle’s closest distance to the Sun, instead of the impact
parameter b. At the point of minimal distance, we have

dr

do
If the gravitational pull is turned off, the particle’s trajectory would be a straight line. The impact
parameter b is the shortest distance from the origin (where the Sun is located) to this line.

(ro) =0, (3-43)
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and (3.37) becomes
== =0 (G-44)
Making use of (3.42), we obtain an expression of | in terms of g

Tom 1

I= 7= \50g ! +v2. (3-45)

Now we want to plug this | into (3.38). Let us start by working out the denominator
of the integral

B m? 1 1o (m*y? 5\ 1
B(r) 2

BJZ ]2 12 J(r0)?
1 wZy? 1
< Y _%)_Tz

T y? (B(]ro) -1 +v2) o)
1 2
1 (BH‘”V> 1 (3.46)
r2 ﬁ—1 +v2 2

Hence, the full expression of (3.38) becomes
° VAdr
d)(T') :/ ; T
T sm )
Té B(lo)i1+vz v
Notice that ¢(r) — 0 when r — oo, as it should. To make our calculation simpler,

let us suppose that the particle we are considering is massless so that we can set
v = 1. The above equation then simplifies to

o VAdr o0 VAdr
P(r) = o= X
’ 1B(g) 1 \* T 2 B(ro) :
r? <r(2) B (1) _rz) T(:g B(1) _1>
As we can see in Figure 1, the angle of bending is given by

Ad =2d(ro) — 7. (3-49)

Let us now assume that vy > 74 to further simplify our calculations. This allows us
to make the following approximations

(3-47)

(3-48)

-

M
A(r)%H—ZTG
B~ 1_2MG
T

In this approximation, we can compute ¢(ro), and therefore Ad explicitly (see exer-

cise 1 set 12). The result is
4MG )’
Ap=""140 <9> . (3.50)
To To

Note that at this level of accuracy, the impact parameter b and minimal distance
1o coincide. If we plug in the following numbers: M = Mg = 1,97 x 1030 g, 79 =
R = 6,95 x 10° km we get

Ad = 1.75 arcseconds (3.51)

which is extremely small. One way to observe this effect is by measuring the shifts
in the apparent positions of stars when they are close to the sun, angularly speaking.
Due to such shifts, some stars located behind the sun can be visible.
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bo {\%3/ - light trajectory

Figure 2: The orbit of a planet around the Sun.

3-3.3 Closed orbit: Precession of Mercury perihelium

Newtonian gravity predicts that planets orbiting around the Sun follow closed
elliptical trajectories (see Figure 2). The minimum distance r— (perihelium) and
maximum distance r4 (aphelium) of a planet to the Sun are given by the conditions

dr

dé
The same conditions apply in GR, though the orbit is more complicated. At these
extremum points, (3.34) reduce to

LS S
i J2 B(ry)J?

(r+) =0. (3-52)

=0 (3-53)

From these two equations, we can obtain the two integrals of motion | and E

B2 12 —y2 \B_ By )’ E2 B, B_)(r2-12) '

One crucial thing that distinguishes general relativistic planetary orbits from New-
tonian ones is that general relativistic orbits are typically not closed in the sense
that the perihelium and aphelium of the orbit do not stay at the same angular co-
ordinates, but instead they precess. If the orbit of a planet were to be closed, twice
the angle between the perihelium and aphelium 2|¢(ry) — ¢(r—)| must amount to
exactly 27t. This is not the case when general relativistic effects are not negligible.
They cause the angular position of the perihelium to shift by some amount

AP =2|dp(ry) — P(r-)[—2m. (3-55)

in each revolution, where ¢(r1) — $(r_) is given by

q>(r+)—q>(r_)—/:+ T (3.56)
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Massive particle potential Massless particle potential
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Figure 3: Effective potential for different values of x = ;1% in the massless and massive

particle case.

and E and | were found in (3.54). This integral can be computed exactly when
T+ 3> 14 (see exercise set 13). When the dust has settled, one finds

MeG 1T 171 1
A ~ 67‘[T where 13 (mr + r) . (3.57)
Among the planets in our solar system, this effect is strongest for Mercury as it has
the smallest L. For Lyjercury = 55,4 % 10° km we find

AdMercury = 0.1038 arcseconds (3.58)

for one revolution, which is a tiny shift (only 43 arcseconds in 100 years). Further-
more, this even harder to observe because it is not the sole effect that contributes
to the Ad. For example, Newtonian gravity predicts that the gravitational pulls of
the various planets in the solar system give a Ap = 532 arcseconds in 100 years,
i.e. about 10 times larger than the general relativistic precession. On top of that,
there are other effects that we have not taken into account here, e.g. the spherically
asymmetry of the Sun, that may modify A¢ further. Despite all these difficulties,
experimentalists have managed to identify and confirm the general relativistic con-
tribution to Ad.

3.3.4 Effective potential and orbits

So far, in deriving various results, we have assumed that v/rg > 1. In this
section, we will not make such an assumption. The radial equation of motion (3.34)
can be written in a form that eases physical interpretation

1 dr 2 1 T ]2 ].2 ]EZ

5|5 S(1=-2) (1 g - = .
Z(dr) +2< T)( +m2r5 2 T2 (3-59)
—_—— N——

"total energy”

kinetic energy "potential energy"

As indicated, we can interpret the above equation as the energy conservation of a
point particle in one dimension moving under the influence of an effective potential

_1 Tg > T
u=- (1 - ) (1 + mzré 2 (3.60)
with total energy total energy Eior = %—Ezz
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The dimensionless combination of constants x = mirg determines the different
possible shapes of the effective potential. See Figure 3 for representatives of differ-
ent possible shapes of the effective potential. Let us focus on the massive particle
case for the moment. Depending on the value of x there can be o or 2 points where
dU(r)/dr = 0 (turning points). When there are 2 turning points, the one with
smaller r is a local maximum (where circular orbits are unstable) and the one with
larger 1 is a local minimum (where circular orbits are stable). The turning points
can be found by setting dU(r)/dr =0

2
T=TgX

3
1+4/1——]. .61
XZ] (3.61)

Thus, there is no turning point if x < v/3 and there are 2 turning points if x > v/3.
In particular, for the latter case, say when x = 2, there are several possible types of
trajectories depending on the total energy of the particle, its starting point, and its
initial velocity

Z .
o Upin < %% < Uy closed orbits.

2 . . . . .
o Uy < %% < Umax: open orbit (scattering) if the particle starts outside the
radius of Umax or falling into the center if it starts inside.

o Umax < %% falling into center if the particle moves radially inward or going
to infinity if it moves outward.
where Upin, Umax, and Uy are the local minimum, local maximum, and value at
T — oo of U(r) respectively.
Now, we turn to massless particles. Starting from (3.35), we can switch to the
parameterization dA = Bdt to simplify things more. The radial equation of motion
then becomes

1/dr\? 1 N 1

(=2 (1= ﬁ) = — . .

2 (d)\) +2(1-) o 2 (3.62)
| ——— ~—

kinetic energy potential energy total energy

In this massless case, the total energy is fixed to be 1/2 and the effective potential
energy has always one maximum Vmax. There are two possible types of motion

e Vmax < 1/2: light deflection/scattering.

® Vmax > 1/2: falling into the singularity.

3.4 BLACK HOLES

3-4.1 Falling radially into a black hole

Our aim here is to calculate the time it takes for a particle to fall into the point
of singularity (r = 0) of a black hole. For simplicity, consider a massive particle
moving radially inward (with zero ] = 0) towards a black hole. Suppose that the
particle is released with zero radial velocity dr/dt = 0 at r = ro. Imposing these
initial conditions on the radial equation of motion (3.34), we find

Ezz_<1fg>_o
m To

& -2t (-2) o

and so
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Taking the square root and rearranging

d 1T 1 d
a_ Tg ( — ) = ! Mo _ _gr. (3.64)
dt T T ,/ To—T

Then, we perform a change of variables - = z

z  dt |rg
T—z 1o\ v’ (3:65)

Let us first compute the amount of proper time T4 it takes for the particle to reach

T =14 starting from r = rg
To dZ\[
= .66
Tg = m/rg/i Vi (3.66)

One can check that the result is finite. Moreover, the amount of proper time Ty it
takes to reach the singularity r =0 starting from r =1¢

To [ dzyz m To
Tg =T =370/ .6
g o,/rg N o/ 7 (3.67)
is also finite.

Now, we repeat the same calculation from the perspective of an observer at rest
at v = 19 and assume that 1o > 14. The time interval dt as measured by the
observer’s clock is related to the proper time interval dt of the falling particle by
the energy conservation equation

dt
E= de— (3.68)

Thus, the falling time of the particle as measured by the observer’s clock is

E dt E 1 dt E [To o/ 1o
dt: —_— _— = — 77(1 J— d /' )
/ m/ B m/ B(r) dr <" m/r 7 g \| o — /)74 T (3-69)

Interestingly, the integral diverges in the limit r — 4. In other words, the observer
will never see the particle crossing the r = 4 horizon. To get an estimate of how
quickly the time diverges, we can approximate all the r”’s in the integral with 74
except for the one that is subtracted by rq

- / o _E
/dt m/ 7Tg s mrg log Tg + const (3.70)

To recap, we found that it takes finite times to go from r = rg to r = r4 and from
T =14 to T = 0 from the falling particle’s perspective, but infinite time to go from
T =710 to T = 14 from the perspective of an observer at rest at T = 1o > r4. How
do we reconcile these two perspectives? To connect the two perspectives, suppose
that the in-falling particle constantly emits electromagnetic wave of frequency vg
towards the observer at r = 1o. Recall that due to gravitational redshift a photon
emitted with frequency vy at a point x1 is perceived as having a frequency v; at a
different point x;

v2 _ [goo(x1)
vi \ goo(x2)’ 67

Let x7 be the coordinate T of the particle and x, = 19 > 14 be the coordinate of the
observer (at which point the spacetime is essentially flat, goo(x2) ~ 1. Hence, the
frequency of the electromagnetic wave detected by the observer is given by

Tg

Vobs = V2 = V1 T (3-72)

As we can see, when r — 14 the frequency v, approaches zero. Consequently, the
particle appears frozen from the perspective of the observer.
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Remark 3.1. Mechanism of black hole production.

Among other possible mechanisms, black holes may form from the gravitational
collapse of a star, e.g. a neutron star. The physics of a collapsing star is extremely
complicated. Apart from its dynamical and non-equilibrium nature, we also need
to keep track of various effects, e.g. nuclear reactions, neutrinos, etc. Consequently,
one often needs to make various assumptions such as zero pressure or spherical
symmetry to get results.

Remark 3.2. The singular behaviour of the Schwarzschild metric at r = g4 is just a
coordinate artifact, nothing abrupt occurs at that point.

To justify this claim, we can construct all possible scalars from the metric g, and
check if any of them blows up at r = r4. Since R,y = 0 in a Schwarzschild space-
time, the consideration in Remark 2.9 tells us that there are only 4 such scalars.
Here we list them without justification

1
CHVpo_Cp.VpG; ,—_gexquCpUVKCAuVK}
C)\ cvkeoC AL, 1 C CVKPO ocBC An
TR po s 4\/_—9 AUVK po o

where Cj v« is the Weyl tensor, defined as

C?\uVK = g (nggw - 9?\|<9va) _% (g)\VRLLK - 9?\|<Rpw - guvR)\K + guKR)\v) - RMLVK
(3.73)
with the property C? uva = 0. Since the 4 scalars that we have listed are coordinate
independent, it is presumably simplest to compute them in the local Minkowskian
coordinate system. One can check that none of them is singular at r = r4. On the
other hand, these scalars blow up r = 0, signifying that it is a true singularity.
The above discussion implies that we can construct a coordinate system where
the event horizon is just an ordinary, non-singular point. Indeed, there are many
such coordinates. One of them are the so-called Krustal-Szekeres coordinates

1

T 2 t
u= <—1) e?'9 cosh —

Tg 21y
1
T 2 r t
V= (—1) e?'9 sinh —
Tg ng

for v > 14 and

|—

T\2 ., t
u= (1—) e?'9 sinh ——
Tg Tg

T T t
V= (1 — ) e?"'9 cosh —
Tg 2rg

for v < r4. The metric in this coordinate system is

N—=

43
Tge’r/rg (dv2 — du2> —12d0? (3.74)

ds? =
where 1 is understood as a function of u and v. Clearly, the metric is not singular at
T =Tg, as promised.
3-4.2 Event horizon

One of many conclusions we can draw from the discussion in Section 3.3.4 is
that for all cases, massive and massless included, if a particle reaches r < rg, it will
inevitably fall into the singularity at r = 0 (in Newtonian gravity g = 0 and so there
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is no case where the particle falls into the singularity). To put it simply, everything
that comes inside the region r < r4 does not come out. Since we cannot see what
is inside the region r < 4 (nothing can come out for us to see!), the surface r = rg
is also known as the event horizon. A hole from which nothing can escape would
presumably look black (setting aside Hawking radiation), hence the name “black
hole."

The presence of the event horizon is best understood with the concept of escape
velocity (the minimum velocity a particle needs to have in order to escape to 1 — o).
For simplicity, we again assume that the motion of the particle is purely radial. Take
a look at the radial equation of motion

dr E2 T
— =+ ——(1--2). :
dt + m2 ( T ) (3.75)
If the radial velocity dr/dt at a particular radius r is to be the escape velocity, the
energy E corresponding to it must be equal to the energy of a particle with velocity
approaching zero at 1 — oo, namely E = m. Therefore, the escape velocity can be
found by setting E = m in the above equation

dr _ rg
(dT>esc = \/T (3.76)

As we can see (dr/dT).,. approaches the speed of light as v — r4 and even exceeds
the speed or light when r < 14, thus explaining why a particle is bound to fall
into the singularity once it reaches r < r4. Though it may not appear so, dr/dt
is actually the velocity of the particle as measured by an observer at rest at radius
rif E = m. For a temporal interval dt and radial interval dr in the spherical
coordinates, the observer measures the temporal interval dT = vBdt and radial
interval dR = dr/vB (which follows from the Schwarszchild metric) and so the
velocity it measures is
ﬁzlﬂzlﬁﬂzlﬂ(mg)zé (3.77)
dT Bdt Bdtrdt Bdr\E dt '

where we have used the energy conservation equation E = mBdt/dt in the process.

3.5 GRAVITATIONAL WAVES

In a way similar to electromagnetic waves, we expect curvature perturbations
in General Relativity to propagate and have an independent existence from their
sources. Naturally, we call such propagating curvature perturbations gravitational
waves.

3.5.1 Electromagnetic waves
Take the Maxwell’s equations 9, F*¥ = 0 and plug in the plane-wave ansatz

Ay = ayett®” (3.78)

to get

(kfykyguv - kukv) a¥ =0. (3-79)
Suppose that the wave is propagating in the z-direction with k3 =k, k1 =k, =0,
ko = w. Setting n =1 and p = 2, we get

(wz —k2> al =0; (wz —kz) a? =0 (3.80)
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and setting 1 = 0 or 1 = 3 we get the same equation
waz —kag =0. (3.81)

Interestingly, while there are 4 degrees of freedom in AM there are only 3 equa-
tions to constrain them, meaning that one of the degrees of freedom in A" is left
unconstrained. This boils down to the gauge invariance in electrodynamics. Our
formulation of electrodynamics is inherently redundant: configurations that are re-
lated to one another via a gauge transformation A, — A, — 0, « are identical.

Let us use the gauge freedom to set Ag = 0. If initially Ay # 0, we can always
perform a gauge transformation with & = Ag/(iw) to get rid of Ap. Then, it follows
from (3.81) that a3 = 0 and hence A3 = 0. In the end, we have the following
solutions

Aj =ajexp—ik(z+£t)
Ay =azexp—ik(z+1)
Ag=A3=0.

Thus, an electromagnetic wave is characterized by two amplitudes a; and a;, (cor-
responding to two possible polarizations) and propagates at the speed of light.

3.5.2 Linearized gravity
Consider a small tensor perturbation 6g,v in an otherwise flat spacetime

uv =NMuv +8guy  dguv K1 (3.82)
in empty space, where the Einstein’s equation reads

1
RFLV — EQHVR =0.

As before, we use the ansatz 6g,,v = huveikv’d with k3 =k, k1 = k2 =0, kg = w.
Up to first order in h~, we have

1
Ruv = 5 (2 Ry = kakh™y —kaky W+ ko hy) (3.83)

and

1
R=3 (2k2h7‘>\ _ Zk)\kuh"”) . (3.84)

Substituting these into the Einstein’s equations, we get the following 10 equations

hi1 +hyo)k? =0
hi1 +ha2)kw =0
—hyok+hozw)k =0

oo: |
(
(
o1: (—hjok+hjzw)k =0
(
(
(

03:
02:

33 (h1 +ha)w? =0
32: (—hyok+hyzw
31: (—hjok+hjzw

22: hookz + w (—2h3zpk + h3zzw) +hqy (wz - kz) =0

w

Jw=0
Jw =0

21: hqy (wz—kz) =0

11 hook? + w (—2h3ok + hazw) + hao (wz - kz) —0.
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We can see that the triple 00, 03,33, the pair 02,32 and the pair 01,31 are the same
equations, which leaves us with 6 different equations and 4 unconstrained degrees
of freedom of hy
3egs. (00,03,33): hyi+hyp=0
2egs. (02,32): —hyok+hyzw =0
2egs. (01,31): —hyjok+hjzw =0
1eq. (21): hys(w? —k?) =0
1eq. (22-11) ¢ (hqq —hay)(w? —kz) =0

1eq. (22+11) : hook? + w(—2hzok + h3zw) = 0. (3.85)
Analogous to what we have seen in electrodynamics, the 4 unconstrained degrees
of freedom have to do with some gauge freedom. This time, it corresponds to the
freedom to make coordinates transformations of the form

xH o xM =Mt (3.86)

where " is small, which is worth 4 degrees of freedom. Under such a transforma-

. . s v . .
tion, the metric transforms as g’*¥ = %’;Ex %’;B g"‘ﬁ’, or in terms of h and to linear

order

n*Y + MY = (85 + 0 (M) (8 + 00 )(*P + hP)
AN Y 40 MR + 050 Sk *P. (3.87)
Thus, h,v (the inverse of h*Y) transform as
h{w =huv —0uly — 0y (. (3.88)
In particular, we have
hoo — hoo —2iwdo
ho1 = ho1 —iwd;
ho2 — hoz —iw(y
ho3 — ho3 —iwdz —ik(p
hi1 = hn
hi2 = hi2
hi3 = hi3 —ik(
hz2 = ha2
h23 — haz — ki,
h33 — hzz — k(3.
It turns out that hj1, hy2, hys are coordinate invariants. We can use the freedom to

do coordinate transformations to set hop, ho1, ho2, and h33 to zero. Having done
that, it is easy to see that 4 out of the 6 remaining Einstein equations are trivial

hi3 =hz3 =h30=0; hy;+hy=0. (3-89)
The other two are non-trivial
(w2 =k =0;  (hyg —hao)(w? — k%) =0. (3.90)
Finally, the solution can be written as
0 0 0 0
[0 h hiz Of jwt—ikz
M =10 n, —h o]° (3.91)
0 0 0 0
where h = hy; = —hy; and w = k. (Don’t confuse this h with the trace of h+!)

Thus, a gravitational wave has 2 polarizations and propagates with the speed of
light.
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3.5.3 Gravitational radiation

Continuing the analogy with electrodynamics, an accelerating mass may radiate
gravitational waves in a way similar to how an accelerated charge radiates electro-
magnetic waves. Consider a distribution of mass with spatial extent { consisting
of particles moving at non-relativistic velocities. This will be our source of gravita-
tional waves. Suppose that there is an observer located at a distance R > { away
from the source trying to detect the gravitational waves radiated by the source. We
assume that the perturbations created by the source are sufficiently weak that we
can describe them by linearized gravity. In this case, the only non-trivial Einstein’s
equations are

(3-92)

%Dh]z = 87‘[GT]2
%Dh :SHG%(Tzz—TH).

We have encountered these types of equations repeatedly in electrodynamics. They
can be solved with the method of Green’s function. In the present case, the Green’s
function that we are looking for is one that satisfies

OxtGlx, tix', 1) = 8% (x —x)8(t — t') (3.93)
namely the retarded Green'’s function

St — (t—|x—x'|)]

Gx, t;x/,t') = pr— (3.94)
Hence, we can write the solution for hq, as
hiy = 167'CG/T12(x',t/)G(x,t;x',t/)d3x’dt’
:4G/T12(x',tf\xfx'|)|x_xl|d3x’
~ T [T Ry (3:95)

where in the last step we have made used the assumptions that { < R and that the
particles making up the source are non-relativistic.
We will now derive the following identity

. 1 92 L
/TU d3X = EW TQOXIX] d3X (396)

which will help us calculate the integral in (3.95). The starting point is the energy
conservation equation 9, T*Y = 0. For p = 0 it yields

30T +8;T% =0 (3.97)

and for pu =1 it yields ) -
Q0T +9;TY =0. (3.98)

Multiplying (3.97) with x'x) and integrating, we get
/aoTooxixj d3x = — / 01 TORxx) d3x. (3.99)
After integrating by parts it becomes
/60Tooxixj a3x = / (TOixj + Tojxi) a3x. (3.100)
Then, take the time derivative 0 of the above

/a(z)Tooxixj d3x = / (60T0ixj + 80Tojxi> d3x (3.101)
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and use (3.98) to rewrite it as
/a%Tooxixj a3x = —/ (akTikxj + 6ijkxi) a3x. (3.102)

Integrating by parts once more bring us to what we are after, (3.96).
Therefore, using (3.96) we can recast (3.95) as

ZG
/ 3 Too(x/, t —R) x5 a3x’. (3.103)

Defining the quadrupole moment of a mass distribution as

DY :/p(x) [3xixj —rzéij] dv (3.104)
we can rewrite hi; as
2G ..
hi2 =32 Dra. (3.105)

Following similar steps for h, we get

2G 1
== (DD .
h=357 (D2-Dn). (3.106)
How much energy do gravitational waves carry? Since h,, is analogous to A,
in electrodynamics, we expect the energy density of gravitational waves to contain
h? or h?,, whose dimensions are GeVZ. To get the right dimensions for energy
density, GeV*, we multiply it by G~! so that the energy density e is given by

e x G Th2. (3.107)

This implies that a source radiating gravitational waves should lose energy at the

rate 5
dE 1 (G2 P 2
I ~/edS ~G <R2D ) R“~GD (3.108)

where we have used h ~ GD/R (coming from (3.105) or(3.106)). Had we done the
calculations properly, including all the numerical factors, we would get

dE G

dt _ G
at 45D1;D . (3.109)

3.5.4 Detecting gravitational waves

Consider two points A, B located on a plane orthogonal to the wavevector k3 of
a gravitational wave. The distance between these points is given by (here we only
write the spatial part of the metric)

di? = gij dxtdx) = Ax% + Ax% —h (Ax% — Ax%) —2h12Ax1 Axy (3.110)

where h and hy; are defined in (3.91). As we can see, the metric perturbations h,.v
give rise to changes in the distance between two arbitrary points A and B. The term
with h and the term with hy, give rise to two different types of deformations. The
term with h squeezes and stretches the x1x; plane along the x; and x; directions (+
polarization). The term with hy, squeezes and stretches the x1x; plane along the
x1 —x2 and x7 4+ x, directions (x polarization). See Figure 4 for an illustration of
the deforming effects of the two gravitational wave polarizations.

We can detect the said length changes using gravitational wave detectors such
as LIGO (Laser Interferometer Gravitational waves Observatory). LIGO consists
of two identical detectors—one in Hanford, Washington and one in Livingston,
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Figure 4: Two types of gravitational wave polarization and their (exaggerated) deforming
effects on a set of points forming a circle in the x1x, plane.

Louisiana—separated from each other by the distance light travels in 10 ms. Having
two detectors at different locations gives us a better noise control (a true gravita-
tional wave signal should show up nearly simultaneously in the two detectors in
nearly identical forms) and allows us to triangulate the location of the gravitational
wave source based on the time delay in the signals recorded in the two detectors.
Each LIGO detector is a Michelson interferometer comprising of a laser, a beam
splitter, 4 mirrors, and a photon detector, arranged in L shape with 4 km arm length
as shown in Figure 5. A laser beam is directed toward a beam splitter which splits
the beam into two, each going along one arm of the interferometer and reflected by
the mirror placed at the end of it. Mirrors are also placed near the beam splitter so
that each beam bounces back and forth along an arm hundreds of times before they
arrive back at the beam splitter to be merged together again, making each arm ef-
fectively 1120 km long. In the absence of gravitational waves, the two beams would
return to the beam splitter at the same time. A gravitational wave passing through
the detector plane would in general have different lengthening /shortening effect on
the two 4 km arms. As a result, light that has gone through the length of one arm
multiple times would have accumulated a different phase than light that has gone
through the length of the other arm the same number of times. The phase difference
is seen as a variation in the intensity of light recorded by the photo detector.

Binary systems of massive and dense objects, e.g. a mutually orbiting pair of
black holes, produce strong and unique gravitational wave signals that we can de-
tect. Kip Thorne estimated that the typical length change caused by gravitational
waves emitted by such systems is at the level of (/¢ ~ 1072, If we take £ to be the
arm length of a LIGO detector £ ~ 4 km, the expected length change due to passing
gravitational waves is around 8¢ ~ v, /1000, where 1, proton is the size. The task
of measuring such a small length is made easier by repeatedly bouncing the light
used in the interferometer along each arm.
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Figure 5: Schematic diagram of a LIGO detector. (a) Location and orientation of the LIGO
detectors in Hanford, Washington (H1) and Livingston, Louisiana (L1) (b) The
instrument noise of each detector near the time of the first gravitational wave de-
tection.

On September 14, 2015 the two detectors of LIGO (nearly) simultaneously ob-
served a transient gravitational-wave signal (see Figure 6). This event is dubbed
GW150914 in reference to its date of occurrence. The signals match the waveform
predicted by general relativity for a pair of black holes mutually orbiting and even-
tually coalescing into a single spinning black hole (see Figure 7). This observation
provides us with the first direct evidence of the existence of gravitational waves,
further supporting General Relativity as the theory of gravity.

Two years later, on August 17, 2017 a gravitational-wave signal named GW170817
was detected by both LIGO detectors and also by a third detector, VIRGO, lo-
cated near Pisa, Italy. At the same time, strong gamma ray burst signals from the
same direction, presumably from the same event, were observed by the Gamma-ray
Burst Monitor on NASA’s Fermi space telescope and the European Space Agency’s
gamma-ray observatory INTEGRAL. It is extremely unlikely that the simultane-
ous occurrence of all these signals is a chance coincidence. Thus, GW170817 gives
an even more robust confirmation of the existence of gravitational waves than
GW150914. An analysis of the combined data showed that the signal was consistent
with a binary system of two objects in the mass range of neutron stars. Moreover,
the non-detection of statistically-significant time delay between the arrival of gra-
vitational and electromagnetic waves from the merging of the neutron stars puts a
strong constraint on the deviation of the propagation speed of gravitational wave
from the speed of light, i.e. yet another confirmation of General Relativity which
predicts that gravitational waves should travel at the speed of light.
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Figure 6: The gravitational-wave event GW150914 observed by the two LIGO detectors
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Figure 7: Top: Comparison between the gravitational-wave strain amplitude as a function
of time of the GW150914 event observed by LIGO and predicted with numerical
general relativity models. Bottom: The effective relative velocity and relative sepa-
ration of the two black holes as functions of time.
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