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1 S P E C I A L R E L AT I V I T Y

1.1 reminders

1.1.1 Natural systems of units and Einstein convention

For historical reasons, the most widely used system of units today is the Centimeter-
Gram-Second (CGS) system and the International System (SI). In the CGS system,
for instance, there are 4 fundamental units (cm, g, s, K) and 4 fundamental con-
stants:

speed of light: c = 29 979 245 800 cms−1

Planck constant:  h = 1,054× 10−27erg s

Newtonian constant of gravity: G = 6,67 cm3g−1s−2

Boltzmann constant: kB = 1,38× 10−16 erg K−1

where erg = gcm2s−2. To simplify their equations, some physicists, especially in
High Energy Physics (HEP), prefer to work with a system of units where part or
all of these fundamental constants are set to 1. Since such systems of units are
defined directly in terms of the fundamental constants of nature, they are often
called natural systems of units. The two most commonly used systems are

• The extreme choice: c =  h = G = kB = 1.
All quantities are dimensionless in this system. It is typically used in theories
of quantum gravity, e.g. string theory.

• The HEP choice: c =  h = kB = 1.
Having set three fundamental constants to 1, we are left with one physical
dimension which is shared by mass, temperature, inverse length, and inverse
time. The unit of the remaining dimension is conventionally chosen to be
1 GeV = 109 eV. Conversion factors relating the HEP units to the CGS units
are shown in Table 1.

Throughout this course, we will be using the HEP choice.
Another convention which makes life easier when one manipulates complicated

expressions wit a lot of indices is the one introduced by Einstein, which we will
follow here. Whenever in an expression the same index appears twice, once up and
once down (i.e. µ in AαβµB

µ
ρδ), this index is understood to be summed over. One

often calls such indices dummy indices.

Quantity Conversion HEP quantity

Length GeV−1 = 1,98× 10−14 cm
Time GeV−1 = 6,58× 10−25 s
Mass GeV = 1,78× 10−24 g

Temperature GeV = 1,16× 1013 K

Table 1: HEP to CGS system of units conversion.
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Figure 1: The cube of physics.

1.1.2 The cube of physics

In 1928, to illustrate how the different fields of physics fit together, Gamow and
Ivanenko introduced the cube of physics (see Fig. 1). It shows a coordinate system
with 1/c,  h, and G as its axes, where different fields of physics lie:

• At (0,  h, 0) lies non-relativistic Quantum Mechanics,

• At (1c , 0, 0) lies Special Relativity,

• At (1c ,  h, 0) lies Quantum Field Theory.

Although strictly speaking c, G, and  h are constants, here we imagine varying them
to certain limiting values to see how the laws of physics look like in that limit. We
should keep in mind that this practice of varying the fundamental constants is not
to be taken too literally. When we say 1/c → 0, we actually mean that we are
looking at a physical system in which the particles’ velocities are extremely small
compared to the speed of light.

1.1.3 Symmetries, Newtonian mechanics and Maxwellian electrodynamics

Here we briefly review Newtonian mechanics and Maxwellian electrodynamics,
putting the emphasis on the symmetries they respect. In particular, we recall how
comparing their symmetries naturally hints towards special relativity.

Consider a system of N massive particles interacting with a central potential
U(x). The dynamics of this system is described by the Hamiltonian

H =
∑
i

p2i
2m

+
1

2

∑
i 6=j

U(|xi − xj|) (1.1)

from which we can derive the equations of motion

m
d2xi
dt2

= −
∂U

∂xi
∀i (1.2)

One can check that the form of the above equations is left unchanged under the
following transformations:
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• Translation: xi → xi + a.
i.e. space is homogeneous.

• Rotation: (xi)
α → Oαβ (xi)

β with OOT = 1

i.e. space is isotropic.

• Galilean transformation: xi → xi + v0t, t→ t

i.e. physics does not depend on our choice of inertial reference frame and
time is absolute.

If spacetime is symmetric under a Galilean transformation then a particle whose
velocity is v in one inertial reference frame has a velocity

v ′ = v − v0 (1.3)

in a different inertial reference frame which is moving with velocity v0 relative to
the initial reference frame. We refer to this as the Galilean law of velocity transfor-
mation.

Let us now turn our attention to Maxwell’s equations

∇ · E = ρ −
∂E
∂t

+∇×B = j

∇ ·B = 0
∂B
∂t

+∇× E = 0 (1.4)

Maxwell’s equations are invariant under translations. But, unlike the Newtonian
equations of motion, they are not invariant under Galilean transformations; they
are instead invariant under Lorentz transformations1. Gallilean transformation are
replaced by Lorentz boosts. For example, a Lorentz boost in the x-direction trans-
forms the spacetime coordinates as

t ′

x ′

y ′

z ′

 =


γ −βγ 0 0

−βγ γ 0 0

0 0 1 0

0 0 0 1


︸ ︷︷ ︸

Λµν


t

x

y

z

 (1.5)

The charge density and currents transform in a similar way. Electric and magnetic
field transform in a slightly more complicated way, see later.

In particular, the simple Gallilean composition law for the velocities (1.3) be-
comes

v ′ =
v− v0
1− vv0

(1.6)

when an inertial reference frame is moving with velocity v0 in x-direction relative
to the initial reference frame. Note that a general Lorentz transformation is param-
eterized by 6 numbers (3 boosts and 3 rotations). The combination of a Lorentz
transformation and a translation is called a Poincaré transformation.

We are now faced with a conundrum. On one hand, Newton’s equations of
motion are invariant under Galilean transformations but not under Lorentz trans-
formations. On the other hand, Maxwell’s equations are Lorentz invariant but not
Galilean invariant. In order to determine which of the two symmetries, Galilean or
Lorentzian, is more fundamental, we need to resort to experiments. A key observ-
able is the speed of light, as (1.3) predicts it is frame dependent whilst (1.6) predicts
it to be frame invariant.

The famous Michelson-Morley experiment attempted to measure this potential
dependence of the speed of light on the velocity of the observer, but found no such
dependence, thus favouring the Lorentz symmetry over Galilean symmetry. As

1 Rotations are a subgroup of Lorentz transformations
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of today, a countless number of experiments has confirmed this result. This has
led us to modifying the laws of motion to that of special relativity, where time is
not absolute and the speed of light is frame-independent. The discovery of special
relativity, however, does not undo the success of Newtonian mechanics in the low
velocity regime. It merely clarifies the scope of Newtonian mechanics and goes
beyond it.

1.1.4 Lorentz Tensor

To effortlessly make sure that our equations are Lorentz invariant, we express
them in terms of Lorentz tensors. Lorentz tensors are objects which transform in a
well-defined way under Lorentz transformations. The simplest non-trivial Lorentz
tensors are contravariant and covariant four-vectors. A contravariant 4-vector is a
set of 4 quantities vµ which transform under a Lorentz transformation as

vµ → v ′µ = Λµνv
ν for µ,ν = 0, 1, 2, 3 (1.7)

with repeated indices summed over and Λµν being any matrix satisfying

ηµν = ηαβΛ
α
µΛ

β
ν (1.8)

and

ηµν =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 (1.9)

is the Minkowski metric. A covariant 4-vector is a set of 4 quantities wµ which
transform under Lorentz transformations as

wµ → w ′µ = Λµ
νwν for µ,ν = 0, 1, 2, 3 (1.10)

where Λµν is a shorthand notation for
(
(Λµν)

−1
)T which is in general different

from Λµν. An example of a contravariant 4-vector would be the 4-velocity uµ =

dxµ/dτ and an example of a covariant vector would be the derivative ∂µS ≡ ∂S/∂xµ
of some function S. A covariant 4-vector vµ can be constructed from a contravariant
4-vector vµ with the help of the Minkowski metric

vµ = ηµνv
ν. (1.11)

Conversely, a contravariant 4-vectorwµ can be constructed from a covariant 4-vector
wµ as follows

wµ = ηµνwµ (1.12)

where ηµν is the inverse matrix of ηµν. A contravariant 4-vector vµ can be con-
tracted with a covariant 4-vector wµ to give a scalar S (a quantity that is invariant
under Lorentz transformations)

S = vµwµ. (1.13)

A Lorentz tensor is a set of quantities, written compactly as a symbol with (in gen-
eral) both covariant and contravariant indices Tµν...αβ..., which transform under a
Lorentz transformation as

Tµν...αβ... −→ Tµν...αβ... = Λ
µ
µ ′Λ

ν
ν ′ · · ·Λαα

′
Λβ

β ′Tµ
′ν ′
α ′β ′ (1.14)

Invariant Lorentz tensors/pseudotensors, i.e. tensor-indices carrying objects
that remain unchanged under Lorentz transformations, play important roles in
physics. Other than the Minkowski metric ηµν, which is invariant under Lorentz
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transformations by definition (see (1.8)), there are two more invariant tensors/pseu-
dotensors:

δνµ = ηµαη
αν = diag(1, 1, 1, 1) (1.15)

εµνρσ =


+1 if µνρσ is an even permutation of 0123

−1 if µνρσ is an odd permutation of 0123

0 otherwise.

(1.16)

It is important to understand that not every object with tensor indices is automati-
cally a tensor. For example, εµνρσ carries tensor indices, but it does not transform
as a tensor. For another example, although the Lorentz transformation matrix Λµν
carries tensor indices, it makes no sense to say that Λµν is a tensor because it rep-
resents a transformation and not a coordinate-dependent set of quantities.

1.1.5 Covariant formulation of Maxwellian electrodynamics and Newtonian me-
chanics

Armed with the knowledge of tensors, we can reformulate Maxwellian elec-
trodynamics and Newtonian mechanics in terms of manifestly Lorentz-covariant
equations, i.e. equations whose left-hand side and right-hand side transform in the
same way under Lorentz transformations.

In order to write the Maxwell equations in a covariant form, we introduce an
antisymmetric field-strength tensor

Fµν = ∂µAν − ∂νAµ (1.17)

with Aν the potential four-vector

Aν =

(
ϕ

A

)
(1.18)

where φ and A are the scalar and vector potential. Note that Fµν is a gauge-
invariant quantity, meaning that it remains unchanged under a gauge transforma-
tion

Aν −→ Aν‘ = Aν − ∂να.

When expressed in terms of Fµν, the four Maxwell equations reduce to two covari-
ant equations

∂µF
µν = jν (1.19)

εµνρσ∂
νFρσ = 0 (1.20)

where jν is the four-current

jν =

(
ρ

j

)
. (1.21)

Recall that in special relativity the spacetime interval between two events is
defined as

ds2 = ηµνdx
νdxµ = dt2 − (dx2 + dy2 + dz2) (1.22)

which is invariant under Lorentz transformations. It defines the causal structure of
the spacetime interval. Intervals split up in three categories

• Time-like: ds2 > 0

• Light-like/null: ds = 0

• Space-like ds2 < 0.
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Figure 2: Spacetime regime that may influence particle A (labeled “past") and spacetime
regime that may be influenced by particle A (labeled “future") in Newtonian me-
chanics (left) and special relativity (right).

While time-like separated points may influence one another (causally connected),
space-like separated points are completely out of contact (causally disconnected).
In the ∆t-∆x plane of the two events, the set of all possible null intervals form
future and past light cones. A particle may only influence particles inside its future
lightcone and can only be influenced by particles inside its past lightcone, see figure
2.

For a particle moving with speed v, the spacetime interval is given by

ds2 = dt2 − v2dt2 = γ−2dt2 −→ d

ds
= γ

d

dt
(1.23)

We can then define the 4-velocity and 4-acceleration as follows

uµ =
dxµ

ds
(1.24)

aµ =
d2xµ

ds2
=
duµ

ds
(1.25)

and, from the 4-velocity uµ, we can define the relativistic momentum as

pµ = muµ (1.26)

The relativistic equation of motion for a particle of mass m and charge q in an
electromagnetic field can be written in a covariant form as

dpµ

ds
= qFµνuν (1.27)

or

m
d2xµ

ds2
= qFµνuν (1.28)

In the special case of constant and uniform electric field and zero magnetic field,
the above equation describes a constant acceleration motion.

1.2 special relativity in arbitrary coordinate sys-
tems

1.2.1 Coordinate transformation

While a Lorentz transformation is a linear transformation

xµ = Λµνx
ν −→ linear
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a general coordinate transformation

xµ = fµ(xν) −→ non-linear in general

is not necessarily linear. Therefore, it cannot be expressed as a simple matrix multi-
plication. To see this, take a look at the example below.

Example 1.1. Consider a charged particle in a constant and uniform electric field
E = Ex̂ and zero magnetic field. The particle obeys (1.28) which in this case reduces
to

m
d2xµ

ds2
= qEuµ (1.29)

whose i = 1 component (x component) is

d

dt

[
v√
1− v2

]
=
eE

m
= a (1.30)

where v = dx1/dt. The solution to this equation is

v(t) =
at√

1+ a2t2
(1.31)

x(t) = x0 +
1

a

[√
1+ a2t2 − 1

]
. (1.32)

Now, we would like to perform a coordinate transformation from the lab frame
to the rest frame of the particle. We have just found that the space coordinate x ′ in
the rest frame of the particle is related to the space coordinate in the lab frame x as

x ′ = x−
1

a

[√
1+ a2t2 − 1

]
. (1.33)

To do so, we need to relate the time measured in the rest frame of the particle τ,
i.e. the proper time, to the time in the lab frame t. In the lab frame, we have

ds2 = dt2 − dx2

= dt2(1− v2). (1.34)

Since dxi = 0 in the rest frame of the particle, we have

ds2 = dτ2. (1.35)

The invariance of the spacetime interval ds2 gives

dτ =
√
dt2 − v2dt2 = dt

√
1−

a2t2

1+ a2t2
=

dt√
1+ a2t2

. (1.36)

Integrating the above equation, we get

τ =
1

a
log
(
at+

√
1+ a2t2

)
. (1.37)

Note that τ < t, as we would expect from time dilation. Putting our results together,
the coordinate transformation from the lab frame to the rest frame of the particle is
given by

t→ t ′ = τ =
1

a
log
(
at+

√
1+ a2t2

)
(1.38)

x→ x ′ = x+
1

a

[√
1+ a2t2 − 1

]
(1.39)

As we can see, both transformations are non-linear. This should not come as a sur-
prise, the more familiar transformations from Cartesian to cylindrical coordinates
and from Cartesian to spherical coordinates are non-linear as well.
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So far, we have mainly studied special relativity in Cartesian coordinates. How-
ever, in many cases it is not convenient to work in a Cartesian coordinate system.
For instance, if the system under consideration has a spherical symmetry then it is
more convenient to use spherical coordinates. This motivates the study of special
relativity in arbitrary coordinate systems. We will adopt the following notations:
latin indices are used to label Cartesian coordinates while Greek indices will denote
coordinates in an arbitrary system.

In general, the Cartesian coordinates xi can be expressed in terms of the coordi-
nates x′µ in an arbitrary system as

xi = fi(xµ), (1.40)

or, in differential form

dxi =
∂xi

∂x′µ
dx′µ. (1.41)

The transformation is one-to-one if the Jacobian

J =
∂xi

∂x′µ
(1.42)

has non-zero determinant. If we know how to write xi in a Cartesian system in
terms of x′µ in an arbitrary system

xi = xi(x′µ), dxi =
∂xi

∂x′µ
dx′µ, (1.43)

and how to write the same xi in terms of x̃ν in another arbitrary system

xi = xi(x̃ν), dxi =
∂xi

∂x̃ν
dx̃µ, (1.44)

then we can work out a direct connection between the coordinates of the two arbi-
trary systems:

xµ = xµ(x̃ν), dxµ =
∂xµ

∂x̃ν
dx̃ν. (1.45)

In other words, this shows how coordinates transform when we go from one arbi-
trary coordinate system to another. One consequence of this is that the derivative
of a scalar function φ transforms as

∂φ

∂xµ
=
∂φ

∂x′ν
∂x′ν

∂xµ
. (1.46)

Previously, we have seen how contravariant and covariant Lorentz 4-vectors
transform under Lorentz transformations. For a general coordinate transformation
of which the Lorentz transformation is a special case, a contravariant 4-vector Aµ

is defined as an object that transforms in the same way as dxµ under coordinate
transformations, i.e.

Aµ =
∂xµ

∂x ′ν
A ′ν (1.47)

and a covariant four-vector Aµ is defined as an object that transforms in the same
way as the derivative of a scalar function ∂µφ ≡ ∂φ/∂xµ, i.e.

Aµ =
∂x ′ν

∂xµ
A ′ν. (1.48)

Similarly, a rank (2,0) tensor Tµν is defined as an object that transforms as the tensor
product of two contravariant four-vectors, i.e.

Aµν =
∂xµ

∂x ′ρ
∂xν

∂x ′σ
A ′ρσ. (1.49)
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By now, the generalization to arbitrary rank tensors should be obvious. As before,
we can also contract a contravariant 4-vector and a covariant 4-vector to form a
scalar which is invariant under coordinate transformations

AµB
µ =

∂x ′α

∂xµ
A ′α

∂xµ

∂x ′β
B ′β = A ′αB

′α (1.50)

where in the last step we used

∂x ′α

∂xµ
∂xµ

∂x ′β
=
∂x ′α

∂x ′β
≡ δαβ. (1.51)

1.2.2 Metric in arbitrary coordinate systems

In a Euclidean space, the spacetime interval can be written as

ds2 = ηijdx
idxj. (1.52)

The same spacetime interval can be written in terms of the coordinates x′µ in an
arbitrary coordinate system as

ds2 = ηij
∂xi

∂x′α
∂xj

∂x′β︸ ︷︷ ︸
gαβ

dx′αdx′β. (1.53)

Therefore, the metric of an arbitrary system of coordinates gαβ is related to the
Euclidean metric ηij as

gαβ = ηij
∂xi

∂x ′α
∂xj

∂x ′β
. (1.54)

This gives us a prescription for determining the metric in an arbitrary coordinate
system, as demonstrated in the following example.

Example 1.2. Let us determine the metric in 3D spherical coordinates. Starting from
the Euclidean metric

ds2 = dx21 + dx
2
2 + dx

3
3, (1.55)

one obtains the metric in spherical coordinates by making the following change of
variables: 

x1 = r sin θ cosφ
x2 = r sin θ sinφ
x3 = r cos θ

(1.56)

which yields
ds2 = dr2 + r2dθ2 + r2 sin2 θdφ2. (1.57)

Alternatively, we can arrive at the same result using (1.54). We find that the non-
zero components of the metric are

grr = ηij
∂xi

∂r

∂xj

∂r
= 1

gθθ = ηij
∂xi

∂θ

∂xj

∂θ
= r2 sin2 θ+ r2 cos2 θ cos2φ+ r2 cos2 θ sin2φ = r2

gφφ = ηij
∂xi

∂φ

∂xj

∂φ
= r2 sin2 θ sin2φ+ r2 sin2 sin2φ = r2 sin2 θ,

in agreement with what we found earlier.
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1.2.3 Volume element in arbitrary coordinate systems

When we go from Cartesian coordinates xi to arbitrary coordinates x ′µ, the
volume element is multiplied by the Jacobian of the transformation

dx ′dy ′dz ′ =

(
det

∂x′µ

∂xi

)
dxdydz. (1.58)

Here µ, i = 1, 2, 3. The Jacobian can be obtained by taking the determinant of (1.54)

g =

(
det

∂xi

∂x′µ

)2
det

∂x′µ

∂xi
=

1
√
g

(1.59)

where g = detgµν and we have used the fact that the determinant of ηij =

diag(1, 1, 1) is 1. Thus
√
gdx ′dy ′dz ′ = dxdydz (1.60)

and the invariant volume form is given by

dV =
√
gdx ′dy ′dz ′ = dxdydz. (1.61)

When we add time to the picture, we have a similar expression, but with
√
−g

instead of
√
g:

√
−gdt ′dx ′dy ′dz ′ = dtdxdydz. (1.62)

Example 1.3. Volume element in spherical and cylindrical coordinates.
The metric in 3d spherical coordinates is

d`2 = dr2 + r2dθ2 + r2 sin2 θdφ2 (1.63)

which translates to

gµν = diag
(
1, r2, r2 sin2 θ

)
(1.64)

whose determinant is

g = r4 sin2 θ. (1.65)

Hence, the volume element in spherical coordinates is

dV = r2 sin θdrdθdφ. (1.66)

On the other hand, the metric in 3d cylindrical coordinates is

d`2 = dz2 + dρ2 + ρ2dφ2 (1.67)

which translates to

gµν = diag
(
1, 1, ρ2

)
(1.68)

whose determinant is

g = ρ2. (1.69)

Hence, the volume element in cylindrical coordinates is

dV = ρdzdρdφ. (1.70)
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1.2.4 Basis vectors, Christoffel symbols, and covariant derivatives

Let us consider for simplicity a 3D Cartesian coordinate system. We denote basis
vectors in this system as ex, ey, ez, or simply ei with i = x,y, z. These basis vectors
satisfy

ei · ej = ηij. (1.71)

An arbitrary vector V can be projected on the Cartesian vector basis as

V = Viei. (1.72)

Let xα = ξ,η, ρ be the coordinates of an arbitrary coordinate system, whose basis
vectors are e ′µ = e ′ξ, e ′η, e ′ρ. The same vector V above can be projected into the
basis vectors of the arbitrary coordinate system as

V = V
′µe ′µ. (1.73)

Equating the above with (1.72) and recalling that a vector transforms as Vi =

V ′µ∂xi/∂x′µ, we find that the basis vectors transform as

e ′µ =
∂xi

∂x ′µ
ei (1.74)

i.e. like a covariant vector, where it is understood that there is a one-to-one mapping
between the coordinates in the arbitrary system and the Cartesian coordinates

x = x(ξ,η, ρ)
y = y(ξ,η, ρ)
z = z(ξ,η, ρ).

(1.75)

The basis vectors provide us with an alternative way of defining the metric tensor

gαβ ≡ (eα · eβ). (1.76)

Example 1.4. Using (1.74), we can relate the basis vectors in spherical coordinates
to those in Cartesian coordinates

er =
∂x

∂r
ex +

∂y

∂r
ey +

∂z

∂r
ez = sin θ cosϕex + sin θ sinϕey + cos θez

eθ =
∂x

∂θ
ex +

∂y

∂θ
ey +

∂z

∂θ
ez = cos θ cosϕex + cos θ sinϕey − sin θez

eθ =
∂x

∂φ
ex +

∂y

∂φ
ey +

∂z

∂φ
ez = − sinϕex + cosϕey. (1.77)

We know that if Vi are the components of a vector V = Viei in Cartesian co-
ordinates, then the derivative ∂Vi/∂xj is a tensor. While this is true in Cartesian
coordinates, the equivalent expression in arbitrary coordinates ∂Vµ/∂xν is not a
tensor. Indeed, it transforms as

∂V ′µ

∂x ′ν
=
∂xρ

∂x ′ν
∂

∂xρ

(
∂x ′µ

∂xσ
Vσ
)

=
∂xρ

∂x ′ν
∂x ′µ

∂xσ
∂Vσ

∂xρ
+
∂xρ

∂x ′ν
∂2x ′µ

∂xρ∂xσ
Vσ︸ ︷︷ ︸

6=0

6= ∂xρ

∂x ′ν
∂x ′µ

∂xσ
∂Vσ

∂xρ
=⇒ not a tensor (1.78)

This does not come as a surprise. The problem arises because we are not taking
the derivative of a vector properly. Taking the derivative of a vector amounts to
taking the difference between the vector at two neighbouring points, dividing it by
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a parameter representing the separation of the two points, and taking the limit in
which this parameter goes to zero. What we have done above was comparing only
the components of a vector at neighboring points, which is not the full story. The
full story must account not only for the changes in the components of a vector but
also for the changes in the basis vectors of the coordinate system. To do it properly,
we start by writing a vector V in terms of its components in an arbitrary coordinate
system

V = Vαeα. (1.79)

Then we take its derivative:

∂V
∂xβ

=
∂Vα

∂xβ
eα + Vα

∂eα
∂xβ

(1.80)

Note that ∂V/∂xβ is a vector because the difference between two vectors is a vector.
Since eα span the vector space, we can write

∂eα
∂xβ

= Γγαβeγ, (1.81)

where the coefficients Γγαβ are known as Christoffel symbols. Thus, (1.80) becomes

∂V
∂xβ

=
∂Vα

∂xβ
eα + VαΓγαβeγ =

(
∂Vγ

∂xβ
+ VαΓγαβ

)
eγ, (1.82)

where in the last step we simply relabeled the α’s in the first term as γ’s. In terms
of its components, the above equation reads

∇βVγ =
∂Vγ

∂xβ
+ VαΓγαβ. (1.83)

Now ∇βVγ, called covariant derivative, is a tensor. The covariant derivative can also
be written in a shorthand notation as Vα;β. In the same spirit, the normal partial
derivative can be written as Vα,β. It is also useful to define the covariant differential as

DVα = Vα;βdx
β. (1.84)

Before going any further, let us try to understand what we have done in (1.82),
physically. First, suppose that the arbitrary coordinate system we are using is a
Cartesian one. What we did in (1.82) was the following. We identify two vectors,
V(x0) and V(x0 + dx), and we want to take their difference. To do so, we parallel
transport V(x0 +dx) from its original position x0 +dx to x0, that is, we move the vec-
tor while maintaining its direction parallel to itself throughout the process2. Once
V(x0 + dx) is successfully transported to x0, we take the difference between the
transported V(x0 + dx) with the V(x0) that is residing there. This difference is the
covariant difference DV. As mentioned above, in an arbitrary frame, the basis vec-
tor changes. To stay parallel to itself, it needs to evolve accordingly to these changes.
The aforementioned procedure can be summarized mathematically as follows

DV = Vα(x + dx)eα(x + dx) − Vα(x)eα(x)

=

(
∂Vα

∂xβ
+ VγΓαβγ

)
eαdxβ. (1.85)

Remark 1.1. The relation (1.81) can be understood as a generalization of the Poisson
formula

dei
dt

= ω∧ ei, (1.86)

which you have presumably seen in classical mechanics. It describes how the basis
vectors of a coordinate system that is rotating with angular velocity ω change with
time.

2 As mentioned previously, in an arbitrary coordinate system, the basis vectors change from place to place
and so to stay parallel to itself means to evolve accordingly to these changes.
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Remark 1.2. Here we show that the identity relating a covariant vector Vα and its
contravariant counterpart Vβ

Vα = gαβV
β (1.87)

is preserved under a coordinate transformation. Recall that Vβ and gαβ transform
as

Vβ =
∂xβ

∂x ′ρ
V ′ρ (1.88)

gαβ =
∂x ′µ

∂xα
∂x ′ν

∂xβ
g ′µν. (1.89)

Plugging these into (1.87), we get

Vα = gαβV
β

=
∂x ′µ

∂xα
∂x ′ν

∂xβ
g ′µν

∂xβ

∂x ′ρ
V ′ρ

=
∂x ′µ

∂xα
∂x ′ν

∂x ′ρ︸ ︷︷ ︸
=δνρ

g ′µνV
′ρ

=
∂x ′µ

∂xα
g ′µρV

′ρ

=
∂x ′µ

∂xα
V ′µ, (1.90)

which is how a covariant vector is expected to transform. Therefore, the relation
(1.87) is preserved under a coordinate transformation. One can check that the same
is true for the inverse relation

Vβ = gβαVα. (1.91)

Remark 1.3. The covariant derivative of a scalar field is equal to its partial derivative

ϕ;α = ϕ,α =
∂ϕ

∂xα
. (1.92)

This is simply because the value of a scalar field does not depend on the coordinate
system we are using. As a direct consequense, the derivatives of the basis vectors,
which are the source of the difference between covariant and partial derivatives, do
not enter the picture.

From the covariant derivative of a contravariant vector (1.83), we can derive
the covariant derivative of a covariant vector. To that end, we start by taking the
covariant differential of the contraction VαUα, making use of the last remark

D(VαU
α︸ ︷︷ ︸

scalar

) = (DVα)U
α + Vα(DU

α)

(
∂Vα

∂xβ
Uα +

∂Uα

∂xβ
Vα
)
dxβ = (DVα)U

α + Vα

(
∂Uα

∂xβ
+ ΓαγβU

γ

)
dxβ (1.93)

from which we can read off that

DVαU
α =

(
∂Vα

∂xβ
− VχΓ

χ
αβ

)
Uαdxβ (1.94)

and using (1.84) we find the expression for the covariant derivative of a covariant
vector

Vα;β =
∂Vα

∂xβ
− ΓχαβVχ. (1.95)
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1.2.5 Christoffel symbols and metric tensor

Remark 1.4. Since both Vα;β and Vα;β are tensors, the following relation

Vα;β = gαµV
µ

;β (1.96)

holds in any coordinate system because we know that it is true in Cartesian coordi-
nates. Using this relation, we can derive an important fact: the covariant derivative
of the metric vanishes. The derivation goes as

∇βVα = gαµ∇βVµ

∇β (gαµV
µ) = gαµ∇βVµ

Vµ∇βgαµ + gαµ∇βVµ = gαµ∇βVµ. (1.97)

It follows that
∇βgαµ = 0. (1.98)

Up to this point, the covariant derivative of a rank (0,2) tensor is not yet known.
We can deduce it by first contracting the tensor with a contravariant vector to get
a covariant vector, whose covariant derivative we know how to evaluate. It can be
shown that

Tαβ;µ =
∂Tαβ

∂xβ
− Γκαµgκβ − Γκβµgκα. (1.99)

Combining this result with (1.98), we get the following equations

gαµ;β =
∂gαµ

∂xβ
− Γχαβgµχ − Γ

χ
µβgαχ = 0

gαβ;µ =
∂gαβ

∂xµ
− Γχαµgχβ − Γχβµgχα = 0

gβµ;α =
∂gβµ

∂xα
− Γχβαgµχ − Γ

χ
µαgχβ = 0. (1.100)

To find the Christoffel symbols from here, we need an extra piece of information
relating Γγαβ with Γγβα, which we are going to derive in the following remark.

Remark 1.5. Since partial derivatives commute, the following holds in Cartesian
coordinates

ϕ,i,j = ϕ,i,j. (1.101)

Without leaving the Cartesian coordinates, the above identity can be written in a
tensor form as

ϕ;α;β = ϕ;β;α (1.102)

Now that it is written in a tensor form, the identity is guaranteed to hold in any
arbitrary coordinates3 Next we simplify the relation by citing the fact that covariant
derivatives reduce to partial derivatives when applied to a scalar field

ϕ,α;β = ϕ,β;α. (1.103)

Writing the covariant derivatives explicitly brings us to

ϕ,α,β − Γκαβϕκ = ϕ,β,α − Γκβαϕ,κ. (1.104)

Since the above equation is valid for any ϕ, we obtain the following identity

Γ
χ
αβ = Γχβα. (1.105)

3 Rewriting an equation that is known to hold in a specific frame in a tensor form, thus making it valid in
any coordinates, is a very useful trick in General Relativity. We will see it being used repeatedly.
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Adding the first two equations in (1.100) and subtracting the result from the last
one, we get

gαβ,µ + gαµ,β − gβµ,α = (Γχαβ − Γχβα︸ ︷︷ ︸
=0

)gµχ(Γ
χ
µα − Γχµα︸ ︷︷ ︸

=0

)gχβ + (Γχµβ + Γχβµ︸ ︷︷ ︸
=2Γχµβ

)gχα

where we have used (1.105). Hence, we can express the Christoffel symbols in terms
of the metric as

Γ
χ
µβ =

1

2
gχα

(
gαβ,µ + gαµ,β − gβµ,α

)
. (1.106)

1.2.6 Christoffel symbols and coordinate change

The aim in this section is to derive an alternative definition of the Christoffel
symbols in terms of basis vectors and in terms of the relations connecting the coor-
dinate system in use to the Cartesian coordinate system. First, we take the scalar
product between a basis vector eδ with (1.81)(

eδ,
∂eα
∂xβ

)
= Γγαβ (eδ, eγ)

= Γγαβgδγ, (1.107)

where we have used the definition of the metric in terms of the basis vectors (1.76).
Next, we multiply both sides by gδρ

gδρ
(

eδ,
∂eα
∂xβ

)
= Γγαβgγδg

δρ, (1.108)

This brings us to yet another definition of Christoffel symbols in terms of basis
vectors

Γ
ρ
αβ = gδρ

(
eδ,

∂eα
∂xβ

)
, (1.109)

We can go further to express the right hand side in terms of coordinates only. Using
the relation between the basis vectors in arbitrary and Cartesian coordinates (1.74),
which also allows us to write

∂eα
∂xβ

=
∂

∂xβ

(
∂xj

∂xα
ej

)
=

∂2xj

∂xα∂xβ
ej, (1.110)

we can write (
eδ,

∂eα
∂xβ

)
=
∂xi

∂xδ
∂2xj

∂xα∂xβ

(
ei, ej

)
= ηij

∂xi

∂xδ
∂2xj

∂xα∂xβ
(1.111)

and so the Christoffel symbols become

Γ
ρ
αβ = gδρηij

∂xi

∂xδ
∂2xj

∂xα∂xβ
. (1.112)

In this form, the symmetry property of the Christoffel symbols under the inter-
change of the lower two indices, i.e. α and β, is manifest. By rewriting the metric
in arbitrary coordinates gρσ in terms of the Cartesian metric, we can write it in a
simpler form

Γ
ρ
αβ =

(
∂xρ

∂xk
∂xδ

∂x`
ηk`
)
ηij
∂xi

∂xδ
∂2xj

∂xα∂xβ

=
∂xρ

∂xk
δi`η

k`ηij︸ ︷︷ ︸
δkj

∂2xj

∂xα∂xβ

=
∂xρ

∂xj
∂2xj

∂xα∂xβ
(1.113)
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where in going from the first to second line we combined ∂xδ/∂x` and ∂xi/∂xδ to
form a δi`.

1.2.7 Newtonian equation of motion in arbitrary coordinates systems

Remark 1.6. Levi-Civita tensor.
We have previously defined εijk` in Euclidean space as a completely antisymmetric
set of numbers with the convention ε1234 = 1. The exact same set of numbers
εαβγδ can also be defined in arbitrary coordinates. As εijk` and εαβγδ, so defined,
have the same values in any coordinate system, they are not tensors. For this reason,
εijk` (and εαβγδ) are called Levi-Civita symbols (instead of tensors). The question
we are going to address now is: how do we turn the Levi-Civita symbol into a
tensor? Let us define the Levi-Civita tensor Eαβγδ as a tensor whose values in
Cartesian coordinates match with those of the Levi-Civita symbol εijk`. Hence, we
have the relation

Eαβγδ =
∂xα

∂x ′i
∂xβ

∂x ′j
∂xγ

∂x ′k
∂xδ

∂x ′l
εijkl. (1.114)

Since, collectively, the derivative factors are completely symmetric with respect to
changes of the type α → β and i → j (both carried out at once) and εijkl is com-
pletely antisymmetric, Eαβγδ must also be completely antisymmetric, which means
that Eαβγδ is proportional to εαβγδ:

Eαβγδ = Cεαβγδ (1.115)

To determine C, let us multiply both sides by εαβγδ

Eαβγδεαβγδ = Cεαβγδεαβγδ︸ ︷︷ ︸
=4!

∂xα

∂x ′i
∂xβ

∂x ′j
∂xγ

∂x ′k
∂xδ

∂x ′l
εijklεαβγδ = 4!C

4! det
(
∂xα

∂x ′j

)
= 4!C,

1√
−g

= C (1.116)

where the identity

det(A) =
1

n!
εi1,...,inεj1,...,jn(ai1,j1 · · ·ain,jn). (1.117)

and the 4D spacetime analog of (1.59), namely

det
∂xα

∂x ′i
=

1√
−g

(1.118)

were used. Thus

Eαβγδ =
1√
−g
εαβγδ. (1.119)

If we start with the indices at the bottom and repeat the same steps we would get

Eαβγδ =
√
−gεαβγδ. (1.120)

Remark 1.7. Dimensionality of space.
Recall that the existence of a one-to-one relation between the coordinates in an
arbitrary system and those in the Cartesian system requires the Jacobian of the
transformation to be nonzero, det(∂xi/∂xα) 6= 0. This can be true only if the number
of xi coordinates n is the same as the number of xα coordinates N. Let us check
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what happens if the latter is not satisfied by supposing that N > n. In that case, the
metric

gαβ =
∂xi

∂xα
∂xj

∂xβ
ηij (1.121)

could still be defined. The problem is that its determinant would vanish, detgαβ =

0, meaning that the volume form would be zero.
Now, we turn to the following question: suppose that you are given a metric

gαβ, how can you tell from it the dimensionality of the space it describes? For
example, the following metric

d`2 = dx2 + dy2 + 2dxdy (1.122)

may appear as if it describes a 2 dimensional space. However, by defining z = x+y,
we can rewrite it as

d`2 = (dx+ dy)2 = dz2 (1.123)

which clearly describes a 1 dimensional space. In general, the dimension of the
space described by a metric gαβ is given by the rank of gαβ.

Now that we have studied various aspects of the connection between Cartesian
and arbitrary coordinates, we are ready to rewrite the Newtonian equation of mo-
tion in arbitrary coordinates. As a starting point, we write the Newtonian equation
of motion for a free massive particle in Cartesian coordinates

d2xi

ds2
= 0, (1.124)

with ds2 = ηijdx
idxj. Using the relation (1.43), we rewrite the above as

d

ds

(
∂dxi

∂xµ
dxµ

ds

)
=
∂xi

∂xµ
d2xµ

ds2
+

∂2xi

∂xν∂xµ
dxµ

ds

dxν

ds
= 0. (1.125)

Next, we multiply it with ∂xλ/∂xi

∂xλ

∂xi
∂xi

∂xµ
d2xµ

ds2
+
∂xλ

∂xi
∂2xi

∂xν∂xµ
dxµ

ds

dxν

ds
= 0. (1.126)

Noting that (∂xλ/∂xi)(∂xi/∂xµ) = δλµ, the above equation simplifies to

d2xλ

ds2
+
∂xλ

∂xi
∂2xi

∂xν∂xµ︸ ︷︷ ︸
Γλµν

dxµ

ds

dxν

ds
= 0 (1.127)

and the equation of motion for a free massive particle in arbitrary coordinates reads

d2xλ

ds2
+ Γλµν

dxµ

ds

dxν

ds
= 0. (1.128)

The above equation, however, does not apply for a massless particle because in that
case ds = 0. To obtain an analogous equation for a massless particle, we simply
replace the ds’s with the differential of time dσ in a local Cartesian coordinate
system:

d2xλ

dσ2
+ Γλµν

dxµ

dσ

dxν

dσ
= 0. (1.129)

It is quite straightforward to include the electromagnetic field in (1.128). If in-
stead of (1.124) we had started with

d2xi

ds2
= qFij

dxj

ds
(1.130)
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we would have arrived at

d2xλ

ds2
+ Γλµν

dxµ

ds

dxν

ds
= qFλα

dxα

ds
, (1.131)

which should be complemented with the Maxwell equations to complete the pic-
ture. The tensor forms of the Maxwell equations are obtained by the following
replacements

Fµν,ν = jν −→ Fµν;ν = jν

εµνρσF
ρσ,ν = 0 −→ EµνρσF

ρσ;ν = 0. (1.132)

1.2.8 Summary of mathematics

One-to-one relations xi = xi(xα) between Cartesian coordinates xi and arbitrary
coordinates xα exist if the Jacobian of the transformation is nonzero:

det
∂xi

∂xα
6= 0.

The length of a space interval is coordinate independent and is given by

d`2 = ηijdx
idxj = gαβdx

αdxβ,

with
ηij = diag(1, 1, 1)︸ ︷︷ ︸

Euclidean

or diag(1,−1,−1,−1)︸ ︷︷ ︸
Minkowskian

If we know how to relate two sets of arbitrary coordinates to the Cartesian coor-
dinates, xi = xi(x ′α) and xi = x̃i(xβ), then we can directly relate the two sets of
arbitrary coordinates

xα = x ′α(xβ)

and their differentials

dx ′α =
dx ′α

dxβ
dxβ

and their derivatives
∂

∂x ′α
=
∂xβ

∂x ′α
∂

∂xβ
.

The last two relations allow us to define contravariant and covariant vectors. Con-
travariant and covariant vectors are objects that transform as dxα and ∂/∂xα respec-
tively

Vα → V ′α =
∂x ′α

∂xβ
Vβ contravariant

Vα → V ′α =
∂xβ

∂x ′α
Vβ covariant.

Similar definitions apply for tensors, e.g.

Vαβ → V ′αβ =
∂x ′α

∂xγ
∂x ′β

∂xδ
Vγδ.

Contracting a covariant vector Uα and a contravariant vector Vα gives us a quantity
that is invariant under coordinate transformations

U ′αV
′α = UαV

α.

Basis vectors eα in arbitrary coordinates are related to those in Cartesian coordi-
nates ei as follows

eα =
∂xi

∂xα
ei.
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In Cartesian coordinates the metric can be expressed in terms of basis vectors as

ηij = (ei, ej)

and, similarly, in arbitrary coordinates we have

gαβ = (eα, eβ).

The change in a vector field can be written as

V(x+ dx) − V = dV = Vα;µeαdxµ,

where the covariant derivative Vα;µ is given by

Vα;µ =
∂Vα

∂xµ
+ ΓαβµV

β

which is a tensor. The Christoffel symbol Γαβµ is defined by the relation

∂eβ
∂xµ

= Γαβµeα.

It obeys the symmetry property Γαβµ = Γαµβ and can be expressed in terms of the
metric or in terms of coordinate transformations.

The spacetime volume element in arbitrary coordinates is given by

dV =
√
−gdx0dx1dx2dx3.

Any covariant equation in Cartesian coordinates can be rewritten as a covariant
equation in arbitrary coordinates by replacing the ordinary partial derivatives by
covariant derivatives. For example,

∂µJ
µ = 0 → Jµ;µ = 0

∂µF
µν = Jν → Fµν;µ = Jν.
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2 G E N E R A L R E L AT I V I T Y

2.1 theory of gravity before einstein
There were many attempts at describing the movements of planets in the solar

system before the development of the Newtonian theory of gravity. Most of them
do not even come close to describing reality as we know it today. Nevertheless, a
few principles remain (more or less) accurate even today, namely the three Kepler’s
laws:

1. Every planet in the solar system moves in an elliptical orbit with the Sun
located at one of its foci.

2. The orbit radius of a planet sweeps equal portions of the ellipse area in equal
time intervals.

3. The squared period of a planet is proportional to the cube of the semi-major
axis of its orbit: T2 = ca3.

Then, Newton came along and introduced his theory of gravity which, among other
things, reproduces the three Kepler’s laws. The theory states that two masses, m1
and m2, attract each other with a gravitational force that is inversely proportional
to the squared distance r between them

F = −GN
m1m2
r3

r. (2.1)

Furthermore, the theory also states that the inertial mass (one that appears in the
right hand side of F = ma) is equivalent to the gravitational mass (one that appears
in Gm1m2/r2), i.e. mi ≡ mg.

2.2 general requirements for a relativistic the-
ory of gravity

At this point, we are of course tempted to find the relativistic version of the New-
ton’s law of gravity. The first problem we are facing is that (2.1) is not manifestly
Lorentz invariant. Incidentally, the Coulomb’s law

F = −
q1q2
r3

r (2.2)

whose relativistic formulation we know well (the Lorentz force law plus Maxwell’s
equations), has a form very similar to (2.1). Let us see if we can extract a few hints
from it. To go from the Coulomb’s law to its relativistic formulation, we would need
to: introduce the electric field E and magnetic field B (to ensure all interactions are
local), introduce non-trivial equations the E and B fields must satisfy (Maxwell’s
equations), and specify how the E and B fields exert forces on charges (Lorentz
force law). In analogy with �Aµ = jµ of electrodynamics, we expect the relativistic
formulation of gravity to include a field which obeys a differential equation of the
form

(some diff. operator)[field] = [source] (2.3)

and, in analogy with the force law Fµ = Fµνuν, a gravitational force law of the form

[force] = [combinations of fields and 4-velocity of the particle] (2.4)

21
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is expected. In electrodynamics, the fields are Aµ (4-vector) and Fµν (antisymmetric
tensor) and the sources are jµ (4-vector). To sum up, a relativistic theory of gravity
must have the following ingredients:

• Representation of gravitational field (Scalar? Vector? Tensor?)

• Representation of the source of gravitational field (Scalar? Vector? Tensor?)

• Covariant equation for the gravitational field.

• Covariant expression of the gravitational force.

2.3 failed attempts at constructing a relativis-
tic theory of gravity

2.3.1 Gravity as a 4-vector field

Since the Coulomb’s law looks almost like the Newton’s law of gravity, one
would be inclined to introduce a 4-vector field Gµ to represent the gravitational
field and consider the correspondence: Gµ ↔ Aµ and m↔ q. Bringing the analogy
further, we expect the equations for Gµ to be the Maxwell’s equations with Aµ
replaced by Gµ and q replaced by m. However, without even writing the equations,
we can see why this will not work. While a vector field may give both attractive and
repulsive forces, the gravitational interaction between matter is always attractive.
So, we conclude that representing the gravitational field as a 4-vector field does not
work.

Remark 2.1. The gravitational interaction between antiparticles, e.g. positron and
positron, is also attractive. This was the outcome of the analysis of KK0 mixing
experiments occurring in Earth’s gravitational field.

2.3.2 Gravity as a scalar field

This time, instead of starting from the inverse square law, let us start with the
Poisson’s equation for gravity sourced by a point mass M

∇2ϕ = −δ3(x)GM, (2.5)

where ϕ is the gravitational potential. The equation motion of a test particle m in
this gravitational potential is

m
d2x
dt2

= −m∇ϕ. (2.6)

One possible relativistic generalization of (2.5) and (2.6) can be obtained by making
the following substitutions

• x→ xµ

• ∇2 −→ �

• dt −→ ds =
√
dxµdxµ

• ∇ −→ ∇µ = ∂
∂xµ

With these substitutions, the equation of gravitational potential and the equation of
motion become

−�ϕ = Gρ(x) (2.7)

m
d2xµ

ds2
= m∇µϕ (2.8)
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where ρ(x) is the mass density. In the limit of small time derivatives and speeds,
these equations reduce to the non-relativistic equations we started with.

Unfortunately, this formulation of gravity is not consistent. Indeed, contracting
both sides of (2.8) with dxµ

ds , we get

m
dxµ

ds

d2xµ

ds2
= m

∂ϕ

��∂xµ
��dxµ
ds

m
d

ds

(
1

2

dxµ

ds

dxµ

ds

)
︸ ︷︷ ︸

=ds2

ds2
=1

= m
dϕ

ds

0 =
dφ

ds
. (2.9)

This result tells us that, regardless of the physical system under consideration, the
gravitational potential does not change along any trajectory of the test particle,
which is absurd. One way to overcome this problem is by modifying the right
hand side of (2.8) such that it automatically gives zero when contracted with dxµ

ds

m
d2xµ

ds2
= m

(
∇µϕ−

dxµ

ds

dxν

ds

∂ϕ

∂xν

)
. (2.10)

Indeed,

m

(
∂ϕ

∂xµ
−
dxµ

ds

dxν

ds

∂ϕ

∂xν

)
dxµ

ds
= m

(dϕ
ds

−
dxµdx

µ

ds2︸ ︷︷ ︸
=ds2

ds2
=1

��dxν

ds

∂ϕ

��∂xν

)

= m

(
dϕ

ds
−
dϕ

ds

)
= 0

The pair of equations (2.7) and (2.10) now form a consistent relativistic theory of
gravity, at least theoretically.

The true test of scalar gravity is whether or not it agrees with experiment. The
answer turns out to be no. As we will show below, scalar gravity predicts no light
deflection (ie. modification of the light trajectory due to the presence of massive
objects) while experiments show otherwise. Consider a massive but very light par-
ticle moving in a static gravitational field due to a massive body in Minkowskian
coordinates. The µ = 0 component of (2.10) reads

d

ds

(
dx0

ds

)
=

∂ϕ

∂t︸︷︷︸
=0 for static potential

−
1√
1− v2

1√
1− v2

dϕ

dt︸︷︷︸
6=0 along the trajectory

1√
1− v2

d

dt

(
1√
1− v2

)
= −

1

1− v2
dφ

dt

1

γ

d

dt
γ = −

dϕ

dt
(2.11)

where we have used ds =
√
1− v2dt and γ ≡ 1/

√
1− v2. The µ = i component of

(2.10) reads

1√
1− v2

d

dt

(
vi√
1− v2

)
=
∂ϕ

∂xi
−

vi√
1− v2

dϕ

ds

1

1− v2
dvi
dt

+
vi√
1− v2

d

dt

(
1√
1− v2

)
=
∂ϕ

∂xi
−

vi√
1− v2

dϕ

ds

1

1− v2
dvi
dt

−
vi

1− v2
dϕ

dt
=
∂ϕ

∂xi
−

vi
1− v2

dϕ

dt
dvi
dt

= (1− v2)
∂φ

∂xi
(2.12)
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where from the second to third line we have used (2.11). Integrating (2.11) gives

logγ+ϕ = C (2.13)

or
γ = Ce−ϕ (2.14)

or, written in terms of velocity

v2 = 1− (1− v20)e
2ϕ (2.15)

where we have picked the C that satisfies the boundary conditions that φ → 0

and v → v0 as x → ∞. The above equation says that if v0 = 1 then v = 1 at all
time. According to (2.12), this implies that dvi/dt = 0, meaning that scalar gravity
predicts no light deflection, in contrary to what experiments tell us. Thus, scalar
gravity cannot be the theory of gravity.

As we will see in the next section, Einstein’s theory of gravity, our current best
theory of gravity, is based on the equivalence principle (gravitational mass = inertial
mass).

2.4 equivalence principle
We call the mass mi that appears on the right hand side of the Newton’s law

of motion F = mia inertial mass and the mass mg that appears in the formula for
the force of gravity in a uniform gravitational field F = mgg gravitational mass. The
equivalence principle states that the inertial and gravitational mass are the same. If
the equivalence principle is respected, then the speed of free falling objects does not
depend on their (inertial) masses. This was (roughly) demonstrated by Galileo in
his famous Leaning Tower of Pisa experiment. However, it may still be possible that
the two masses are nearly the same but not quite. If the two masses are different,
then the acceleration of a free falling object is given by

a =
mg

mi
g (2.16)

instead of simply g. The Eotvos experiment in Hungary looked for possible devia-
tions of mi from mg. In this experiment, we hang a dumbbell with different masses
attached at its two ends. These masses experience two types of forces: Earth’s grav-
itational pull and inertial force due to Earth’s rotation. The dumbbell’s arm lengths,
`A and `B, are chosen such that the following is satisfied to a high precision

m
g
A`A = mgB`B. (2.17)

This ensures that the horizontal torques caused by the vertical gravitational forces
balance. On the other hand, the net vertical vertical torque due to the horizontal
inertial forces is given by

τV ∝ (miA`A −miB`B). (2.18)

If the inertial and gravitational mass are the same, that is, if

miA
m
g
A

=
miB
m
g
B

(2.19)

then (2.18) together with (2.17) imply that the vertical torque is zero τV = 0. There-
fore, by attempting to measure the possible rotation of the dumbbell due to nonzero
τV with intricate optics, we can constrain the fractional difference between the iner-
tial and gravitational mass. The current constraint is very stringent

|mi −mg|

mg
. 2× 10−13 (2.20)

For this reason, we can rely on the equivalence principle as the basis of general
relativity with a high confidence.
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Remark 2.2. Scalar gravity with electromagnetism.
As an example of a theory of gravity that violates the equivalence principle, here
we consider a modified scalar gravity with electromagnetism incorporated. Below,
we modify (2.7) by adding the only Lorentz invariant terms we can construct out of
Fµν

�ϕ = −Gρ(x) + aFµνFµν + bεµνρσF
µνFρσ︸ ︷︷ ︸

gravity source

. (2.21)

Recall that

FµνF
µν ∝ E2 −B2 (2.22)

εµνρσF
µνFρσ ∝ E ·B (2.23)

εEM =
1

2

(
E2 +B2

)
(2.24)

This means that different EM configurations which have the same electromagnetic
energy εem will gravitate in different manners (e.g. take |E| = |B| = 1 and vary the
relative orientation). We thus expect the equivalence principle to be violated in this
theory.

In order to see an important consequence of the equivalence principle, consider
the following configurations:

1. A particle in an inertial frame under the influence of a gravitational field g.

2. A particle in a non-inertial frame that is moving with acceleration g in the
absence of gravitational field.

In both cases, any particle, regardless of its mass, would follow the exact same tra-
jectory if released with the same initial conditions (spacetime position and velocity).
Therefore, as far as the motion of the particle is concerned, the two configurations
are indistinguishable. This observation may serve as a starting point to state the
equivalence principle in other terms: there is no means for an observer which ob-
serves a free particle moving with a constant acceleration to determine whether they
are themselves accelerating or the particle is subject to a gravitational force.

Remark 2.3. Lift experiment.
The Lift experiment is a gedänken experiment (thought experiment) proposed by A. Ein-
stein to illustrate an important consequence of the equivalence principle: that the
effect of gravity can be removed locally by going to an appropriate frame of ref-
erence. This can only be done exactly at one point, or approximately in a small
region around that point. Consider an observer confined in a free-falling box with
no window. The coordinates ξα belonging to the coordinate system which is falling
together with the box is related to those of the (inertial) laboratory coordinates x ′i

as
ξα = ξα(x ′i). (2.25)

If the equivalence principle is respected, there exists a coordinate system, namely
the free-falling coordinate system, where the gravitational force on a particle is
exactly canceled by the inertial force exerted on it, leaving the particle free of all
forces. In that reference frame, the equation of motion of the particle is given by

d2ξi

dt2
= 0 (2.26)

with i = 1, 2, 3. Its relativistic generalization is

d2ξα

ds2
= 0 (2.27)
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with α = 0, 1, 2, 3 and
ds2 = ηαβdξ

αdξβ (2.28)

where ηαβ is the Minkowski metric. Comparing (2.27) with the equation of motion
in arbitrary coordinates

d2xλ

ds2
+ Γλµν

dxµ

ds

dxν

ds
= 0 (2.29)

which we have derived in (1.128), we see that (2.27) resembles the equation of mo-
tion of a free particle in Minkowskian coordinates with Γλµν = 0 and gµν = ηµν.
Therefore, as far as the equation of motion of a particle is concerned, the free-
falling coordinate system is effectively a Minkowskian coordinate system. Notice
that the presence of gravitational/inertial force comes hand-in-hand with the depar-
ture from the Minkowski metric, which suggests that gravity could be encoded in
the metric.

Remark 2.4 (important). In general, we cannot get an arbitrary metric field g̃µν(x)
from a globally Minkowskian one gµν(x) = ηµν and vice versa via a single coordi-
nate transformation.
We have just seen in the previous remark that, in the presence of an arbitrary gravita-
tional field, we can always find a local free-falling coordinate system in which the ef-
fect of gravity is removed. In such a coordinate system, the effective metric inferred
from the motion of a test particle is Minkowskian. The required coordinate transfor-
mation to cancel the effect of gravity is in general different from point to point and
we would need infinitely many different coordinate transformations to completely
remove the effect of gravity at all points. Similarly, one can prove by counting de-
grees of freedom that there is no single coordinate transformation that brings an
arbitrary metric field g̃(x) to a Minkowskian one gµν(x) = ηµν, or vice versa. The
best that one can hope to do is to set gµν(xp) = ηµν and ∂ρgµν(xp) = 0 at a point
xp, but there is not enough freedom in making coordinate transformations to allow
us to also set the higher derivatives to zero: ∂ρ∂σgµν(xp) = 0, ∂ρ∂σ∂γgµν(xp) = 0,
etc which are required if we are to have a globally Minkowskian metric. This sug-
gests that the presence of gravitational field can be tied with non-Minkowskian
metric, giving us a further motivation to describe gravitational field in terms of the
metric gµν.

Remark 2.5. Examples of curved spaces.
To study a curved space, i.e. a space whose metric is not equivalent to the Minkowski
metric, it is often helpful to embed the space in a higher-dimensional flat space,
where things are better understood. For simplicity, let us take a two-dimensional
curved space and embed it in a three-dimensional Euclidean space, in which the
curved space appears as the surface defined by F(x,y, z) = 0. Particles constrained
to this surface would “feel" a different metric from that of the Euclidean space. We
call such a metric induced metric. Let us try to calculate the induced metric on an
arbitrary two-dimensional surface. Taking the differential of the surface equation
F(x,y, z) gives

∂F

∂x
dx+

∂F

∂y
dy+

∂F

∂z
dz = 0. (2.30)

Using it to eliminate the dz in the Euclidean metric

d`2 = dx2 + dy2 + dz2 (2.31)

we get

d`2 = dx2 + dy2 +
1

(∂F/∂z)2

(
∂F

∂x
dx+

∂F

∂y
dy

)2
z=z(x,y)

(2.32)

which is the induced metric on the surface. As an example, consider a sphere
defined by

x2 + y2 + z2 = R2. (2.33)
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The above constraint is automatically satisfied if we work with the following para-
meterization

z = R cos θ

y = R sin θ cosφ

x = R sin θ sinφ.

Plugging these into the Euclidean metric (2.31), we get the induced metric

d`2 = R2
(
dθ2 + sin2 θdφ2

)
(2.34)

with 0 6 θ 6 π and 0 < φ 6 2π. We can bring the metric to the Euclidean form
locally but not globally by a single coordinate transformation, e.g. for the points
close to the line θ = π/2. The then metric reduces to

d`2 = R2
(
dθ2 + dφ2

)
(2.35)

which looks like the 2d Euclidean metric, apart from the R2 factor, which can easily
be rescaled away by a further coordinate transformation. In fact, for each point
on the sphere we can find a coordinate system where the metric is Euclidean by
shifting the coordinates θ and φ appropriately. However, we stress here that this is
only doable for one point at a time.

2.5 geodesic equation from the least action prin-
ciple

Recall that in classical mechanics a particle moves from one point, say A, to
another point, say B, following a motion which minimizes the action

S =

ˆ T
0
L(x, ẋ)dt, (2.36)

with the boundary conditions x(0) = A and x(T) = B. Requiring that the action is
stationary leads us to the Euler-Lagrange equations

d

dt

(
∂L

∂q̇i

)
−
∂L

∂qi
= 0. (2.37)

Our aim now is to construct the curved-spacetime version of the free-particle least
action principle. Considering that the action must be a scalar, i.e. Lorentz invariant,
arguably the simplest action we can write down is proportional to the spacetime
interval

´
ds. By convention, the proportionality constant is taken to be −m, so that

the action is given by

S = −m

ˆ
ds (2.38)

or

S = −m

ˆ
dτ

(
gµν

dxµ

dτ

dxν

dτ

)1/2
(2.39)

where τ can be any variable that parameterizes the trajectory of the particle , xµ =

xµ(τ). Varying the path as

xµ → xµ + δxµ
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has the following effect on the action

δS =

ˆ
dτ
1

2

1(
gµν

dxµ

dτ
dxν

dτ

) 1
2

(
δgµν

dxµ

dτ

dxν

dτ
+ 2gµνδ

(
dxµ

dτ

)
dxν

dτ

)

=

ˆ
dτ

1

ds/dτ

(
1

2

∂gµν

∂xλ
δxλ

dxµ

dτ

dxν

dτ
+ gµν

d

dτ
(δxµ)

dxν

dτ

)
=

ˆ
dτ
dτ

ds

(
ds

dτ

)2(
1

2

∂gµν

∂xλ
δxλ

dxµ

ds

dxν

ds
+ gµν

d

ds
(δxµ)

dxν

ds

)
=

ˆ
ds

(
1

2

∂gµν

∂xλ
δxλ

dxµ

ds

dxν

ds
+ gµν

d

ds
(δxµ)

dxν

ds

)
(2.40)

Integrating the second term by parts

ˆ
ds

d

ds
(δxµ)︸ ︷︷ ︸
f ′

gµν
dxν

ds︸ ︷︷ ︸
g

= −

ˆ
ds δxµ

( dgµν

ds︸ ︷︷ ︸
∂gµν
∂xρ

dxρ

ds

dxν

ds
+ gµν

d2xν

ds2

)

brings us to

δS =

ˆ
dsδxλ

(
1

2

∂gµν

∂xλ
dxµ

ds

dxν

ds
−
∂gλν
∂xρ

dxρ

ds

dxν

ds
− gλν

d2xν

ds2

)
= 0.

Therefore (
1

2

∂gµν

∂xλ
dxµ

ds

dxν

ds
−
∂gλν
∂xρ

dxρ

ds

dxν

ds

)
− gλν

d2xν

ds2
= 0

dxµ

ds

dxν

ds

(
1

2

∂gµν

∂xλ
−
∂gλν
∂xµ

)
− gλν

d2xν

ds2
= 0. (2.41)

Using

0 = gµν;λ =
∂gµν

∂xλ
− Γρµλgρν − Γρλνgµρ (2.42)

we can rewrite the first term in (2.41) as

dxµ

ds

dxν

ds

(
1

2

∂gµν

∂xλ
−
∂gλν
∂xµ

)
=
dxµ

ds

dxν

ds

[
1

2

(
Γ
ρ
µλgρν + Γρλνgµρ

)
− Γρλµgρν − Γρµνgλρ

]
= −

1

2
Γ
ρ
µλgρν

dxµ

ds

dxν

ds
+
1

2
Γ
ρ
λνgµρ

dxµ

ds

dxν

ds
− Γρµνgλρ

dxµ

ds

dxν

ds

= −Γρµνgλρ
dxµ

ds

dxν

ds

where the first two terms in the second line cancel. As a result, (2.41) becomes

dxµ

ds

dxν

ds
Γρµνgλρ + gλν

d2xν

ds2
= 0. (2.43)

Relabeling the dummy indices ν with ρ, we arrive at

d2xν

ds2
+ Γνµρ

dxµ

ds

dxρ

ds
= 0 (2.44)

This so called geodesic equation describes the motion of a free-falling particle in a
gravitational field which minimizes the action (if the particle is massive, this trans-
lates to maximal proper time).

Remark 2.6. The geodesic equation we just derived can be obtained from a simpler
action

S = −

ˆ
dτgµν

dxµ

dτ

dxν

dτ
(2.45)
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where τ must now be the proper time. The above action is essentially the same as
(2.39) apart from the square root. The fact the two actions yield the same equation
of motion can be understood by observing that for any non-zero function f, we

have δ
(√
f
)
∝ δf/

√
f. Hence, by extremizing the above action, whose Lagrangian

is the square of the Lagrangian of (2.39), we automatically extremize the original
single-particle action (2.39).
Remark 2.7. We know that massless particles follow null paths, i.e. those with
ds = 0. Consequently, the action (2.39) we considered earlier ceases to be useful. To
account for the possibility that the particle in question is massless, we consider the
following action

S = −
1

2

ˆ
dσ

[
η(σ)gµν

dxµ

dσ

dxν

dσ
+
m2

η(σ)

]
(2.46)

where σ is the time coordinate in a locally Minkowskian coordinates system and we
have introduced a new parameter η(σ), which will eventually disappear. One can
check that demanding the above action to be stationary under a variation in η(σ)
yields

η(σ) =
m√

gµν
dxµ

dσ
dxν

dσ

(2.47)

which we can plug back in to (2.46) to give

S = −m

ˆ √
gµν

dxµ

dσ

dxν

dσ
dσ (2.48)

i.e. the action (2.39) we wrote down earlier if we choose τ = σ. In other words, the
new action works well when the particle is massive. Now, if the particle is massless,
we can set m = 0 in (2.46), leaving us with

S = −
1

2

ˆ
dσ

[
η(σ)gµν

dxµ

dσ

dxν

dσ

]
. (2.49)

Varying it with respect to η gives the null condition ds = 0 and varying it with
respect to xµ gives the geodesic equation

d2xµ

dσ2
+ Γµνλ

dxν

dσ

dxλ

dσ
= 0. (2.50)

2.6 geodesic equation in the newtonian approx-
imation

One requirement for a successful theory of gravity is that it must reproduce the
results of Newtonian gravity and mechanics in the weak-field, non-relativistic limit.
Consider a non-relativistic (ds ≈ dt) particle in a static gravitational field. The
particle’s geodesic equations (2.44) for µ = i reduce to

d2xi

dt2
+ Γ i00 = 0 (2.51)

after neglecting terms quadratic in dxi/ds and substituting dxi/ds→ dxi/dt. Math-
ematically, the weak gravitational field condition means that the metric gµν can be
written as a slightly perturbed Minkowski metric ηµν

gµν = ηµν + δgµν, δgµν � 1. (2.52)

The Christoffel symbols Γ i00 can be computed explicitly using (1.106) to first order
in δgµν

Γ i00 =
1

2
ηiχ
( =0 static field︷ ︸︸ ︷
δg0χ,0 + δgχ0,0−δg00,χ

)
=
1

2

∂δg00
∂xi

(2.53)
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and so the geodesic equation becomes

d2xi

dt2
+
1

2

∂(δg00)

∂xi
= 0. (2.54)

In this case, the equation of motion predicted by Newtonian gravity is

d2x
dt2

+∇ϕ = 0 (2.55)

where the gravitational potential ϕ can, for instance, be taken as that due to a point
particle ϕ = −GMr . Comparing this with the geodesic equation (2.54), we find the
following weak-field correspondence

g00 ≈ 1+ 2ϕ. (2.56)

2.7 gravitational redshift
Consider a clock in a static gravitational field and pick a coordinate system

where the clock is at rest, i.e. where the clock has dxi = 0. The fact that the gravita-
tional field is static means the metric gµν does not depend on the time coordinate
x0. Since the clock is at rest, its tick rate dτ is given by

dτ2 = ds2
∣∣∣
dxi=0

= g00(dx
0)2 (2.57)

and its reading (the proper time ) is

τ =

ˆ √
g00dx

0 (2.58)

i.e. the amount of time elapsed as measured by a clock depends on the local gra-
vitational potential around the clock. However, we cannot measure the said effect
locally (by performing measurements where the clock is located) because any time-
measuring device placed near the clock of interest would slow down or speed up
in exactly the same way.

Nevertheless, it is possible to observe the effect of gravitational field on the time
flow rate by comparing the rates of two identical processes occurring at different
positions with different gravitational potentials. For concreteness, let us consider
identical substances undergoing identical atomic transitions at rest at two different
points: point 1 and point 2. The substances are set up such that every time there
is a transition a pulse of electromagnetic wave is emitted from the point where it
occurs. Suppose that there is an observer located at point 1 trying to measure the
time interval between two consecutive pulses coming from a common source. In
particular, the observer wants to compare the interval between pulses coming from
point 1 with that of the pulses coming from point 2

1.
In a static spacetime, we can have a well-defined global time coordinate x0. It

is the time coordinate of the coordinate system where the spacetime / gravitational
field looks static. The spacetime interval between two pulses is frame independent.
Suppose that this interval is known in the rest frame of the substance to be dτ. The
frame-independence of spacetime interval then tells us that

dτ2 = g00(x1)
(
dx01

)2
= g00(x2)

(
dx02

)2
(2.59)

1 If the observer measures at point 1 the rate of the pulses coming from point 1 and then moves to point
2 to measure the rate of pulses coming from point 2, then there would be no difference between the two
measured rates.
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where x01 and x02 are the global time interval at x1 and x2 respectively. Now, let us
come back to the observer at point 1 we introduced earlier. The time interval dt1
between pulses from point 1 measured by the observer is

dt1 = dτ. (2.60)

On the other hand, by (2.59), consecutive pulses coming from point 2 are separated
from one another by

dx02 =
dτ√
g00(x2)

(2.61)

in the global time. At point 1, the time interval dt2 between these pulses is mea-
sured by the observer as

dt2 =
√
g00(x1)dx

0
2 =

√
g00(x1)

g00(x2)
dτ. (2.62)

Therefore, the ratio of the frequencies of pulses coming from point 1 and point 2 as
measured by the observer is

ν1
ν2

=
dt2
dt1

=

√
g00(x1)

g00(x2)
. (2.63)

Note that this is an exact relation. We did not make any approximation in the
derivation. In the weak field limit, we can use the correspondence (2.56) to write
the above as

ν2
ν1

=

√
g00(x2)

g00(x1)
=

√
1+ 2ϕ(x2)

1+ 2ϕ(x1)
≈ 1+ϕ(x2) −ϕ(x1)

or
ν2 − ν1
ν1

≈ ϕ(x2) −ϕ(x1) (2.64)

i.e. the pulses coming from point 2 are redshifted relative to those coming from
point 1 if the gravitational potential at point 2 is lower than that at point 1.

Example 2.1. Suppose that point 1 is on the surface of the Earth and point 2 is on
the surface of the Sun. Since the gravitational potential on the surface of the Sun
is lower (more negative) than that on the surface of the Earth, we expect the light
emitted by the Sun to be redshifted when it is measured on Earth by the amount

νE − ν�
ν�

≈ G

c2

 M�
R� + dSE︸ ︷︷ ︸
≈0

−
M�
R�

 ≈ −
GM�
c2R�

≈ −2× 10−6.

Due to its smallness, this gravitational redshift effect is difficult to disentangle from
Doppler effects.

2.8 principle of general covariance
It is natural to think that the laws of physics are independent of the way we view

them. We have seen by now different manifestations of this idea, e.g. in electrody-
namics and special relativity. One basic premise of special relativity is the principle
of Lorentz covariance, which states that the laws of physics are the same in all iner-
tial coordinate systems. In general relativity, this principle is extended to include all
coordinates systems and goes under the name of general covariance. Specifically, the
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principle of general covariance says that the laws of physics preserve their forms un-
der a general coordinate transformation xµ → x ′µ. In practice, we effortlessly make
sure that general covariance holds by limiting ourselves to tensorial equations. Gen-
eral covariance allows us to rewrite any Lorentz-invariant equation in an arbitrary
coordinate system with an arbitrary metric, which is not necessarily related to a
Minkowskian one by a coordinate transformation.

2.9 curvature

2.9.1 Dynamical equation of spacetime and Riemann tensor

Thus far, we have devoted most of our attention to studying the motion of a
particle in a curved spacetime. Our aim now is to figure out how the spacetime
itself behaves, i.e. we are looking for an equation dictating the dynamics of the
spacetime. Based on the clues we have gathered so far, such an equation must have
the following properties

• The LHS and RHS of the equation must transform in the same way under
coordinate transformations, i.e. it must be general covariant.

• Gravitational effects are encoded in the metric gµν.

• In the weak-field limit, the equation must reproduce the Poisson equation
∇2ϕ = GNρ with the following correspondence g00 = 1+ 2ϕ.

Based on these properties, we can guess that the equation of interest has the form

[second order derivatives]gµν = Tµν. (2.65)

If we take the above form for granted, what is left to be done is finding the explicit
form of the left hand side. It must be a tensor involving second order derivatives of
the metric gµν. The challenge here is that, as we have showed before, gµν;λ = 0.

The so-called Riemann tensor fits our criteria. At the very least, it is a tensor
that involves second order derivatives of the metric gµν and is non-zero when the
spacetime is curved. To construct the Riemann tensor, take a covariant vector field
Vµ and compute the commutator of its covariant derivatives

Vµ;ν;ρ − Vµ;ρ;ν. (2.66)

This quantity is identically zero if the spacetime is flat, but not necessarily so if the
spacetime is curved. To compute the double covariant derivatives, starting from the
first term, let us group Vµ;ν together and call it a tensor Wµν. We know well how
to compute the covariant derivative of such a tensor

Wµν;ρ =
∂Wµν

∂xρ
− ΓχρµWχν − ΓχνρWµχ

=
∂

∂xρ

(
∂Vµ

∂xν
− ΓλµνVλ

)
− Γχρµ

(
∂Vχ

∂xν
− ΓλχνVλ

)
− Γχνρ

(
∂Vµ

∂xχ
− ΓλµχVλ

)
=

∂2Vµ

∂xρ∂xν︸ ︷︷ ︸
symmetric ν↔ρ

−
∂Γλµν

∂xρ
Vλ − Γ

λ
µν

∂Vλ
∂xρ

− Γχρµ
∂Vχ

∂xν︸ ︷︷ ︸
symmetric ν↔ρ

− Γχνρ
∂Vµ

∂xχ︸ ︷︷ ︸
symmetric ν↔ρ

+
(
ΓχρµΓ

λ
χν + ΓχνρΓ

λ
µχ︸ ︷︷ ︸

sym ν↔ρ

)
Vλ. (2.67)
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The quantity we are interested in is the difference between two such covariant
derivatives with the indices νρ antisymmetrized. All the terms that are symmet-
ric in νρ will vanish, leaving us with

Vµ;ν;ρ − Vµ;ρ;ν = ΓχρµΓ
λ
χνVλ −

∂Γλµν

∂xρ
Vλ − Γ

χ
νµΓ

λ
χρVλ +

∂Γλµρ

∂xν
Vλ

=

(
∂Γλµρ

∂xν
−
∂Γλµν

∂xρ
+ ΓχµρΓ

λ
χν − ΓχµνΓ

λ
χρ

)
Vλ

≡ RλµνρVλ. (2.68)

In the last equality we have defined the Riemann tensor Rλµρν we were after (we
know that it is a tensor because the left hand side is a tensor). When its first index
is lowered, this tensor is given by

Rχµνρ = gχλR
λ
µνρ = gχλ

(
∂Γλµρ

∂xν
−
∂Γλµν

∂xρ
+ ΓχµρΓ

λ
χν − ΓχµνΓ

λ
χρ

)
. (2.69)

Using (1.106) we can rewrite it as

Rλµχν =
1

2

(
∂2gλν
∂xχ∂xµ

−
∂2gµν

∂xχ∂xλ
−
∂2gλχ

∂xν∂xµ
+
∂2gµχ

∂xν∂xλ

)
+ gησ

(
Γ
η
νλΓ

σ
µχ − Γ

η
χλΓ

σ
µν

)
(2.70)

clearly showing that it involves second-order derivatives of gµν, as claimed earlier.
From the Riemann tensor, we can construct two more useful quantities: the Ricci
tensor and the Ricci scalar. The Ricci tensor Rµκ, the only (0,2) tensor (up to a con-
stant factor) we can construct from the Riemann tensor, is obtained by contracting
the first and third index of the Riemann tensor

Rµκ ≡ Rλµλκ (2.71)

and the Ricci scalar R, the only scalar (up to a constant factor) we can construct from
the Riemann tensor, is obtained by contracting the sole two indices of the Ricci
tensor

R ≡ gµνRµν. (2.72)

Remark 2.8. Symmetry properties of the Riemann tensor Rλµνχ:

• Symmetry under simultaneous exchanges of the 1↔ 3 and 2↔ 4 indices :

Rλµνχ = Rνχλµ. (2.73)

• Antisymmetry under an exchange of 1↔ 2 or 3↔ 4 indices:

Rλµνχ = −Rµλνχ = Rµλχν = −Rλµχν. (2.74)

• Cyclic property on the last three indices

Rλµνχ + Rλχµν + Rλνχµ = 0. (2.75)

Remark 2.9. Number of independent components of Rµνρσ.
The indices µν are antisymmetric, so they represent (16 − 4)/2 = 6 independent
components; the same goes for ρσ. For the present counting purposes, we can take
µν as a single index with 6 possible values. Again, the same applies to ρσ. Now, µν
and ρσ are symmetric. So, at this point, we count (6.6− 6)/2+ 6 = 21 independent
components. Next, the cyclic property of Rµνρσ in its last three indices is worth 1

degree of freedom of constraint. Hence, we are now left with 21− 1 = 20 indepen-
dent components, that is, algebraically independent components. At a particular
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point, we still have a freedom to perform local Lorentz transformation, which is
parameterized by 6 parameters. So, in the end, there are only 20 − 6 = 14 phy-
sically independent components that are invariant under Lorentz transformations,
meaning that there are 14 Lorentz-invariant scalars that we can form from Rµνρσ.

If Rµν = 0, i.e. a condition that is worth (4.4− 4)/2+ 4 = 10 degrees of freedom,
there are only 20− 10 = 10 algebraically independent components and 10− 6 = 4

physically independent components of the Riemann tensor.

2.9.2 Necessary and sufficient conditions for a flat spacetime

How do we identify if a spacetime is flat? Due to general covariance, the flatness
of spacetime has a wider meaning than having a Minkowskian metric ηµν. Any
spacetime whose metric gµν is related to ηµν via a coordinate transform ξα(x)

ηαβ =
∂ξα

∂xµ
∂ξβ

∂xν
gµν (2.76)

is also a flat spacetime. The necessary and sufficient conditions for a flat spacetime
are:

1. Rλµνχ = 0 everywhere.

2. For all x, the metric tensor gµν(x) has one positive and three negative eigen-
values.

The first condition is obvious because we know that Rλµνχ = 0 in the coordinate
system where the metric is equal to ηµν and, since Rλµνχ is a tensor, it must be
zero in any other coordinates. The second condition follows from a linear algebra
theorem which says if the matrix G is related to the Minkowski matrix η by a
transformation G = DTηD, with detD 6= 0, then G and η have the same number of
positive, negative and zero eigenvalues.

2.9.3 Parallel transport and Riemann tensor

In a flat spacetime, the notion of parallel transport has a clear meaning: a vector
Vµ is parallel transported along a curve xµ(τ) if the vector remains unchanged
along the curve (see Figure 1)

dVα

dτ
= 0 =⇒ Vα,µ

dxµ

dτ
= 0. (2.77)

This condition can be generalized to curved spacetimes as

Vα;µ
dxµ

dτ
= 0 =⇒

(
Vα,µ − ΓχαµVχ

) dxµ
dτ

= 0 (2.78)

or
dVα

dτ
= ΓχαµVχ

dxµ

dτ
. (2.79)

Physically, one can carry out parallel transport in curved spacetime in the following
way. At each point along the path, we can go to the local flat coordinate system. In
this coordinate system, parallel transport has a clear definition and we can proceed
infinitesimally according to this definition.

One way to check if a spacetime is flat or curved is by parallel transporting a
vector around a closed loop. If the spacetime is flat then we would get at the end
the same vector we started with. If the spacetime is curved in general we will get
a different vector. To understand this better, let us work out explicitly the result of
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xµ = xµ(τ)

Vα(τ)

Vα(τ+ dτ) dVα
dτ
dτ

Figure 1: Parallel transport on a Euclidean space

parallel transporting a vector around a closed loop. The total change ∆Vα in the
transported vector Vα can be obtained by integrating (2.79)

∆Vα =

˛
ΓχαµVχ

dxµ

dτ
dτ. (2.80)

Consider a small loop connecting the points xµ0 , xµ0 + daµ, xµ0 + daµ + dbµ, and
x
µ
0 + dbµ. Along this loop, the vector Vλ and the Christoffel symbols can be Taylor

expanded as

Vχ(x) = Vχ(0) +
dVχ

dxµ
(0)(xµ − xµ0 ) +O(x

µ − xµ0 )
2

= Vχ(0) + Γ
λ
χµVλ(0)(x

µ − xµ0 ) +O(x
µ − xµ0 )

2 (2.81)

Γχαµ(x) = Γ
χ
αµ(0) +

∂Γ
χ
αµ

∂xν
(0)(xν − xν0 ) +O(x

ν − xν0 )
2. (2.82)

Injecting these to (2.80), we get

∆Vα =

˛
Γχαµ(0)Vχ(0)

dxµ

��dτ
��dτ︸ ︷︷ ︸

=0 since
¸
dxµ=0

+

˛ (
∂Γ
χ
αµ

∂xν
(0) + Γχλν(0)Γ

λ
αµ(0)

)
(xν − xν0 )Vχ(0)

dxµ

��dτ
��dτ

=

(
∂Γ
χ
αµ

∂xν
(0) + Γχλν(0)Γ

λ
αµ(0)

)
Vχ(0)

˛
(xν − xν0 )dx

µ︸ ︷︷ ︸
=
¸
xνdxµ−xν0

¸
dxµ

=

(
∂Γ
χ
αµ

∂xν
(0) + Γχλν(0)Γ

λ
αµ(0)

)
Vχ(0)

˛
xνdxµ. (2.83)

Integration by parts gives
˛
xνdxµ =

˛
dτxν

dxµ

dτ
=
∣∣∣xµ(τ)xν(τ)∣∣∣0

0︸ ︷︷ ︸
=0

−

˛
dτxµ

dxν

dτ

= −

˛
xµdxν

i.e.
¸
xνdxµ is antisymmetric in µν. Using this fact and the definition of Riemann

tensor, we can rewrite (2.83) as

∆Vα =
1

2
Rχανµ(0)Vχ(0)

˛
xνdxµ︸ ︷︷ ︸
6=0

. (2.84)

In conclusion, parallel transporting a vector around a closed infinitesimal loop re-
sults in no change in the vector unless Rχαµν 6= 0 at that point. This finding can be
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generalized to the case of an arbitrary finite closed loop by noting that a finite-loop
integral can always be written as a sum of many infinitesimal-loop integrals. In
order to cover the full area of the finite loop, the infinitesimal loops must overlap
one another, and the contributions from those overlapping parts cancel as they are
line integrals in opposite directions, but otherwise the same. The remaining part
of the line integrals that do not get canceled are those that lie on the original finite
closed loop, as intended. Therefore, the same qualitative conclusion (that parallel
transporting a vector around a closed loop in a curved spacetime in general yields
a different vector from what we started with) applies regardless of the size of the
loop.

2.9.4 Bianchi identity

The Riemann tensor Rλµνκ obeys yet another important identity called the
Bianchi identity, which reads

Rλµνχ;η + Rλµην;χ + Rλµχη;ν = 0 (2.85)

where we have summed over the cyclic permutation of the last three indices. Before
proving this identity, let us derive a useful consequence of the Bianchi identity. First,
contract the identity with gνλ to get

0 = gνλ
(
Rλµνχ;η + Rλµην;χ + Rλµχη;ν

)
= Rλµλχ;η + Rλµηλ;χ︸ ︷︷ ︸

=−Rλµλη;χ

+Rλµχη;λ

= Rλµλχ;η − R
λ
µλη;χ + R

λ
µχη;λ (2.86)

which can be expressed in terms of Ricci tensors

Rµχ;η − Rµη;χ + R
λ
µχη;λ = 0. (2.87)

Then, we contract the above once more with gµχ to obtain

0 = gµχ
(
Rµχ;η − Rµη;χ + R

λ
µχη;λ

)
= R;η−R

µ
η;µ − Rλη;λ︸ ︷︷ ︸

=−2Rµη;µ

= R;η − 2R
µ
η;µ (2.88)

or (
Rµν −

1

2
δµνR

)
;µ

= 0. (2.89)

Finally, we obtain the following expression by multiplying with gνη(
Rµν −

1

2
gµνR

)
;µ

= 0. (2.90)

The expression inside the bracket

Gµν = Rµν −
1

2
gµνR (2.91)

is known as the Einstein tensor. We will find it useful when writing the gravitational
field equation.

The strategy we are going to follow in proving the Bianchi identity (2.85) is to
show that it is satisfied in a local Minkowski coordinate system and then argue
that it must be valid in any coordinates because of its tensor form. Thanks to the
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equivalence principle, for an arbitrary point x0, we can in principle go to the local
Minkowskian coordinate system where the following equations hold

gµν(x0) = ηµν

Γµνρ(x0) = 0. (2.92)

With the Christoffel symbols being zero, the covariant derivatives reduce to mere
partial derivatives and hence the covariant derivative of the Riemann tensor reduces
to

Rλµχν;η = Rλµνχ,η =
1

2

(
∂3gλν

∂xχ∂xµ∂xη
−

∂3gµν

∂xλ∂xχ∂xη
−

∂3gλχ

∂xν∂xµ∂xη
+

∂3gµχ

∂xν∂xλ∂xη

)

where we have used (2.70). If we sum the above expression over the cyclic permuta-
tion in the last three indices, µνχ, we will get zero, thus proving the Bianchi identity.
Since this is a tensor equation and we started at an arbitrary point x0, the result is
valid in any coordinates at any point.

Remark 2.10. Local Minkowskian coordinates.
We can go from an arbitrary coordinate system to the local Minkowskian coordi-
nates by the following procedure:

• Start in an arbitrary coordinate system xµ with metric gµν and calculate the
corresponding Christoffel symbols Γµνρ(x0).

• Introduce new coordinates x ′µ that are related to the ones we started with as

x ′µ = xµ +
1

2
Γµνρ(x− x0)

ν(x− x0)
ρ︸ ︷︷ ︸

=0 for x=x0

. (2.93)

Since ∂x ′µ/∂xν = δµν at x0, this transformation keeps the gµν at x0 unchanged.
One can check that the Christoffel symbols in the new coordinate system are
zero, Γ ′µνρ = 0.

• Diagonalize the metric so that it has the form

g′′µν = diag (−λ0, λ1, λ2, λ3) (2.94)

by making the coordinate transformation

x′′µ = Oµνx
′ν (2.95)

where O is an orthogonal matrix.

• Finally, rescale the coordinates as

x̃µ =
1√
λµ
x′′µ (2.96)

to get what we are after

g̃µν(x0) = ηµν

Γ̃µνρ(x0) = 0. (2.97)

Note however that in a general spacetime, there is no way to set simultaneously
the Christoffel symbols and their derivatives to zero, even at a given point. This
comes from the fact that the Riemann tensor is indeed a tensor and cannot be made
to vanish in a given coordinate system (as this would imply that it vanishes in any
coordinate system).
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2.10 action principle for fields
In analytical mechanics, one sees how to formulate the principle of least action

for a discrete set of generalized coordinates qi and generalized velocities q̇i. In
describing gravity, the physical objects of interest are fields instead of discrete coor-
dinates. Therefore it is of interest to formulate the principle of least action for fields.
A field effectively assigns a generalized coordinate qx and a generalized velocity q̇x
to each spacetime point x. The generalized coordinates may come in different forms,
e.g. scalar, vector, or tensor. We write scalar-, vector-, and tensor-valued fields as
ϕ(xµ), Aµ(xν), and ϕµν(xα) respectively.

2.10.1 Scalar field in a flat spacetime

For simplicity, let us start by formulating the least action principle for a scalar
field ϕ(x) in a flat spacetime. Given the boundary conditions

ϕ(x, t1) = ϕ1(x)

ϕ(x, t2) = ϕ2(x), (2.98)

the field ϕ(x) evolves in such a way that the action

S =

ˆ
d4xL(ϕ,∂ϕ) (2.99)

is minimized. If we perturb the field φ slightly around a solution ϕ0(x, t) as

ϕ(x, t) = ϕ0(x, t) + δϕ(x, t) (2.100)

where δϕ must obey the boundary conditions

δϕ(x, t1) = δϕ(x, t2) = 0 (2.101)

and the locality condition

δϕ(x, t)→ 0, as x→∞ (2.102)

then the action does not change if

δS =

ˆ
d4x [L (ϕ0 + δϕ,∂µϕ0 + ∂µδϕ) −L (ϕ0,∂µϕ)]

0 =

ˆ
d4x

[
∂L

∂ϕ
δϕ+

∂L

∂ (∂µϕ)
∂µδϕ

]
0 =

ˆ
d4x

[
∂L

∂ϕ
δϕ− ∂µ

(
∂L

∂ (∂µϕ)

)
δϕ

]
+

ˆ
d3x

(
∂L

∂ (∂0ϕ)
δϕ

)∣∣∣∣t2
t1︸ ︷︷ ︸

=0 boundary cond.

+

˛
dtdS.

(
∂L

∂ (∂ϕ)
δϕ

)
︸ ︷︷ ︸

=0 locality

which is the Euler-Lagrange equation for fields

∂L

∂ϕ
− ∂µ

(
∂L

∂(∂µϕ)

)
= 0. (2.103)

Example 2.2. Consider the following action

S =

ˆ
d4x

(
F(ϕ) +

1

2
∂µϕ∂

µϕ︸ ︷︷ ︸
scalar kinetic term

)
(2.104)
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with the scalar potential

F(ϕ) = −
1

2
m2ϕ2 −

λ

4
ϕ4. (2.105)

Varying the field ϕ(x, t) = ϕ0(x, t) + δϕ(x, t) around the solution φ0(x, t) results in
the variation of the action

δS = S[ϕ0 + δϕ] − S[ϕ0]

0 =

ˆ
d4x

(
1

2
∂µ(ϕ0 + δϕ)∂

µ(ϕ0 + δϕ) −
1

2
m2(ϕ0 + δϕ)

2 −
λ

4
(ϕ0 + δϕ)

4

)
− S[ϕ0]

0 =�
��S[ϕ0] −

ˆ
d4x

(
m2ϕ0δϕ+ λϕ30δϕ− ∂µϕ0∂

µδϕ
)
−�

��S[ϕ0] +O(δφ
2)

0 =

ˆ
d4x

(
∂µϕ0∂

µδϕ−m2ϕ0δϕ− λϕ30δϕ
)
+O(δφ2). (2.106)

Integrating the first term by parts and using the locality condition, we get

0 =

ˆ
d4x

(
∂µ∂µϕ0 +m

2ϕ0 + λϕ
3
0

)
δϕ (2.107)

or
�ϕ(x, t) +m2ϕ(x, t) + λϕ3(x, t) = 0. (2.108)

Alternatively, we could have arrived at the equation of motion above directly, by
using the Euler-Lagrange equation.

Example 2.3. Lagrangian formulation of electrodynamics.
The free (without sources) Maxwell equations can be obtained from the following
action

S = −

ˆ
d4x

1

4
FµνF

µν (2.109)

with
Fµν = ∂µAν − ∂νAµ. (2.110)

Varying the action and setting it to zero

δAS =S[Aµ + δAµ] − S[Aµ]

0 =

ˆ
d4x

[
��

����
−
1

4
FµνF

µν −
1

4
(FµνδF

µν + FµνδFµν) +
��

���1

4
FµνF

µν
]

0 =−

ˆ
d4x

1

2
FµνδF

µν

0 =−

ˆ
d4x

1

2
Fµν (∂

µδAν − ∂νδAµ) . (2.111)

Since Fµν is antisymmetric, we can rewrite the above as

0 =

ˆ
d4x (−Fµν∂

µδAν) . (2.112)

Integrating by parts and imposing the locality condition gives

0 =

ˆ
d4x (∂µFµν) δA

ν

i.e. we arrive at the homogeneous Maxwell equations (Gauss law and Ampere’s law)

∂µFµν = 0. (2.113)

The remaining two equations (magnetic Gauss law and Faraday’s law) are obtained
automatically from the symmetry property of the field strength tensor Fµν

εµνρσ∂
νFρσ = 0. (2.114)
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2.10.2 Scalar field in a curved spacetime

The action for a scalar field in a flat spacetime can be generalized to its curved-
spacetime version by making the following replacements:

• d4x→
√
−gd4x in the action.

• ∂µ → ∇µ (or ,→;) in the Lagrangian and equations of motion.

• ηµν → gµν in the Lagrangian and equations of motion.

For example, the curved-spacetime version of the action with the scalar potential
considered in the previous section is

S =

ˆ √
−gd4x

(
1

2
gµνφ;µφ,ν −

1

2
m2φ2 −

λ

4
φ4
)

(2.115)

and the corresponding equation of motion is

φ;µ
;µ −m2φ− λφ3 = 0. (2.116)

For another example, the curved-spacetime generalization of the free electrodynam-
ics action is

S =

ˆ √
−gd4x

(
−
1

4
gµνgρσFµρFνσ

)
(2.117)

and its equation of motion becomes

Fµν
;ν = 0. (2.118)

2.10.3 Einstein-Hilbert action and Einstein equation

We are now ready to formulate the least action principle for gravity. The action
describing gravity must be a scalar, as any action should be, and a function of the
metric gµν, as it is meant to describe gravity. The simplest of such actions is called
the Einstein-Hilbert action. It reads

SE =

ˆ
d4x
√
−g

(
−

1

16πG
R−

λ

8πG

)
(2.119)

where R is the Ricci scalar we introduced earlier and λ is a constant dubbed cosmo-
logical constant. It is not difficult to construct more complicated scalars out of the
metric. To the Einstein-Hilbert action above, we could add various contractions of
the Riemann tensor or Ricci tensor, e.g. RµνRµν. However, as we will see, in most
cases of interest such terms are suppressed, i.e. their contributions to the dynamics
are negligible.

The Einstein equations, our current best description of gravity, follow from vary-
ing the Einstein-Hilbert action with respect to the metric gµν. Before we proceed
to derive the Einstein equations, we would like to derive a few useful identities
related to the variation of the metric gµν. The variation of the metric δgµν and the
variation of its inverse δgµν are related via

gµνg
νρ = δµ

ρ =⇒ gµνδg
νρ + δgµνg

νρ = 0 (2.120)

Next, we are going to work out the expression for the variation of determinant of
the metric g ≡ detg. Recall the following identity from linear algebra

g = exp (Tr loggµν). (2.121)
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Varying this identity gives

g+ δg = exp Tr [ln(gµν + δgµν)]

= exp Tr
[
ln(gµν) + g−1µνδgµν

]
= eTr(gµν)︸ ︷︷ ︸

=g

eTr(g−1µνδgµν) (2.122)

= g (1+ Tr (gµνδgµν))

= g (1− gµνδg
µν) (2.123)

where we have used the fact that gµνδgµν is a scalar and used the result (2.120) in
the last step. Therefore we can see that (as we did in the third problem in Problem
Set 4)

δg = −ggµνδg
µν. (2.124)

The identity (2.124) allows us to evaluate the variation of the
√
−g appearing in the

Einstein-Hilbert action

δ
(√

−g
)
= −

1

2
√
−g
δg = −

1

2

√
−ggµνδg

µν. (2.125)

Armed with the above identities, we can now vary the Einstein-Hilbert action
starting from the Ricci scalar R term

δ

ˆ
d4x
√
−gR = δ

ˆ
d4x
√
−ggµνRµν

=

ˆ
d4xδ(

√
−g)gµνRµν +

√
−gδ(gµνRµν)

(2.125)
=

ˆ
d4x
√
−g

−
1

2
gαβδg

αβ gµνRµν︸ ︷︷ ︸
=R

+δ(gµν)Rµν + gµνδ(Rµν)


=

ˆ
d4x
√
−g

(
Rµν −

1

2
gµνR

)
δgµν +

ˆ
d4x
√
−ggµνδRµν.

(2.126)

To compute the second integral, we go to the local Minkowskian coordinates where
gµν = ηµν and Γρµν = 0. In these coordinates, the Ricci tensor can be written in the
form

Rµν =
∂Γλµν

∂xλ
−
∂Γαµα

∂xν
. (2.127)

and so the expression gµνδRµν becomes

gµνδRµν = gµν

(
∂δΓλµν

∂xλ
−
∂δΓαµα

∂xν

)
gµν=ηµν

=
∂

∂xλ

gµνδΓλµν − gµλδΓαµα︸ ︷︷ ︸
=ωλ

 =
∂ωλ

∂xλ

and hence ˆ
d4x
√
−ggµνδRµν =

ˆ
d4x
√
−g
∂ωλ

∂xλ

gµν=ηµν
=

ˆ
d4x

∂

∂xλ

(√
−gωλ

)
︸ ︷︷ ︸

divergence theorem

=

˛
S
dSλ
√
−gωλ = 0

since ωλ = 0 at infinity. Therefore, the remaining term is

δ

ˆ
d4x
√
−gR =

ˆ
d4x
√
−g

(
Rµν −

1

2
gµνR

)
δgµν. (2.128)
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Notice that the expression inside the brackets is the Einstein tensor Gµν defined in
(2.91). Furthermore, the variation of the cosmological constant term in (2.119) is

δ

ˆ
d4x
√
−g

λ

8πG
=

λ

8πG

ˆ
d4x

(
−

1

2
√
−g
δg

)
= −

1

2

ˆ
d4x

(√
−ggµνδg

µν
)

.

(2.129)
Combining (2.128) and (2.129), we find that the variation of the Einstein-Hilbert
action is given by

δSE = −

ˆ
d4x
√
−g

(
Rµν −

1

2
gµνR− λgµν

)
δgµν

1

16πG
. (2.130)

Suppose that in addition to the Einstein-Hilbert action SE, we also have an action
SM describing the behavior of matter. The variation of SM with respect to gµν can
be written as

δSM =

ˆ
dx4
√
−g

[
1√
−g

δSM
δgµν

δgµν
]

. (2.131)

Finally, demanding that the variation of the total action is zero

δSE + δSM = 0 (2.132)

we obtain the Einstein equation

Rµν −
1

2
gµνR− λgµν = 8πGTµν (2.133)

where we have defined the energy-momentum tensor Tµν as

Tµν =
2√
−g

δSM
δgµν

. (2.134)

The energy-momentum conservation

Tµν;µ = 0 (2.135)

follows from gµν;ρ = 0 and the Bianchi identity in a way analogous to the current
conservation in electrodynamics (∂µFµν = jν)→ ∂νj

ν = 0.

Remark 2.11. Canonical energy-momentum tensor and Hilbert energy-momentum
tensor.
You might have seen in the Quantum Field Theory lectures a different definition of
the energy-momentum tensor in flat spacetime

T
µν
C =

∂L

∂φ,µ
∂νφ− ηµνL (2.136)

that derives from the Noether theorem in the presence of translational symmetry.
We call this version of the energy-momentum tensor canonical energy-momentum ten-
sor, in contrast to the one we defined earlier (2.134), which is known as the Hilbert
energy-momentum tensor. While the Hilbert energy-momentum tensor is symmetric
in µν and gauge-invariant, the canonical energy-momentum (2.136) is in general
not so. The two versions of energy-momentum tensor can in general be related as

Tµν = TµνC +
1

2
∂λψ

λµν (2.137)

where ψλµν is an appropriate antisymmetric tensor with the property

ψλµν = −ψµλν. (2.138)

Thanks to this property, we have

∂µ∂λψ
λµν = 0 (2.139)

and consequently adding ∂λψλµν to the canonical stress-energy energy tensor does
not change the fact that it is conserved.
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Example 2.4. Energy momentum tensor for a scalar field.
A free scalar field in curved spacetime is described by the following action

S =

ˆ
d4x
√
−g

(
1

2
gµν∂µϕ∂νϕ−

1

2
m2ϕ2

)
. (2.140)

We would like to compute the energy-momentum tensor for this action using (2.134).
Varying the action with respect to gµν yields

δSg =

ˆ
d4xδ(

√
−g)

(
1

2
gµν∂µϕ∂νϕ−

1

2
m2ϕ2

)
+

ˆ
d4x
√
−g

(
1

2
δgµν∂µϕ∂νϕ

)
=

ˆ
d4x

1

2

√
−g (∂µϕ∂νϕ− gµνL) δgµν (2.141)

where we have used Eq. (2.125). Therefore the stress-energy tensor is

Tµν =
∂ϕ

∂xµ
∂ϕ

∂xν
− gµνL (2.142)

which has the same form as in a flat space apart from the substitution ηµν → gµν.

Example 2.5. Energy momentum tensor for a system of point-like particles.
To start with, consider a point-like particle moving along a trajectory xµ = xµ(τ)

where τ is a parametrization of the curve. Such a system is described by the action
(2.39) whose variation with respect to the metric can be calculated as follows

δS = −m

ˆ
((gµν + δgµν)dx

µdxν)
1
2 +m

ˆ
(gµνdx

µdxν)
1
2

= −m

ˆ
1

2

δgµνdx
µdxν√

gµνdxµdxν

= −m

ˆ
1

2
δgµν

dxµ

dτ

dxν

dτ
dτ

= −m

ˆ
1

2
(−gαµgβνδg

αβ)
dxµ

dτ

dxν

dτ
dτ (2.143)

where from the first to second line we used
√
x+ δx ≈

√
x+ δx

2
√
x

; from the second

to third line we used dτ =
√
gµνdxµdxν; from the third to fourth line we used

the identity (2.120). To bring the above expression to a functional derivative form,
we include a 4-dimensional spacetime integral d4x at the expense of slipping in a
Dirac delta function δ4(xµ − xµ(τ)) which makes sure that the particle follows the
trajectory xµ(τ)

δS =

ˆ
dτ

ˆ
d4x
√
−g

1√
−g

m

2
(gαµgβνδg

αβ)
dxµ

dτ

dxν

dτ
δ4(xµ − xµ(τ))

=

ˆ
d4x

1

2

√
−gδgαβ

(ˆ
dτ

m√
−g
gαµgβν

dxµ

dτ

dxν

dτ
δ4(xµ − xµ(τ))

)
(2.144)

from which we can read the energy-momentum tensor for a point-like particle

Tµν =
m√
−g

ˆ
dτ gµαgνβ

dxα

dτ

dxβ

dτ
δ4(xµ − xµ(τ)). (2.145)

Due to the presence of the δ-function and
√
−g, one may question whether the

energy-momentum tensor we just found is really a tensor. From the identity 1 =´
d4xδ4(xµ − xµ(τ)), we can deduce that δ4(xµ − xµ(τ)) transforms in a way that is

opposite to how d4x transforms

δ4 (xµ − xµ(τ))→
(

det
∂xµ

∂x ′α

)−1

δ4
(
x ′α − x ′α(τ)

)
. (2.146)
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Furthermore, since the determinant of the metric detgµν transforms as

detgµν → det
(
∂xµ

∂x ′α
∂xν

∂x ′β
· g′µν

)
=

(
det

∂xµ

∂x ′α
∂xν

∂x ′β

)
· detg′µν (2.147)

√
−g transforms as

√
−g→ det

∂x ′α

∂xµ
det
√

−g ′. (2.148)

Therefore the combination δ4 (x ′α − x ′α(τ)) /
√
−g is invariant under coordinate

transformations and Tµν indeed transforms as a tensor.

2.10.4 Physical meanings of the components of Tµν

The physical meanings of the components of the energy-momentum tensor Tµν
can be seen clearly in the case of a point-like particle. In a flat space time, we have√
−g = 1 and gµν = ηµν. Consequently, the energy momentum tensor (2.145) of a

point-like particle becomes

Tµν =
m√
1

ˆ
dτ ηµαηνβ

dxα

dτ

dxβ

dτ
δ4(xµ − xµ(τ)) = m

ˆ
dτ

dxµ

dτ

dxν

dτ
δ4(xµ − xµ(τ)).

(2.149)

Substituting the definition of 4-momentum pµ = m
dxµ
dτ , energy E = γm and proper

time dτ = dx0
√
1− v2 = dx0

γ , and decomposing the δ-function, we get

Tµν =

ˆ
dx0

pµpν

E
δ3
(
xi − xi(τ)

)
δ
(
x0 − x0(τ)

)
. (2.150)

After performing the integration, we find

Tµν =
pµpν

E
δ3(xi − xi(τ)) (2.151)

from which we can read off that

• T00 = Eδ3(xi − xi(τ)), i.e. T00 represents the energy density.

• T0i = piδ3(xi − xi(τ)), i.e. T0i represents the momentum density.

• Tij =
pipj
E δ3(xi − xi(τ)), i.e. the flux of momentum pi across the surface of

constant xi.

In general, the components of Tµν can be understood as the flux of pµ across a
surface of constant xν. For example, the energy density T00 is the flux of energy
across the surface of constant time. The total energy E and the total momentum Pi
can therefore be obtained by integrating T00 and T0i respectively over all space:

E =

ˆ
d3xT00, Pi =

ˆ
d3xT0i. (2.152)

The conservation of the total energy of a system follows from integrating the local
conservation of energy Tµν;ν = Tµν

,ν = 0 (flat spacetime) for µ = 0

0 =
d

dt

ˆ
T00d

3x−

ˆ
d3x

∂T0i
∂xi

=
dE

dt
−

ˆ
d3x∇ · P =

dE

dt
−

ˆ
dS · P︸ ︷︷ ︸
=0

=
dE

dt
. (2.153)

To understand the meaning of Tij better, consider the following example.
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Example 2.6. Energy-momentum tensor of an ideal gas.
Consider a gas of non-interacting point-like particles in a flat spacetime. To describe
such a system, we define the distribution function f(x, p), which tells us the number
of particles in a volume dV around the point x and with momentum spread d3p
around the momentum p. The distribution function f(x, p) is related to the number
density n(x) as

n(x) =
ˆ
d3pf(x, p). (2.154)

If the momentum distribution of the particles is isotropic, we can write the distribu-
tion function as

f(x, p) = n(x)f(p) (2.155)

with p = |p| and
´
f(p)d3p = 1. The energy-momentum tensor of the ideal gas can

be computed by summing up the energy-momentum tensor (2.151) of individual
particles we obtained earlier

Tµν = n(x)
ˆ
d3p f(p)

pµpν

E
. (2.156)

We can easily see that

• T00 = n(x)
´
d3p f(p)E(p)

• T0i = n(x)
´
d3p f(p)pi = 0 since this integral is odd for d3p→ −d3p ′.

To simplify our discussion, let us assume that the ideal gas is non-relativistic and
in thermal equilibrium so that the f(p) obeys the Maxwell-Boltzmann distribution

f(p) = C exp
(
−
p2

2mT

)
. (2.157)

With this assumption T00 can be computed explicitly, yielding

T00 = n(x)m+n(x)3T = ρ(x) (2.158)

i.e. the energy density at point x. It requires a bit more work to obtain Tij. First,
notice that due to the isotropy assumptions we can write

〈
pipj

〉
=

〈(
pi
)2〉

ηij =
1

3
p2ηij. (2.159)

Then, we can compute Tij as follows

Tij = n(x)
ˆ
d3p f(p)

pipj

E
=
1

3
n(x)ηijC

ˆ
d3p exp

(
−
p2

2mT

)
p2

m
. (2.160)

The integral can be computed exactly and when the dust has settled we find that

Tij = −n(x)ηij2T = Pηij (2.161)

where P = 2Tn is the pressure (the force the particle bombardments would exert
on a perfectly reflecting unit surface) of the ideal gas. Therefore, we conclude that
the Tij components of the energy-momentum tensor represent some sort of the
pressure.

2.10.5 Newtonian limit of Einstein equations

One test of the success of General Relativity as a theory of gravity is that it must
reproduce the results of Newtonian gravity in the limit where: the cosmological
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constant is negligible λ = 0, masses are “small" (to be clarified), and velocities are
small v� 1. When we set λ = 0, the Einstein equations (2.133) reduce to

Rµν −
1

2
gµνR = 8πGTµν. (2.162)

Taking the trace of both sides, we find

8πGTµµ = 8πGTµνg
µν = gµνRµν︸ ︷︷ ︸

=R

−
1

2
gµνgµν︸ ︷︷ ︸

=4

R = −R.

Thus, we can rewrite the Einstein equations as

Rµν = 8πG

(
Tµν −

1

2
gµνT

)
(2.163)

with T = Tµµ. Recall that in the case of a point-like particle at rest we have T00 =

mδ3(x) and Tij = T0i = 0. In that case, the Einstein equation for µ = ν = 0 becomes

R00 = 8πG

T00 − 1

2
g00︸︷︷︸
≈1

T

 = 8πG

(
mδ3(x) −

1

2
T

)
. (2.164)

Since T = Tµµ = gµνTνµ = g00T00 = T00, the above simplifies to

R00 = 4πGmδ3(x). (2.165)

Now, R00 can also be computed using (2.69)

R00 =
∂Γλ00
∂xλ

−
�

�
�∂Γλ0λ

∂x0
−�

��(· · · ) ≈ ∆ϕ (2.166)

where we have used

Γ i00 =
1

2

∂δg00
∂xi

δg00≈2ϕ=⇒ Γ i00 =
∂ϕ

∂xi
(2.167)

i.e. the only non-zero Christoffel symbols. Equating the newly obtained R00 to
(2.165), we obtain

∆ϕ = 4πGmδ3(x) (2.168)

which is exactly the Newton equation of gravity for a point particle, as expected.

2.10.6 Other possible terms in the action describing gravity

Setting aside the cosmological constant λ and dimensionless factors, the Einstein-
Hilbert action reads

SE ∼

ˆ
d4x
√
−gG−1

N R. (2.169)

As a modification to the above action, one could conceive terms like R2 or RµνRµν.
We are going to show now that these terms are negligible in most cases of interest.
Since the action has no mass dimension (GeV0) and the dimension of the volume
element d4x is GeV−4, each Lagrangian term must have the dimension of GeV4. The
R term of the Einstein-Hilbert action, for example, is made up of an R ∼ ∂2gµν/∂x

2

whose dimension is GeV2 and a G−1
N =M2P (where MP is the Planck mass) whose

dimension is GeV2 so that they together make GeV4. Any other term we wish
to add to the Einstein-Hilbert action which involves some scalar function of gµν
must be multiplied with an appropriate power of the Planck mass MP to get the
dimension right. For instance, consider the following two terms

L ∼ M2PR︸ ︷︷ ︸
∼M2

P(∆x)
−2

+ R2︸︷︷︸
∼(∆x)−4

(2.170)
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where ∆x is the typical length scale of the system of interest. When we take the
ratio of the two terms

R2

M2PR
∼

(∆x)−4

M2P(∆x)
−2

∼
M−2
P

∆x2
(2.171)

we see that the R2 term is negligible as long as the length scale of interest ∆x is
much larger than the Planck length M−1

P ∼ 10−33 cm. Similar arguments apply to
other higher-order terms that we can imagine adding to the Einstein-Hilbert action.
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3 T E S T S O F G E N E R A L R E L AT I V I T Y

3.1 general static isotropic metric
In many cases of interest, the spacetime is approximately static and isotropic.

It is therefore instructive to figure out the most general static and isotropic metric.
Specifically, static means that the metric is time-independent and isotropic means
that the metric is invariant under rotations. To ensure the former is satisfied each
component of the metric must not depend on the time coordinate t and to ensure
the latter we build the metric solely out of rotational invariants such as dx2, x · dx
and x2. The most general metric with the aforementioned properties has the form

ds2 = F(r)dt2 − 2E(r)dt(x · dx) −D(r)(x · dx)2 −C(r)dx2 (3.1)

where F(r),E(r),D(r),C(r) are arbitrary functions of r =
√

x · x. Let us now take se-
veral steps to simplify the above expression. First, we go to the spherical coordinates

x1 = r sin θ cosφ
x2 = r sin θ sinφ
x3 = r cos θ.

(3.2)

Since

x · dx =
1

2
d( x2︸︷︷︸

=r2

) =
1

2
d(r2) = rdr (3.3)

dx2 = dr2 + r2dθ2 + r2 sin2 θdφ2, (3.4)

the metric can be written as

ds2 = F(r)dt2− 2rE(r)drdt− r2D(r)dr2−C(r)
(
dr2 + r2dθ2 + r2 sin2 θdφ2

)
(3.5)

We can remove the cross-term drdt by shifting the time coordinate appropriately
t ′ = t +Φ(r) while keeping the remaining coordinates unmodified r ′ = r,φ ′ =
φ, θ ′ = θ. The time differentials are related as

dt = d(t ′ −Φ(r)) = dt ′ −
∂Φ(r ′)

∂r ′
dr ′ (3.6)

and so the new metric becomes

ds2 =F(r ′)

(
dt ′ −

∂Φ

∂r ′
dr ′
)2

− 2E(r ′)r ′dr ′
(
dt ′ −

∂Φ

∂r ′
dr ′
)

− r ′2D(r ′)dr ′2 −C(r ′)
(
dr ′2 + r ′2dθ ′2 + r ′2 sin2 θ ′dφ ′2

)
(3.7)

The drdt term vanishes if we choose Φ(r) such that

dΦ

dr ′
= −

r ′E(r ′)

F(r ′)
. (3.8)

Making another coordinate transformation C(r ′)r ′2 = r ′′2 while keeping the rest
of the coordinates unmodified, we arrive at the “standard form" of static isotropic
metric

ds2 = B(r)dt2 −A(r)dr2 − r2(dθ2 + sin2 θdφ2) (3.9)

49
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where we have gotten rid of all the primes and A(r),B(r) are some combinations of
the functions of r introduced earlier.

For future convenience, let us derive some useful formulas related to the static
isotropic metric. We can read from (3.9) the non-vanishing components of the metric

grr = −A(r), gtt = B(r), gθθ = −r2, gφφ = −r2 sin2 θ

and its inverse

grr = −
1

A(r)
, gtt =

1

B(r)
, gθθ = −

1

r2
, gφφ = −

1

r2 sin2 θ
.

From these components, we can calculate the determinant

g = detgµν = −r4 sin2 θA(r)B(r) (3.10)

and √
−g = r2 sin θ

√
A(r)B(r). (3.11)

Using (1.106), we obtain the non-vanishing Christoffel symbols

Γrrr =
A ′

2A
Γrθθ = −

r

A

Γrφφ = −
r sin2 θ
A

Γrtt =
B ′

2A

Γθrθ =
1

r
Γθφφ = − sin θ cos θ

Γ
φ
φr =

1

r
Γ
φ
φθ = cot θ

Γttr =
B ′

2B
(3.12)

from which we can compute the non-zero components of the Ricci tensor

Rrr = −

[
B ′′

2B
−
1

4

(
B ′

B

)(
A ′

A
+
B ′

B

)
−
1

r

A ′

A

]
Rθθ = −

[
−1+

r

2A

(
−
A ′

A
+
B ′

B

)
+
1

A

]
Rφφ = sin2 θRθθ

Rtt = −

[
−
B ′′

2A
+
1

4

(
B ′

A

)(
A ′

A
+
B ′

B

)
−
1

r

(
B ′

A

)]
. (3.13)

3.2 schwarzschild metric
In this section, we consider a special case of the static isotropic metric (3.9) in a

spacetime with a spherically-symmetric mass distribution concentrated around the
origin (r = 0). In particular, we are interested in spacetime regions sufficiently far
from the origin where matter is, for all intent and purposes, absent. The metric in
those vacuum regions has a special form and is known as the Schwarzschild metric.
In Newtonian gravity, such a system is described by the Laplace equation ∇2ϕ = 0

and the solution is ϕ = C/r which is valid everywhere except near the origin where
matter is present. Let us now derive the General Relativistic equivalent of it. The
Einstein equation (2.133) in the absence of matter (2.133) reduces to

Rµν −
1

2
gµνR = 0. (3.14)

Taking its trace

gµνRµν︸ ︷︷ ︸
=R

−
1

2
Rgµνgµν︸ ︷︷ ︸

=4

= R(1− 2) = −R = 0
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we find that the Ricci scalar R vanishes, which, in turn, means that the Ricci tensor
Rµν also vanishes, owing to the Einstein equation (3.14). Since the Ricci tensor for
a static isotropic spacetime can be written in terms of two functions, A and B, as
found in (3.13), the condition Rµν = 0 provides us with 4 equations for 2 functions.
There is, in fact, a redundancy. The Rθθ = 0 equation and the Rφφ = 0 equation
give the same constraint. Furthermore, as we are going to show now, the remaining
3 equations can be reduced to 2. Consider the following combination of the Rrr = 0
and Rtt = 0 equations

Rrr

A
+
Rtt

B
=
1

r

(
A ′

A2
+
B ′

AB

)
= 0 =⇒ A ′

A
+
B ′

B
= 0. (3.15)

When written in a different form

A ′B+B ′A = (AB) ′ = 0

it clearly implies that
AB = constant. (3.16)

Far away from the origin at r→∞, we expect the spacetime to be flat and so A→ 1

and B→ 1. This implies that the constant in the equation above must be equal to 1

AB = 1. (3.17)

This equation allows us to rewrite the Rθθ = 0 and Rrr = 0 equations as{
Rθθ = 1− rB ′ −B = 0

Rrr = −B
′′
2B − B ′

rB = −B
′+rB ′′+B ′
2rB =

R ′θθ
2rB = 0

(3.18)

which demonstrates that these equations are equivalent in terms of the constraints
they give. It is therefore sufficient to consider only Rθθ = 0. It can be written as

(rB) ′ = 1 (3.19)

which can be solved easily

rB = r+ constant =⇒ B = 1+
C

r
. (3.20)

To determine the constant C, we use the weak-field limit correspondence B ≡ g00 ≈
1+ 2ϕ, where in this case ϕ = −GM/r. Thus, we find

B(r) = 1−
2MG

r
(3.21)

and by (3.17)

A(r) =
1

1− 2GM/r
. (3.22)

All in all, the metric is given by

ds2 =

(
1−

2GM

r

)
dt2 −

dr2

1− 2GM/r
− r2dθ2 − r2 sin2 θdφ2. (3.23)

This metric is known as the Schwarzschild metric. The combination rg = 2GM

is often referred to as the gravitational radius or Schwarzschild radius. Something
interesting happens at r = rg. At that point A = ∞ and B = 0. We will come
back to this issue later. Furthermore, in the r < rg region both A and B change
sign. As a result, the roles of the radial coordinate r and the temporal coordinate t
are interchanged; r behaves like a temporal coordinate and t behaves like a spatial
coordinate.
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3.3 motions in schwarzschild spacetime

3.3.1 Equations of motion

Now that we have computed the Schwarzchild metric

ds2 =

(
1−

2MG

r

)
dt2 −

1

1− 2MG
r

dr2 − r2dΩ (3.24)

with dΩ = dθ2 + sin2 θdφ2 we can proceed to study the motion of a particle in a
Schwarzschild spacetime. When we want to describe the motion of a particle in a
curved space, the first equation that comes to mind is the geodesic equation

d2xµ

dτ2
+ Γµνρ

dxν

dτ

dxρ

dτ
= 0. (3.25)

Instead of using the geodesic equation, we take this opportunity to show the power
of the action principle, which makes the computations simpler. In fact, we will
also show in passing that the Christoffel symbols can be obtained relatively easily
by comparing the equation of motion obtained from the action principle with the
geodesic equation. Consider the action

S = −
1

2
m

ˆ
dτ gµν

dxµ

dτ

dxν

dτ
(3.26)

whose extrema describe the motion of a free particle. Knowing the Schwarzschild
metric, we can write the above action more explicitly

S = −
1

2
m

ˆ
dτ

[
B(r)

(
dt

dτ

)2
−A(r)

(
dr

dτ

)2
− r2

(
dθ

dτ

)2
− r2 sin2 θ

(
dφ

dτ

)2]
.

(3.27)
Note that we do not include the Einstein-Hilbert action in the action we are consid-
ering. This amounts to ignoring the backreaction of the particle to the spacetime. In
other words, we treat the metric as a fixed background.

Extremizing the action over variations in t, φ, θ, and r, we obtain the following
equations of motion

t : 0 = m
d

dτ

(
B
dt

dτ

)
φ : 0 = m

d

dτ

(
r2 sin2 θ

dφ

dτ

)
θ : 0 = m

d

dτ

(
r2
dθ

dτ

)
− r2 sin θ cos θ

(
dφ

dτ

)2
r : 0 =

d

dτ

(
A
dr

dτ

)
+
1

2

∂B

∂r

(
dt

dτ

)
−
1

2

dA

dr

(
dr

dτ

)2
−
2r sin2 θ

2

(
dφ

dτ

)2
− r

(
dθ

dτ

)2
respectively. By deriving these equations, we have indirectly calculated the non-
zero Christoffel symbols. Take the first equation, for example. We can rewrite it
as

d2t

dτ2
+
B ′

B

dr

dτ

dt

dτ
= 0. (3.28)

Based on the form of the second term, we can deduce that it corresponds to the
geodesic equation (3.25) for µ = t and it follows that

Γtrt =
B ′

2B
. (3.29)

Taking advantage of general covariance, without loss of generality we can go
to a coordinate system where, say, θ = π/2. According to the equation of motion
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obtained from varying θ, we have dθ/dt = 0 in this coordinate system. Therefore,
in general the particle moves on a constant θ plane, which in this case is chosen to
be the θ = π/2 plane. The equations of motion obtained from varying t and varying
φ then reduce to

m
d

dτ

(
B
dt

dτ

)
= 0

m
d

dτ

(
r2
dφ

dτ

)
= 0.

Integrating them gives us two integrals of motion E and J

E = mB
dt

dτ

J = mr2
dφ

dτ
. (3.30)

E can be interpreted as energy and J can be interpreted as angular momentum. The
expression for J agrees with the non-relativistic formula for angular momentum,
r× p, and in the r→∞ limit the expression for E simplifies to

mB
dt

dτ

B≈1
= m

dt

dτ
=

m√
1− v2

which is the relativistic formula for energy.
Now, consider the following identity that follows from the definition of proper

time dτ2 = gµνdx
µdxν

1 = gµν
dxµ

dτ

dxν

dτ
. (3.31)

Substituting in the Schwarzschild metric, we get

B

(
dt

dτ

)2
−A

(
dr

dτ

)2
− r2

(
dφ

dτ

)2
= 1. (3.32)

Using the conserved quantities (3.30) we recently found, we can rewrite it as

B

(
E

mB

)2
−A

(
dr

dτ

)2
− r2

(
J

mr2

)2
= 1 (3.33)

or

A

(
dr

dτ

)2
+

J2

m2r2
−

E2

m2B
= −1. (3.34)

Notice that the derivative of this equation coincides with the equation of motion
from the variation of r, which is not a surprise as the 4 equations of motion are
enough to determine the dynamics of the 4 coordinates t, φ, θ, and r. Adding
the proper time identity to the set of equations would only make the resulting set
redundant.

To recap, the motion of a particle in a Schwarzschild spacetime is dictated by
the following equations

θ = π/2

E = mB
dt

dτ

J = r2
dφ

dτ

−1 = A

(
dr

dτ

)2
+

J2

m2r2
−

E2

m2B
.

The above equations, however, only apply to massive particles. This is because they
involve dτ’s which are zero for massless particles. In order to describe massless
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particles, we need to parameterize the time with a different parameter than τ. We
can choose the parameter to be the coordinate time t

θ = π/2

J

E
=
1

B
r2
dφ

dt

0 = A
E2

B2

(
dr

dt

)2
+
J2

r2
−
E2

B
. (3.35)

3.3.2 Open orbits: light bending

The trajectory of a particle in an isotropic static spacetime can be described by
the function r(φ) or its inverse φ(r). Let us compute such a function. We can
rewrite (3.34) in terms of r and φ only by making use of the angular momentum
conservation equation J = mr2dφ/dτ

E2

B
−
AJ2

r4

(
dr

dφ

)2
−
J2

r2
= m2. (3.36)

All that is left to be done is solving this equation. After rearranging it to

A

r4
dr2 + dφ2

(
1

r2
+
m2

J2
−
E2

BJ2

)
= 0, (3.37)

moving one of the terms to the right hand side, and integrating, we get

φ(r) = ±
ˆ
dr

√
A

r2
(
E2

BJ2
− m2

J2
− 1
r2

) 1
2

. (3.38)

This equation is valid not only for Schwarzschild spacetimes but also for any static
and isotropic spacetime. If the particle in question is massless, we can simply set
m = 0.

Consider a particle of mass m moving towards the Sun from far away with an
approximately constant velocity v. We are interested in calculating to what extent
the particle’s trajectory is bent by the gravitational pull of the Sun. While the particle
is still far away, say at the coordinates r and φ� 1, its impact parameter b is given
by 1

b ≈ r sinφ ≈ rφ (3.39)

and its radial velocity is given by

− v ≈ d(v cosφ)
dt

≈ dr
dt

. (3.40)

Thus, the particle’s angular momentum and energy are given by

J =
mvb√
1− v2

(3.41)

E =
m√
1− v2

. (3.42)

However, our calculations would be simpler had we expressed the angular momen-
tum J in terms of r0, the particle’s closest distance to the Sun, instead of the impact
parameter b. At the point of minimal distance, we have

dr

dφ
(r0) = 0, (3.43)

1 If the gravitational pull is turned off, the particle’s trajectory would be a straight line. The impact
parameter b is the shortest distance from the origin (where the Sun is located) to this line.
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and (3.37) becomes
E2

BJ2
−
m2

J2
−
1

r20
= 0 (3.44)

Making use of (3.42), we obtain an expression of J in terms of r0

J =
r0m√
1− v2

√
1

B(r0)
− 1+ v2. (3.45)

Now we want to plug this J into (3.38). Let us start by working out the denominator
of the integral

E2

BJ2
−
m2

J2
−
1

r2
=

1

J(r0)2

(
m2γ2

B(r)
−m2

)
−
1

r2

=
1

r20�
�m2γ2

(
1

B(r0)
− 1+ v2

) (��m2γ2
B(r)

−��m
2

)
−
1

r2

=
1

r20

( 1
B(r) − 1+ v

2

1
B(r0)

− 1+ v2

)
−
1

r2
. (3.46)

Hence, the full expression of (3.38) becomes

φ(r) =

ˆ ∞
r

√
Adr

r2
(
1
r20

1
B(r)

−1+v2

1
B(r0)

−1+v2
− 1
r2

) 1
2

(3.47)

Notice that φ(r) → 0 when r → ∞, as it should. To make our calculation simpler,
let us suppose that the particle we are considering is massless so that we can set
v = 1. The above equation then simplifies to

φ(r) =

ˆ ∞
r

√
Adr

r2
(
1
r20

B(r0)
B(r) − 1

r2

) 1
2

=

ˆ ∞
r

√
Adr

r

(
r2

r20

B(r0)
B(r) − 1

) 1
2

. (3.48)

As we can see in Figure 1, the angle of bending is given by

∆φ = 2φ(r0) − π. (3.49)

Let us now assume that r0 � rg to further simplify our calculations. This allows us
to make the following approximations

A(r) ≈ 1+ 2MG
r

B ≈ 1− 2MG
r

In this approximation, we can compute φ(r0), and therefore ∆φ explicitly (see exer-
cise 1 set 12). The result is

∆φ =
4MG

r0
+O

(
rg

r0

)2
. (3.50)

Note that at this level of accuracy, the impact parameter b and minimal distance
r0 coincide. If we plug in the following numbers: M = M� = 1,97× 1030 g, r0 =

R� = 6,95× 105 km we get

∆φ = 1.75 arcseconds (3.51)

which is extremely small. One way to observe this effect is by measuring the shifts
in the apparent positions of stars when they are close to the sun, angularly speaking.
Due to such shifts, some stars located behind the sun can be visible.
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R�

r0

φ(r)
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∆φ

b

light trajectoryφ0
φ0

Figure 1: Light bending by the Sun.

Sun

r− r+

Figure 2: The orbit of a planet around the Sun.

3.3.3 Closed orbit: Precession of Mercury perihelium

Newtonian gravity predicts that planets orbiting around the Sun follow closed
elliptical trajectories (see Figure 2). The minimum distance r− (perihelium) and
maximum distance r+ (aphelium) of a planet to the Sun are given by the conditions

dr

dφ
(r±) = 0. (3.52)

The same conditions apply in GR, though the orbit is more complicated. At these
extremum points, (3.34) reduce to

1

r2±
+
m2

J2
−

E2

B(r±)

1

J2
= 0 (3.53)

From these two equations, we can obtain the two integrals of motion J and E

m2

E2
=

1

r2− − r2+

(
r2−
B−

−
r2+
B+

)
,

J2

E2
=

(
1

B+
−
1

B−

)
r2−r

2
+

(r2− − r2+)
. (3.54)

One crucial thing that distinguishes general relativistic planetary orbits from New-
tonian ones is that general relativistic orbits are typically not closed in the sense
that the perihelium and aphelium of the orbit do not stay at the same angular co-
ordinates, but instead they precess. If the orbit of a planet were to be closed, twice
the angle between the perihelium and aphelium 2|φ(r+) −φ(r−)| must amount to
exactly 2π. This is not the case when general relativistic effects are not negligible.
They cause the angular position of the perihelium to shift by some amount

∆φ = 2 |φ(r+) −φ(r−)|− 2π. (3.55)

in each revolution, where φ(r+) −φ(r−) is given by

φ(r+) −φ(r−) =

ˆ r+
r−

√
Adr

r2
(
E2

BJ2
− m2

J2
− 1
r2

) (3.56)
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Figure 3: Effective potential for different values of χ = J
mrg

in the massless and massive
particle case.

and E and J were found in (3.54). This integral can be computed exactly when
r± � rg (see exercise set 13). When the dust has settled, one finds

∆φ ≈ 6πM�G
L

where
1

L
=
1

2

(
1

r+
+
1

r−

)
. (3.57)

Among the planets in our solar system, this effect is strongest for Mercury as it has
the smallest L. For LMercury = 55,4× 106 km we find

∆φMercury = 0.1038 arcseconds (3.58)

for one revolution, which is a tiny shift (only 43 arcseconds in 100 years). Further-
more, this even harder to observe because it is not the sole effect that contributes
to the ∆φ. For example, Newtonian gravity predicts that the gravitational pulls of
the various planets in the solar system give a ∆φ = 532 arcseconds in 100 years,
i.e. about 10 times larger than the general relativistic precession. On top of that,
there are other effects that we have not taken into account here, e.g. the spherically
asymmetry of the Sun, that may modify ∆φ further. Despite all these difficulties,
experimentalists have managed to identify and confirm the general relativistic con-
tribution to ∆φ.

3.3.4 Effective potential and orbits

So far, in deriving various results, we have assumed that r/rg � 1. In this
section, we will not make such an assumption. The radial equation of motion (3.34)
can be written in a form that eases physical interpretation

1

2

(
dr

dτ

)2
︸ ︷︷ ︸

"kinetic energy"

+
1

2

(
1−

rg

r

)(
1+

J2

m2r2g

r2g

r2

)
︸ ︷︷ ︸

"potential energy"

=
1

2

E2

m2︸ ︷︷ ︸
"total energy"

. (3.59)

As indicated, we can interpret the above equation as the energy conservation of a
point particle in one dimension moving under the influence of an effective potential

U =
1

2

(
1−

rg

r

)(
1+

J2

m2r2g

r2g

r2

)
(3.60)

with total energy total energy Etot =
1
2
E2

m2
.
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The dimensionless combination of constants χ = J
mrg

determines the different
possible shapes of the effective potential. See Figure 3 for representatives of differ-
ent possible shapes of the effective potential. Let us focus on the massive particle
case for the moment. Depending on the value of χ there can be 0 or 2 points where
dU(r)/dr = 0 (turning points). When there are 2 turning points, the one with
smaller r is a local maximum (where circular orbits are unstable) and the one with
larger r is a local minimum (where circular orbits are stable). The turning points
can be found by setting dU(r)/dr = 0

r = rgχ
2

[
1±

√
1−

3

χ2

]
. (3.61)

Thus, there is no turning point if χ <
√
3 and there are 2 turning points if χ >

√
3.

In particular, for the latter case, say when χ = 2, there are several possible types of
trajectories depending on the total energy of the particle, its starting point, and its
initial velocity

• Umin <
1
2
E2

m2
< U∞: closed orbits.

• U∞ < 1
2
E2

m2
< Umax: open orbit (scattering) if the particle starts outside the

radius of Umax or falling into the center if it starts inside.

• Umax <
1
2
E2

m2
: falling into center if the particle moves radially inward or going

to infinity if it moves outward.

where Umin, Umax, and U∞ are the local minimum, local maximum, and value at
r→∞ of U(r) respectively.

Now, we turn to massless particles. Starting from (3.35), we can switch to the
parameterization dλ = Bdt to simplify things more. The radial equation of motion
then becomes

1

2

(
dr

dλ

)2
︸ ︷︷ ︸

kinetic energy

+
1

2

(
1−

rg

r

) J2

E2r2︸ ︷︷ ︸
potential energy

=
1

2︸︷︷︸
total energy

. (3.62)

In this massless case, the total energy is fixed to be 1/2 and the effective potential
energy has always one maximum Vmax. There are two possible types of motion

• Vmax < 1/2: light deflection/scattering.

• Vmax > 1/2: falling into the singularity.

3.4 black holes

3.4.1 Falling radially into a black hole

Our aim here is to calculate the time it takes for a particle to fall into the point
of singularity (r = 0) of a black hole. For simplicity, consider a massive particle
moving radially inward (with zero J = 0) towards a black hole. Suppose that the
particle is released with zero radial velocity dr/dt = 0 at r = r0. Imposing these
initial conditions on the radial equation of motion (3.34), we find

E2

m2
=

(
1−

rg

r0

)
= 0

and so (
dr

dτ

)2
=

(
�1−

rg

r0

)
−
(
�1−

rg

r

)
= rg

(
1

r
−
1

r0

)
. (3.63)
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Taking the square root and rearranging

dr

dτ
= ±

√
rg

(
1

r
−
1

r0

)
=⇒ dr

√
rg

√
rr0
r0 − r

= −dτ. (3.64)

Then, we perform a change of variables r
r0

= z

dz

√
z

1− z
= −

dτ

r0

√
rg

r
. (3.65)

Let us first compute the amount of proper time τg it takes for the particle to reach
r = rg starting from r = r0

τg = r0

√
r0
rg

ˆ 1
rg
r0

dz
√
z√

1− z
. (3.66)

One can check that the result is finite. Moreover, the amount of proper time τ0 it
takes to reach the singularity r = 0 starting from r = r0

τg = r0

√
r0
rg

ˆ 1
0

dz
√
z√

1− z
=
π

2
r0

√
r0
rg

(3.67)

is also finite.
Now, we repeat the same calculation from the perspective of an observer at rest

at r = r0 and assume that r0 � rg. The time interval dt as measured by the
observer’s clock is related to the proper time interval dτ of the falling particle by
the energy conservation equation

E = mB
dt

dτ
. (3.68)

Thus, the falling time of the particle as measured by the observer’s clock is
ˆ
dt =

E

m

ˆ
dτ

B
=
E

m

ˆ
1

B(r)

dτ

dr
dr =

E

m

ˆ r0
r

r ′

r ′ − rg

√
r ′r0

(r0 − r ′)rg
dr ′. (3.69)

Interestingly, the integral diverges in the limit r→ rg. In other words, the observer
will never see the particle crossing the r = rg horizon. To get an estimate of how
quickly the time diverges, we can approximate all the r ′’s in the integral with rg
except for the one that is subtracted by rgˆ

dt ≈ E

m

ˆ r0
r

rg

r ′ − rg

√
��rgr0

(r0 − rg)��rg
=
E

m
rg

[
log

rg

r− rg
+ const

]
. (3.70)

To recap, we found that it takes finite times to go from r = r0 to r = rg and from
r = rg to r = 0 from the falling particle’s perspective, but infinite time to go from
r = r0 to r = rg from the perspective of an observer at rest at r = r0 � rg. How
do we reconcile these two perspectives? To connect the two perspectives, suppose
that the in-falling particle constantly emits electromagnetic wave of frequency ν0
towards the observer at r = r0. Recall that due to gravitational redshift a photon
emitted with frequency ν1 at a point x1 is perceived as having a frequency ν2 at a
different point x2

ν2
ν1

=

√
g00(x1)

g00(x2)
. (3.71)

Let x1 be the coordinate r of the particle and x2 = r0 � rg be the coordinate of the
observer (at which point the spacetime is essentially flat, g00(x2) ≈ 1. Hence, the
frequency of the electromagnetic wave detected by the observer is given by

νobs ≡ ν2 = ν1

√
1−

rg

r
. (3.72)

As we can see, when r→ rg the frequency νobs approaches zero. Consequently, the
particle appears frozen from the perspective of the observer.
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Remark 3.1. Mechanism of black hole production.
Among other possible mechanisms, black holes may form from the gravitational
collapse of a star, e.g. a neutron star. The physics of a collapsing star is extremely
complicated. Apart from its dynamical and non-equilibrium nature, we also need
to keep track of various effects, e.g. nuclear reactions, neutrinos, etc. Consequently,
one often needs to make various assumptions such as zero pressure or spherical
symmetry to get results.

Remark 3.2. The singular behaviour of the Schwarzschild metric at r = rg is just a
coordinate artifact, nothing abrupt occurs at that point.
To justify this claim, we can construct all possible scalars from the metric gµν and
check if any of them blows up at r = rg. Since Rµν = 0 in a Schwarzschild space-
time, the consideration in Remark 2.9 tells us that there are only 4 such scalars.
Here we list them without justification

CµνρσCµνρσ;
1√
−g
ελµρσC

ρσνκCλµνκ;

CλµνκC
νκρσCρσ

λµ;
1√
−g
CλµνκC

νκρσερσ
αβCαβ

λµ

where Cλµνκ is the Weyl tensor, defined as

Cλµνκ =
R

6
(gλνgµκ − gλκgµν)−

1

2
(gλνRµκ − gλκRµν − gµνRλκ + gµκRλν)−Rλµνκ

(3.73)
with the property Cλµνλ = 0. Since the 4 scalars that we have listed are coordinate
independent, it is presumably simplest to compute them in the local Minkowskian
coordinate system. One can check that none of them is singular at r = rg. On the
other hand, these scalars blow up r = 0, signifying that it is a true singularity.

The above discussion implies that we can construct a coordinate system where
the event horizon is just an ordinary, non-singular point. Indeed, there are many
such coordinates. One of them are the so-called Krustal-Szekeres coordinates

u =

(
r

rg
− 1

) 1
2

e
r
2rg cosh

t

2rg

v =

(
r

rg
− 1

) 1
2

e
r
2rg sinh

t

2rg

for r > rg and

u =

(
1−

r

rg

) 1
2

e
r
2rg sinh

t

2rg

v =

(
1−

r

rg

) 1
2

e
r
2rg cosh

t

2rg

for r < rg. The metric in this coordinate system is

ds2 =
4r3g

r
e−r/rg

(
dv2 − du2

)
− r2dΩ2 (3.74)

where r is understood as a function of u and v. Clearly, the metric is not singular at
r = rg, as promised.

3.4.2 Event horizon

One of many conclusions we can draw from the discussion in Section 3.3.4 is
that for all cases, massive and massless included, if a particle reaches r < rg, it will
inevitably fall into the singularity at r = 0 (in Newtonian gravity rg = 0 and so there
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is no case where the particle falls into the singularity). To put it simply, everything
that comes inside the region r < rg does not come out. Since we cannot see what
is inside the region r < rg (nothing can come out for us to see!), the surface r = rg
is also known as the event horizon. A hole from which nothing can escape would
presumably look black (setting aside Hawking radiation), hence the name ”black
hole."

The presence of the event horizon is best understood with the concept of escape
velocity (the minimum velocity a particle needs to have in order to escape to r→∞).
For simplicity, we again assume that the motion of the particle is purely radial. Take
a look at the radial equation of motion

dr

dτ
= +

√
E2

m2
−
(
1−

rg

r

)
. (3.75)

If the radial velocity dr/dτ at a particular radius r is to be the escape velocity, the
energy E corresponding to it must be equal to the energy of a particle with velocity
approaching zero at r → ∞, namely E = m. Therefore, the escape velocity can be
found by setting E = m in the above equation(

dr

dτ

)
esc

=

√
rg

r
. (3.76)

As we can see (dr/dτ)esc approaches the speed of light as r→ rg and even exceeds
the speed or light when r < rg, thus explaining why a particle is bound to fall
into the singularity once it reaches r < rg. Though it may not appear so, dr/dτ
is actually the velocity of the particle as measured by an observer at rest at radius
r if E = m. For a temporal interval dt and radial interval dr in the spherical
coordinates, the observer measures the temporal interval dT =

√
Bdt and radial

interval dR = dr/
√
B (which follows from the Schwarszchild metric) and so the

velocity it measures is

dR

dT
=
1

B

dr

dt
=
1

B

dr

dτ

dτ

dt
=
1

B

dr

dτ

(m
E
B
)
=
dr

dτ
(3.77)

where we have used the energy conservation equation E = mBdt/dτ in the process.

3.5 gravitational waves
In a way similar to electromagnetic waves, we expect curvature perturbations

in General Relativity to propagate and have an independent existence from their
sources. Naturally, we call such propagating curvature perturbations gravitational
waves.

3.5.1 Electromagnetic waves

Take the Maxwell’s equations ∂µFµν = 0 and plug in the plane-wave ansatz

Aµ = aµe
ikνx

ν
(3.78)

to get
(kγk

γgµν − kµkν)a
ν = 0. (3.79)

Suppose that the wave is propagating in the z-direction with k3 = k, k1 = k2 = 0,
k0 = ω. Setting µ = 1 and µ = 2, we get(

ω2 − k2
)
a1 = 0;

(
ω2 − k2

)
a2 = 0 (3.80)
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and setting µ = 0 or µ = 3 we get the same equation

ωa3 − ka0 = 0. (3.81)

Interestingly, while there are 4 degrees of freedom in Aµ there are only 3 equa-
tions to constrain them, meaning that one of the degrees of freedom in Aµ is left
unconstrained. This boils down to the gauge invariance in electrodynamics. Our
formulation of electrodynamics is inherently redundant: configurations that are re-
lated to one another via a gauge transformation Aµ → Aµ − ∂µα are identical.

Let us use the gauge freedom to set A0 = 0. If initially A0 6= 0, we can always
perform a gauge transformation with α = A0/(iω) to get rid of A0. Then, it follows
from (3.81) that a3 = 0 and hence A3 = 0. In the end, we have the following
solutions

A1 = a1 exp−ik (z± t)
A2 = a2 exp−ik (z± t)

A0 = A3 = 0.

Thus, an electromagnetic wave is characterized by two amplitudes a1 and a2 (cor-
responding to two possible polarizations) and propagates at the speed of light.

3.5.2 Linearized gravity

Consider a small tensor perturbation δgµν in an otherwise flat spacetime

gµν = ηµν + δgµν δgµν � 1 (3.82)

in empty space, where the Einstein’s equation reads

Rµν −
1

2
gµνR = 0.

As before, we use the ansatz δgµν = hµνe
ikγx

γ
with k3 = k, k1 = k2 = 0, k0 = ω.

Up to first order in hµν, we have

Rµν =
1

2

(
k2hµν − kλkµh

λ
ν − kλkνh

λ
µ + kµkνh

λ
λ

)
(3.83)

and

R =
1

2

(
2k2hλλ − 2kλkµh

λµ
)

. (3.84)

Substituting these into the Einstein’s equations, we get the following 10 equations

00: (h11 + h22)k
2 = 0

03: (h11 + h22)kω = 0

02: (−h20k+ h23ω)k = 0

01: (−h10k+ h13ω)k = 0

33: (h11 + h22)ω
2 = 0

32: (−h20k+ h23ω)ω = 0

31: (−h10k+ h13ω)ω = 0

22: h00k
2 +ω (−2h30k+ h33ω) + h11

(
ω2 − k2

)
= 0

21: h12

(
ω2 − k2

)
= 0

11: h00k
2 +ω (−2h30k+ h33ω) + h22

(
ω2 − k2

)
= 0.
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We can see that the triple 00, 03, 33, the pair 02, 32 and the pair 01, 31 are the same
equations, which leaves us with 6 different equations and 4 unconstrained degrees
of freedom of hµν

3 eqs. (00, 03, 33) : h11 + h22 = 0

2 eqs. (02, 32) : − h20k+ h23ω = 0

2 eqs. (01, 31) : − h10k+ h13ω = 0

1 eq. (21) : h12(ω
2 − k2) = 0

1 eq. (22-11) : (h11 − h22)(ω
2 − k2) = 0

1 eq. (22+11) : h00k
2 +ω(−2h30k+ h33ω) = 0. (3.85)

Analogous to what we have seen in electrodynamics, the 4 unconstrained degrees
of freedom have to do with some gauge freedom. This time, it corresponds to the
freedom to make coordinates transformations of the form

xµ → x ′µ = xµ + ζµ (3.86)

where ζµ is small, which is worth 4 degrees of freedom. Under such a transforma-
tion, the metric transforms as g ′µν = ∂x ′µ

∂xα
∂x ′ν

∂xβ
gαβ, or in terms of hµν and to linear

order

ηµν + h ′µν = (δµα + ∂αζ
µ)(δνβ + ∂βζ

ν)(ηαβ + hαβ)

≈ ηµν + hµν + ∂αζ
µδνβη

αβ + ∂βζ
νδµαη

αβ. (3.87)

Thus, hµν (the inverse of hµν) transform as

h ′µν = hµν − ∂µζν − ∂νζµ. (3.88)

In particular, we have

h00 → h00 − 2iωζ0

h01 → h01 − iωζ1

h02 → h02 − iωζ2

h03 → h03 − iωζ3 − ikζ0

h11 → h11

h12 → h12

h13 → h13 − ikζ1

h22 → h22

h23 → h23 − ikζ2

h33 → h33 − ikζ3.

It turns out that h11,h22,h12 are coordinate invariants. We can use the freedom to
do coordinate transformations to set h00, h01, h02, and h33 to zero. Having done
that, it is easy to see that 4 out of the 6 remaining Einstein equations are trivial

h13 = h23 = h30 = 0; h11 + h22 = 0. (3.89)

The other two are non-trivial

(ω2 − k2)h12 = 0; (h11 − h22)(ω
2 − k2) = 0. (3.90)

Finally, the solution can be written as

hµν =


0 0 0 0

0 h h12 0

0 h12 −h 0

0 0 0 0

 eiωt−ikz (3.91)

where h = h11 = −h22 and ω = k. (Don’t confuse this h with the trace of hµν!)
Thus, a gravitational wave has 2 polarizations and propagates with the speed of
light.



64 chapter 3. tests of general relativity

3.5.3 Gravitational radiation

Continuing the analogy with electrodynamics, an accelerating mass may radiate
gravitational waves in a way similar to how an accelerated charge radiates electro-
magnetic waves. Consider a distribution of mass with spatial extent ` consisting
of particles moving at non-relativistic velocities. This will be our source of gravita-
tional waves. Suppose that there is an observer located at a distance R � ` away
from the source trying to detect the gravitational waves radiated by the source. We
assume that the perturbations created by the source are sufficiently weak that we
can describe them by linearized gravity. In this case, the only non-trivial Einstein’s
equations are {

1
2�h12 = 8πGT12
1
2�h = 8πG12 (T22 − T11).

(3.92)

We have encountered these types of equations repeatedly in electrodynamics. They
can be solved with the method of Green’s function. In the present case, the Green’s
function that we are looking for is one that satisfies

�x,tG(x, t; x ′, t ′) = δ3(x − x ′)δ(t− t ′) (3.93)

namely the retarded Green’s function

G(x, t; x ′, t ′) =
δ [t ′ − (t− |x − x ′|)]

4π|x − x ′|
. (3.94)

Hence, we can write the solution for h12 as

h12 = 16πG

ˆ
T12(x ′, t ′)G(x, t; x ′, t ′)d3x ′dt ′

= 4G

ˆ
T12(x ′, t− |x − x ′|)

1

|x − x ′|
d3x ′

≈ 4G
R

ˆ
T12(x ′, t− R)d3x ′ (3.95)

where in the last step we have made used the assumptions that ` � R and that the
particles making up the source are non-relativistic.

We will now derive the following identity

ˆ
T ijd3x =

1

2

∂2

∂t2

ˆ
T00x

ixjd3x (3.96)

which will help us calculate the integral in (3.95). The starting point is the energy
conservation equation ∂νTµν = 0. For µ = 0 it yields

∂0T
00 + ∂iT

0i = 0 (3.97)

and for µ = i it yields
∂0T

i0 + ∂jT
ij = 0. (3.98)

Multiplying (3.97) with xixj and integrating, we get
ˆ
∂0T00x

ixjd3x = −

ˆ
∂kT

0kxixjd3x. (3.99)

After integrating by parts it becomes
ˆ
∂0T00x

ixjd3x =

ˆ (
T0ixj + T0jxi

)
d3x. (3.100)

Then, take the time derivative ∂0 of the above
ˆ
∂20T00x

ixjd3x =

ˆ (
∂0T

0ixj + ∂0T
0jxi

)
d3x (3.101)
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and use (3.98) to rewrite it as
ˆ
∂20T00x

ixjd3x = −

ˆ (
∂kT

ikxj + ∂kT
jkxi

)
d3x. (3.102)

Integrating by parts once more bring us to what we are after, (3.96).
Therefore, using (3.96) we can recast (3.95) as

h12 ≈
2G

R

ˆ
∂2

∂t2
T00(x ′, t− R) x ′1x

′
2 d

3x ′. (3.103)

Defining the quadrupole moment of a mass distribution as

Dij =

ˆ
ρ(x)

[
3xixj − r2δij

]
dV (3.104)

we can rewrite h12 as

h12 =
2G

3R
D̈12. (3.105)

Following similar steps for h, we get

h =
2G

3R

1

2

(
D̈22 − D̈11

)
. (3.106)

How much energy do gravitational waves carry? Since hµν is analogous to Aµ
in electrodynamics, we expect the energy density of gravitational waves to contain
ḣ2 or ḣ212, whose dimensions are GeV2. To get the right dimensions for energy
density, GeV4, we multiply it by G−1 so that the energy density ε is given by

ε ∝ G−1ḣ2. (3.107)

This implies that a source radiating gravitational waves should lose energy at the
rate

dE

dt
∼

ˆ
εdS ∼ G−1

(
G2

R2
...
D
2
)
R2 ∼ G

...
D
2 (3.108)

where we have used h ∼ GD̈/R (coming from (3.105) or(3.106)). Had we done the
calculations properly, including all the numerical factors, we would get

dE

dt
= −

G

45

...
Dij

...
D
ij. (3.109)

3.5.4 Detecting gravitational waves

Consider two points A, B located on a plane orthogonal to the wavevector k3 of
a gravitational wave. The distance between these points is given by (here we only
write the spatial part of the metric)

dl2 = gijdx
idxj = ∆x21 +∆x

2
2 − h

(
∆x21 −∆x

2
2

)
− 2h12∆x1∆x2 (3.110)

where h and h12 are defined in (3.91). As we can see, the metric perturbations hµν
give rise to changes in the distance between two arbitrary points A and B. The term
with h and the term with h12 give rise to two different types of deformations. The
term with h squeezes and stretches the x1x2 plane along the x1 and x2 directions (+
polarization). The term with h12 squeezes and stretches the x1x2 plane along the
x1 − x2 and x1 + x2 directions (× polarization). See Figure 4 for an illustration of
the deforming effects of the two gravitational wave polarizations.

We can detect the said length changes using gravitational wave detectors such
as LIGO (Laser Interferometer Gravitational waves Observatory). LIGO consists
of two identical detectors—one in Hanford, Washington and one in Livingston,
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Figure 4: Two types of gravitational wave polarization and their (exaggerated) deforming
effects on a set of points forming a circle in the x1x2 plane.

Louisiana—separated from each other by the distance light travels in 10 ms. Having
two detectors at different locations gives us a better noise control (a true gravita-
tional wave signal should show up nearly simultaneously in the two detectors in
nearly identical forms) and allows us to triangulate the location of the gravitational
wave source based on the time delay in the signals recorded in the two detectors.
Each LIGO detector is a Michelson interferometer comprising of a laser, a beam
splitter, 4 mirrors, and a photon detector, arranged in L shape with 4 km arm length
as shown in Figure 5. A laser beam is directed toward a beam splitter which splits
the beam into two, each going along one arm of the interferometer and reflected by
the mirror placed at the end of it. Mirrors are also placed near the beam splitter so
that each beam bounces back and forth along an arm hundreds of times before they
arrive back at the beam splitter to be merged together again, making each arm ef-
fectively 1120 km long. In the absence of gravitational waves, the two beams would
return to the beam splitter at the same time. A gravitational wave passing through
the detector plane would in general have different lengthening/shortening effect on
the two 4 km arms. As a result, light that has gone through the length of one arm
multiple times would have accumulated a different phase than light that has gone
through the length of the other arm the same number of times. The phase difference
is seen as a variation in the intensity of light recorded by the photo detector.

Binary systems of massive and dense objects, e.g. a mutually orbiting pair of
black holes, produce strong and unique gravitational wave signals that we can de-
tect. Kip Thorne estimated that the typical length change caused by gravitational
waves emitted by such systems is at the level of δ`/` ∼ 10−21. If we take ` to be the
arm length of a LIGO detector ` ∼ 4 km, the expected length change due to passing
gravitational waves is around δ` ∼ rp/1000, where rp proton is the size. The task
of measuring such a small length is made easier by repeatedly bouncing the light
used in the interferometer along each arm.
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the gravitational-wave signal extraction by broadening the
bandwidth of the arm cavities [51,52]. The interferometer
is illuminated with a 1064-nm wavelength Nd:YAG laser,
stabilized in amplitude, frequency, and beam geometry
[53,54]. The gravitational-wave signal is extracted at the
output port using a homodyne readout [55].
These interferometry techniques are designed to maxi-

mize the conversion of strain to optical signal, thereby
minimizing the impact of photon shot noise (the principal
noise at high frequencies). High strain sensitivity also
requires that the test masses have low displacement noise,
which is achieved by isolating them from seismic noise (low
frequencies) and designing them to have low thermal noise
(intermediate frequencies). Each test mass is suspended as
the final stage of a quadruple-pendulum system [56],
supported by an active seismic isolation platform [57].
These systems collectively provide more than 10 orders
of magnitude of isolation from ground motion for frequen-
cies above 10 Hz. Thermal noise is minimized by using
low-mechanical-loss materials in the test masses and their

suspensions: the test masses are 40-kg fused silica substrates
with low-loss dielectric optical coatings [58,59], and are
suspended with fused silica fibers from the stage above [60].
To minimize additional noise sources, all components

other than the laser source are mounted on vibration
isolation stages in ultrahigh vacuum. To reduce optical
phase fluctuations caused by Rayleigh scattering, the
pressure in the 1.2-m diameter tubes containing the arm-
cavity beams is maintained below 1 μPa.
Servo controls are used to hold the arm cavities on

resonance [61] and maintain proper alignment of the optical
components [62]. The detector output is calibrated in strain
by measuring its response to test mass motion induced by
photon pressure from a modulated calibration laser beam
[63]. The calibration is established to an uncertainty (1σ) of
less than 10% in amplitude and 10 degrees in phase, and is
continuously monitored with calibration laser excitations at
selected frequencies. Two alternative methods are used to
validate the absolute calibration, one referenced to the main
laser wavelength and the other to a radio-frequency oscillator

(a)

(b)

FIG. 3. Simplified diagram of an Advanced LIGO detector (not to scale). A gravitational wave propagating orthogonally to the
detector plane and linearly polarized parallel to the 4-km optical cavities will have the effect of lengthening one 4-km arm and shortening
the other during one half-cycle of the wave; these length changes are reversed during the other half-cycle. The output photodetector
records these differential cavity length variations. While a detector’s directional response is maximal for this case, it is still significant for
most other angles of incidence or polarizations (gravitational waves propagate freely through the Earth). Inset (a): Location and
orientation of the LIGO detectors at Hanford, WA (H1) and Livingston, LA (L1). Inset (b): The instrument noise for each detector near
the time of the signal detection; this is an amplitude spectral density, expressed in terms of equivalent gravitational-wave strain
amplitude. The sensitivity is limited by photon shot noise at frequencies above 150 Hz, and by a superposition of other noise sources at
lower frequencies [47]. Narrow-band features include calibration lines (33–38, 330, and 1080 Hz), vibrational modes of suspension
fibers (500 Hz and harmonics), and 60 Hz electric power grid harmonics.
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Figure 5: Schematic diagram of a LIGO detector. (a) Location and orientation of the LIGO
detectors in Hanford, Washington (H1) and Livingston, Louisiana (L1) (b) The
instrument noise of each detector near the time of the first gravitational wave de-
tection.

On September 14, 2015 the two detectors of LIGO (nearly) simultaneously ob-
served a transient gravitational-wave signal (see Figure 6). This event is dubbed
GW150914 in reference to its date of occurrence. The signals match the waveform
predicted by general relativity for a pair of black holes mutually orbiting and even-
tually coalescing into a single spinning black hole (see Figure 7). This observation
provides us with the first direct evidence of the existence of gravitational waves,
further supporting General Relativity as the theory of gravity.

Two years later, on August 17, 2017 a gravitational-wave signal named GW170817

was detected by both LIGO detectors and also by a third detector, VIRGO, lo-
cated near Pisa, Italy. At the same time, strong gamma ray burst signals from the
same direction, presumably from the same event, were observed by the Gamma-ray
Burst Monitor on NASA’s Fermi space telescope and the European Space Agency’s
gamma-ray observatory INTEGRAL. It is extremely unlikely that the simultane-
ous occurrence of all these signals is a chance coincidence. Thus, GW170817 gives
an even more robust confirmation of the existence of gravitational waves than
GW150914. An analysis of the combined data showed that the signal was consistent
with a binary system of two objects in the mass range of neutron stars. Moreover,
the non-detection of statistically-significant time delay between the arrival of gra-
vitational and electromagnetic waves from the merging of the neutron stars puts a
strong constraint on the deviation of the propagation speed of gravitational wave
from the speed of light, i.e. yet another confirmation of General Relativity which
predicts that gravitational waves should travel at the speed of light.
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properties of space-time in the strong-field, high-velocity
regime and confirm predictions of general relativity for the
nonlinear dynamics of highly disturbed black holes.

II. OBSERVATION

On September 14, 2015 at 09:50:45 UTC, the LIGO
Hanford, WA, and Livingston, LA, observatories detected

the coincident signal GW150914 shown in Fig. 1. The initial
detection was made by low-latency searches for generic
gravitational-wave transients [41] and was reported within
three minutes of data acquisition [43]. Subsequently,
matched-filter analyses that use relativistic models of com-
pact binary waveforms [44] recovered GW150914 as the
most significant event from each detector for the observa-
tions reported here. Occurring within the 10-ms intersite

FIG. 1. The gravitational-wave event GW150914 observed by the LIGO Hanford (H1, left column panels) and Livingston (L1, right
column panels) detectors. Times are shown relative to September 14, 2015 at 09:50:45 UTC. For visualization, all time series are filtered
with a 35–350 Hz bandpass filter to suppress large fluctuations outside the detectors’ most sensitive frequency band, and band-reject
filters to remove the strong instrumental spectral lines seen in the Fig. 3 spectra. Top row, left: H1 strain. Top row, right: L1 strain.
GW150914 arrived first at L1 and 6.9þ0.5

−0.4 ms later at H1; for a visual comparison, the H1 data are also shown, shifted in time by this
amount and inverted (to account for the detectors’ relative orientations). Second row: Gravitational-wave strain projected onto each
detector in the 35–350 Hz band. Solid lines show a numerical relativity waveform for a system with parameters consistent with those
recovered from GW150914 [37,38] confirmed to 99.9% by an independent calculation based on [15]. Shaded areas show 90% credible
regions for two independent waveform reconstructions. One (dark gray) models the signal using binary black hole template waveforms
[39]. The other (light gray) does not use an astrophysical model, but instead calculates the strain signal as a linear combination of
sine-Gaussian wavelets [40,41]. These reconstructions have a 94% overlap, as shown in [39]. Third row: Residuals after subtracting the
filtered numerical relativity waveform from the filtered detector time series. Bottom row:A time-frequency representation [42] of the
strain data, showing the signal frequency increasing over time.
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Figure 6: The gravitational-wave event GW150914 observed by the two LIGO detectors

propagation time, the events have a combined signal-to-
noise ratio (SNR) of 24 [45].
Only the LIGO detectors were observing at the time of

GW150914. The Virgo detector was being upgraded,
and GEO 600, though not sufficiently sensitive to detect
this event, was operating but not in observational
mode. With only two detectors the source position is
primarily determined by the relative arrival time and
localized to an area of approximately 600 deg2 (90%
credible region) [39,46].
The basic features of GW150914 point to it being

produced by the coalescence of two black holes—i.e.,
their orbital inspiral and merger, and subsequent final black
hole ringdown. Over 0.2 s, the signal increases in frequency
and amplitude in about 8 cycles from 35 to 150 Hz, where
the amplitude reaches a maximum. The most plausible
explanation for this evolution is the inspiral of two orbiting
masses, m1 and m2, due to gravitational-wave emission. At
the lower frequencies, such evolution is characterized by
the chirp mass [11]

M ¼ ðm1m2Þ3=5

ðm1 þm2Þ1=5
¼ c3

G

!
5

96
π−8=3f−11=3 _f

"
3=5

;

where f and _f are the observed frequency and its time
derivative and G and c are the gravitational constant and
speed of light. Estimating f and _f from the data in Fig. 1,
we obtain a chirp mass of M≃ 30M⊙, implying that the
total mass M ¼ m1 þm2 is ≳70M⊙ in the detector frame.
This bounds the sum of the Schwarzschild radii of the
binary components to 2GM=c2 ≳ 210 km. To reach an
orbital frequency of 75 Hz (half the gravitational-wave
frequency) the objects must have been very close and very
compact; equal Newtonian point masses orbiting at this
frequency would be only ≃350 km apart. A pair of
neutron stars, while compact, would not have the required
mass, while a black hole neutron star binary with the
deduced chirp mass would have a very large total mass,
and would thus merge at much lower frequency. This
leaves black holes as the only known objects compact
enough to reach an orbital frequency of 75 Hz without
contact. Furthermore, the decay of the waveform after it
peaks is consistent with the damped oscillations of a black
hole relaxing to a final stationary Kerr configuration.
Below, we present a general-relativistic analysis of
GW150914; Fig. 2 shows the calculated waveform using
the resulting source parameters.

III. DETECTORS

Gravitational-wave astronomy exploits multiple, widely
separated detectors to distinguish gravitational waves from
local instrumental and environmental noise, to provide
source sky localization, and to measure wave polarizations.
The LIGO sites each operate a single Advanced LIGO

detector [33], a modified Michelson interferometer (see
Fig. 3) that measures gravitational-wave strain as a differ-
ence in length of its orthogonal arms. Each arm is formed
by two mirrors, acting as test masses, separated by
Lx ¼ Ly ¼ L ¼ 4 km. A passing gravitational wave effec-
tively alters the arm lengths such that the measured
difference is ΔLðtÞ ¼ δLx − δLy ¼ hðtÞL, where h is the
gravitational-wave strain amplitude projected onto the
detector. This differential length variation alters the phase
difference between the two light fields returning to the
beam splitter, transmitting an optical signal proportional to
the gravitational-wave strain to the output photodetector.
To achieve sufficient sensitivity to measure gravitational

waves, the detectors include several enhancements to the
basic Michelson interferometer. First, each arm contains a
resonant optical cavity, formed by its two test mass mirrors,
that multiplies the effect of a gravitational wave on the light
phase by a factor of 300 [48]. Second, a partially trans-
missive power-recycling mirror at the input provides addi-
tional resonant buildup of the laser light in the interferometer
as a whole [49,50]: 20Wof laser input is increased to 700W
incident on the beam splitter, which is further increased to
100 kW circulating in each arm cavity. Third, a partially
transmissive signal-recycling mirror at the output optimizes

FIG. 2. Top: Estimated gravitational-wave strain amplitude
from GW150914 projected onto H1. This shows the full
bandwidth of the waveforms, without the filtering used for Fig. 1.
The inset images show numerical relativity models of the black
hole horizons as the black holes coalesce. Bottom: The Keplerian
effective black hole separation in units of Schwarzschild radii
(RS ¼ 2GM=c2) and the effective relative velocity given by the
post-Newtonian parameter v=c ¼ ðGMπf=c3Þ1=3, where f is the
gravitational-wave frequency calculated with numerical relativity
and M is the total mass (value from Table I).
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Figure 7: Top: Comparison between the gravitational-wave strain amplitude as a function
of time of the GW150914 event observed by LIGO and predicted with numerical
general relativity models. Bottom: The effective relative velocity and relative sepa-
ration of the two black holes as functions of time.
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