
RELATIVITY AND COSMOLOGY II

Problem Set 9

15th April 2025

1. Freeze-out of $p^+e^- \rightarrow n\nu_e$

Let's consider the Universe at the moment of decoupling of the reaction $p^+e^- \rightarrow n\nu_e$.

1. First, assume that the lepton asymmetry is of the same order as the baryon asymmetry, i.e.,

$$\frac{n_\nu - n_{\bar{\nu}}}{T^3} \sim \eta \sim 10^{-9}. \quad (1)$$

Show that this implies $\mu_n \approx \mu_p$.

2. Suppose now that there was a sizable asymmetry, $(n_\nu - n_{\bar{\nu}})/T^3 \lesssim 1$. Given that an uncertainty in determination of the ${}^4\text{He}$ abundance during nucleosynthesis does not exceed 5%, find a constraint on μ_{ν_e} .

2. Variation of ${}^4\text{He}$ abundance

Our goal is to determine how the abundance of ${}^4\text{He}$ depends on various parameters.

1. Find the change in the abundance of ${}^4\text{He}$ if we alter the number of relativistic degrees of freedom at nucleosynthesis. Can we say something about the presence of additional neutrinos?
2. Estimate the change in the abundance of ${}^4\text{He}$ that would be caused by increasing $m_n - m_p$ by 10 %.
3. Similarly, determine the effect of decreasing the neutron lifetime τ_n by 10%.

3.* Post-freezing antiprotons density

Assuming that at temperatures $T \gg m_p$ the Universe had an excess of protons of the order of

$$\frac{n_p - n_{\bar{p}}}{n_p + n_{\bar{p}}} = 10^{-10},$$

find the relic abundance of antiprotons now ($T \ll m_p$). The annihilation cross section is given by

$$\langle \sigma_{ann} v \rangle \approx 25 \text{ GeV}^{-2}.$$

Hint: Consider that baryon number is conserved when $T \ll 100 \text{ GeV}$.

$$\frac{n_B}{n_\gamma} = 6 \times 10^{-10} \quad (2)$$