
RELATIVITY AND COSMOLOGY II

Problem Set 1

20th February 2024

1. Homogeneous and isotropic space

Show that the following line elements correspond to homogeneous and isotropic space with constant spatial curvature:

$$\begin{aligned}ds^2 &= R^2 (d\chi^2 + \sin^2 \chi (d\theta^2 + \sin^2 \theta d\phi^2)), \\ds^2 &= R^2 (d\chi^2 + \chi^2 (d\theta^2 + \sin^2 \theta d\phi^2)), \\ds^2 &= R^2 (d\chi^2 + \sinh^2 \chi (d\theta^2 + \sin^2 \theta d\phi^2)).\end{aligned}$$

2. Volume in curved spacetime

1. Consider the manifold (of constant and positive curvature), as derived in the lecture:

$$ds^2 = \frac{dr^2}{1 - \frac{r^2}{R^2}} + r^2 d\theta^2 + r^2 \sin^2 \theta d\varphi^2.$$

Integrate it to obtain the volume of this space.

2. Consider the (same) manifold with different parametrization, as shown in the previous exercise:

$$ds^2 = R^2 \left(d\chi^2 + \sin^2 \chi (d\theta^2 + \sin^2 \theta d\phi^2) \right).$$

Integrate it to obtain the volume of this space.

3. Discuss the difference of the results.

Note: The volume is given by: $V = \int d^3x \sqrt{\gamma}$, with γ the determinant of the metric.

3. Friedmann–Lemaître–Robertson–Walker (FLRW) metric

A homogeneous and isotropic universe can be described by the FLRW metric

$$ds^2 = -dt^2 + a^2(t) \left[\frac{dr^2}{1 - kr^2} + r^2 d\theta^2 + r^2 \sin^2 \theta d\varphi^2 \right].$$

Note that $k = \pm 1$ or 0 . The above for $k = 0$ can also be written as

$$ds^2 = -dt^2 + a^2(t) [dx^2 + dy^2 + dz^2].$$

For $k = 0$ and $k \neq 0$, perform the following steps:

1. Write $g_{\mu\nu}$ and determine $g^{\mu\nu}$.
2. Derive the geodesic equations for a particle in this space. You may start from the simple action

$$S = m \int d\tau g_{\mu\nu} \dot{x}^\mu \dot{x}^\nu.$$

Here $\dot{x}^\mu = \frac{d}{d\tau} x^\mu$ and τ is the proper time.

3. Deduce by identification the Christoffel symbols $\Gamma_{\mu\nu}^\lambda$ by writing the equation of motion as $\ddot{x}^\lambda = -\Gamma_{\mu\nu}^\lambda \dot{x}^\mu \dot{x}^\nu$. Verify some results with the usual formula:

$$\Gamma_{\mu\nu}^\lambda = \frac{1}{2} g^{\kappa\lambda} (\partial_\mu g_{\nu\kappa} + \partial_\nu g_{\mu\kappa} - \partial_\kappa g_{\mu\nu}), \quad \text{where} \quad \partial_\mu = \frac{\partial}{\partial x^\mu}.$$

4. Calculate the Ricci tensor $R_{\mu\nu}$.
5. Determine the scalar curvature $R = g^{\mu\nu} R_{\mu\nu}$.
6. Calculate the Einstein tensor $G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R$.