RELATIVITY AND COSMOLOGY I1
Problem Set 12 14th May 2024

1. Linearised Einstein tensor for scalar perturbation
Starting with a metric g,, = a*(n) (1., +h,,) derive the components of the Einstein tensor
0G* to linear order in h,, in the Newtonian gauge
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For the components of the Einstein tensor you should get:
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where A = 0;0;.
Hint: Note that g, and 7,, = 1., + h,, are related by conformal transformation. Thus
the Einstein tensor associated to g, is related to the one generated by v, as
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where the covariant derivatives are now evaluated with the metric v,,.

2. Linearised energy-momentum conservation
Using the same metric as in the previous problem, consider scalar perturbations of the
stress energy tensor for a perfect fluid
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Find the constraints on du’ due to the 4-velocity normalisation.
Write down the linearised Einstein’s equations, and show that these imply ¥ = —®.
Finally, derive the linearised equations of covariant energy-momentum conservation
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(Recall that you should use the covariant derivative with respect to the metric g, ).
You should find
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3. Helicity basis tensors

Consider two orthogonal unit polarization vectors e; and e;. How do they transform
under rotations in the transverse plane? How to make the vectors with helicities £17
Construct the two following tensors
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Check that these tensors are traceless and symmetric. Prove that you can construct two
linear combinations out of these tensors with helicities +2. Moreover, show that any
arbitrary symmetric transverse traceless tensor of second rank is a combination of e;-; and

e, 1.e. a misture of helicities +2 and —2.

4. Dimension of helicity basis
Show that the third combination of the unit vectors (el(-l)egl) + 652)65-2)> from the problem

above has zero helicity, i.e. that is transforms trivially under rotations around k-axis.
Express this combination in terms of J;; and k;k;.



