
RELATIVITY AND COSMOLOGY II

Problem Set 12 14th May 2024

1. Linearised Einstein tensor for scalar perturbation
Starting with a metric gµν = a2(η)(ηµν+hµν) derive the components of the Einstein tensor
δGµ

ν to linear order in hµν in the Newtonian gauge

h00 = 2Φ h0i = 0, hij = −2Ψ δij.

For the components of the Einstein tensor you should get:
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where ∆ = ∂i∂i.
Hint: Note that gµν and γµν = ηµν + hµν are related by conformal transformation. Thus
the Einstein tensor associated to gµν is related to the one generated by γµν as
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where the covariant derivatives are now evaluated with the metric γµν .

2. Linearised energy-momentum conservation
Using the same metric as in the previous problem, consider scalar perturbations of the
stress energy tensor for a perfect fluid

p → p+ δp ρ → ρ+ δρ u0 → 1

a
(1 + δu0) ui → 1

a
(∂iv).

Find the constraints on δu0 due to the 4-velocity normalisation.
Write down the linearised Einstein’s equations, and show that these imply Ψ = −Φ.
Finally, derive the linearised equations of covariant energy-momentum conservation

δ(∇µT
µ
ν ) = 0,

(Recall that you should use the covariant derivative with respect to the metric gµν).
You should find
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3. Helicity basis tensors
Consider two orthogonal unit polarization vectors e1 and e2. How do they transform
under rotations in the transverse plane? How to make the vectors with helicities ±1?
Construct the two following tensors
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)
Check that these tensors are traceless and symmetric. Prove that you can construct two
linear combinations out of these tensors with helicities ±2. Moreover, show that any
arbitrary symmetric transverse traceless tensor of second rank is a combination of e+ij and
e×ij, i.e. a misture of helicities +2 and −2.

4. Dimension of helicity basis
Show that the third combination of the unit vectors

(
e
(1)
i e

(1)
j + e

(2)
i e

(2)
j

)
from the problem

above has zero helicity, i.e. that is transforms trivially under rotations around k⃗-axis.
Express this combination in terms of δij and kikj.
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