
RELATIVITY AND COSMOLOGY II

Problems for Exam Practice – year 2023 10th June 2023

Problem 1

Estimate the current entropy density associated with ordinary matter (relativistic and
non-relativistic) of the Universe. Consider Tγ = 2.75 K, assume that the neutrinos are
massless and that the baryons are distributed homogeneously.

Problem 2

At T = 1GeV cosmic plasma consists of the leptons (electrons, muons, neutrinos and
their antiparticles), photons and three light quarks (mu ≈ 2MeV, md ≈ 5MeV, and
ms ≈ 100MeV). Note also that each quark can be in three color states. The quark’s
baryon number equals 1/3.
Find the chemical potential of the u-quark at T = 1GeV. Assume that the baryon-to-
entropy ratio is

nB−nB

s
∼ 10−9 at that moment and that µu = µd = µs.

Problem 3

Estimate the number density of antibaryons at the moment of freezing out the reactions
of baryon-antibaryon annihilation (Tf ≈ 10 keV).
Indication: Neglect the mass difference between proton and neutron. Recall that in
equilibrium neqB = neqγ ηB, ηB ∼ 10−9.

Problem 4

If there exist neutrinos of ultra-high energies in Nature, they may scatter off relic neu-
trinos. The neutrino-neutrino cross section in the Standard Model is very small. Its
maximum value, σ = 0.15 µb = 1.5 × 10−31 cm2, is reached at center-of-mass energy
E0 ≃ MZ ≈ 90GeV. Find the mean free path of such neutrino in the present Universe
and its energy in the CMB frame.

Problem 5

Find the size of horizon lH at the moment of transition from quark-gluon plasma to
hadron states that occurs at T ≈ 150MeV. Find the value of this size at the moment of
matter-radiation equality (Teq ≈ 1 eV).

Problem 6

Consider the hypothetical universe filled with baryons, photons and neutrinos, that con-
tains no asymmetry between baryons and antibaryons, ηB = 0. Being in equilibrium,
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the baryons participate in reactions of production and annihilation whose velocity aver-
aged cross section in non-relativistic regime is approximately ⟨σv⟩ ≃ σ0 ≈ 100GeV−2.
Assume that these reactions freeze out at Tf ≈ 20MeV. Find the present value of the
baryon-to-photon ratio nB/nγ in this universe.

Problem 7

Assume that dark matter is made of neutral bosons that went out of equilibrium at
T = 0.23 eV. What must the mass of these particles be in order to account for the
present abundance of dark matter? How many particles do we expect to find in average
in one cubic centimeter?
Indication: Assume that the particles decoupled being nonrelativistic.

Problem 8

At high temperatures, a fermion ψ with mass mψ = 1GeV is maintained in thermal
equilibrium by the reaction ψψ ↔ γγ, that decouples at T = 50MeV. Find the velocity
averaged cross section of this reaction ⟨σv⟩, assuming zero chemical potential for ψ.

Problem 9

Are the neutrinos at the time of photon decoupling relativistic? What is the shape of
their number density distribution n(p)?
Give the answer assuming that the total mass of neutrinos (

∑
νmν) is 0.06 eV, and the

difference of the squares of the masses are:

m2
2 −m2

1 = 8× 10−5 eV2, m2
3 −m2

2 = 2× 10−3 eV2.

Problem 10

Interaction of proton with photon at sufficiently high energies may lead to the absorption
of photon and creation of π-meson: p + γ → p + π0. Let the cross section of the latter
process in the center-of-mass frame be

σ =

{
0, at E < E0,
5× 10−28 cm2, at E > E0,

where E is the total energy of photon and proton in the center-of-mass frame, E0 =
1200 MeV. Find the mean free path of a proton in the present Universe with respect to
this process as a function of proton energy in the CMB frame.
Hint: Ignore all photons (e.g., emitted by stars), except for CMB.

Problem 11

What is the Jeans length at the time of neutrino decoupling?
Hint: The temperature of neutrino decoupling is Td = 2MeV.

Problem 12
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For bosonic dark matter particles to form the clusters in galaxies, their de Broglie length
must be smaller than the galaxy size. Given that the sizes of dwarf galaxies are of order
l ∼ 1 kpc, and velocities of dark matter particles are of order v ∼ 10−5 c, put the lower
bound on the mass of dark matter bosons.

Problem 13

Find the evolution of a universe dominated by “strong” matter, i.e. ρ = p, Λ = k = 0.

Problem 14

Can we have a static universe with k ̸= 0, ρ ̸= 0, p ̸= 0 and Λ = 0? What type of matter
(equation of state) is needed?

Problem 15

Consider the Universe filled with matter whose equation of state is that of Chaplygin gas,

p = −A
ρ
, A > 0.

1. Find the dependence of the energy density of this matter on scale factor R.

2. Find the behavior of the scale factor R on time in the limit of small and large
R. Compare this behavior with that of ordinary matter (p = 0) and dark energy
(p = −ρ).

Problem 16

Consider a spatially flat universe filled with nonrelativistic matter and dark energy whose
equation of state is p = wρ. Suppose that at present time t = t0, the abundances of
matter and dark energy are Ωm and ΩDE respectively, while the Hubble parameter is
equal to H0. Using this information, derive the expression for the age of such Universe t0
(in the form of integral). In which case the age of the Universe is larger, for w = 0.9 or
for w = 1.1?
Hint: First, find the dependence of ρDE on scale factor R.

Problem 17

Consider the closed universe filled with nonrelativistic matter. Find the time between the
initial singularity and a final collapse (i.e. the total lifetime of the universe). Express it
through the total mass of the universe.
Hint: Find the dependences of the scale factor R and time t on the conformal time η.

Problem 18

Consider the Universe filled with cold matter (Ωm = 0.3), and dark energy (ΩDE = 0.7)
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at the time t0. Assume that the dark energy component has an equation of state of the

form p = wρ, where −1 < w < −1

3
. What is the dependence of energy density for dark

energy ρ on a scale factor R? Find the value of redshift z = z(w), counted from t0, as a
function of w, at which the transition from deceleration to acceleration occurs. For which
value of w this transition would occur at t = t0?

Problem 19

The transition between two atomic states leads to emission of a photon. Knowing that
such a transition is observed in the laboratory with energy release E0 = 10 keV and that
the same transition is observed in a galaxy by detecting the photon with energy E = 1keV,
deduce what was the age of the Universe when the emission took place. Consider that
the Universe is always matter dominated.

Problem 20

When the electron-positron annihilation freezes out at T ≃ me/40, the relation between
the number of electrons e− and the number of positrons e+ is

ne−−ne+

ne−+ne+
≈ 10−10. What are

the chemical potentials of these particles at the that time?

Problem 21

Assume that the universe contains only photons γ and a cosmological constant Λ. Let
the exponential expansion takes over the radiation domination epoch at T = 1012GeV.
Estimate the value of Λ and the value of Hubble’s parameter at that moment.

Problem 22

Suppose that the densities of photons, protons and electrons have the following constant
ratios: np = ne = 10−9nγ at the temperatures T < me. Find the temperature at which
the energy density of nonrelativistic matter equals the energy density of radiation.

Problem 23

Are the neutrinos at the time of photon decoupling relativistic? What was their momen-
tum at that time?
Give the answer assuming that the total mass of neutrinos (

∑
νmν) is 3 eV, and the

difference of the squares of the masses are:

m2
2 −m2

1 = 8× 10−5 eV2, m2
3 −m2

2 = 2× 10−3 eV2.

Problem 24

Estimate the average speed of scalar particles with massm = 1GeV at the time of matter-
radiation equality (Teq = 0.7 eV) assuming that they were in thermal equilibrium until
50 keV.
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Problem 25

Assume that neutrinos are massless. What is the redshift of neutrinos emitted at their
decoupling in Early Universe and registered today?

Problem 26

In this exercise we would like to study adiabatic density fluctuations of the baryon-photon
component at the time from radiation-matter equality ηeq up to recombination ηrec. The
Newtonian potential was approximately time-independent for modes with uskηeq ≫ 1,
and it is given by the expression

Φ =
81

4
Φ(i) ·

H2
0a

2
0

k2
ΩCDM(1 + zeq) log (0.2kηeq) . (1)

The linearized covariant conservation of the energy-momentum tensor can be written in
the form

δρ′λ + 3
a′

a
(δρλ + δpλ) + (ρλ + pλ)

(
∇2vλ − 3Φ′) = 0, (2)

[(ρλ + pλ) vλ]
′ + 4

a′

a
(ρλ + pλ) vλ + δpλ + (ρλ + pλ) Φ = 0, (3)

where λ labels the components of the cosmic fluid and the dash indicates the derivative
with respect to the conformal time.
For ηeq ≤ η ≤ ηrec the baryon-photon plasma is a single medium, due to their tight
coupling. This means that the physical velocities of photons and baryons are the same,
vγ = vB ≡ vBγ, and that equation (3) only applies to the global densities of the photon-
baryon fluid.
Nevertheless, baryon density is independently conserved, hence equation (2) also holds
separately for the photon and baryon components.

1. Show that for adiabatic modes it holds δB = 3
4
δγ, where δλ = δρλ

ρλ
is the density

contrast of the λ−species.

2. Define the baryon-photon ratio to be RB := 3ρB
4ργ

. Compute the speed of sound of

the baryon-photon plasma in terms of RB.

3. Starting from equations (2) and (3), derive the evolution equations for the photon
density contrast δγ in a matter dominated background.

Hint: recall the relation for background densities ρ′λ = −3a
′

a
(ρλ + pλ).

The equation derived at the previous point is a second order ordinary differential equation
in δγ, with a source term depending on Φ, the gravitational potential.
The general solution to the homogeneous part of the equation can be derived with the
WKB approximation and is of the form

δhomγ (η) = A
(
3u2s

) 1
4 cos

(
k

∫ η

η⋆

dη̃us

)
, (4)

where A and η⋆ are integration constants.
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4. Write down the full expression for photon perturbations in the tight-coupling ap-
proximation, during matter domination. Remember that during radiation domina-
tion acoustic oscillations were derived in class to be δradγ (η) = 6Φi cos (uskη).

Problem 27

In this exercise you will conduct a detailed analysis of several causal structures in an
expanding universe, carrying out some explicit computations in the simplified case of a
matter dominated FLRW universe.

1. Start by recalling the definition of critical density and the relative energy density
contributions Ωi. Derive the following equation

H2

H2
0

= ΩR

(a0
a

)4

+ ΩM

(a0
a

)3

+ ΩK

(a0
a

)2

+ ΩΛ.

From now on, always assume to be in a FLRW matter dominated universe (ΩΛ = ΩR =
0, ΩM = 1, ΩK = 0), and unless otherwise stated the required distances can be expressed
in comoving coordinates.

2. Compute the proper (physical) and the comoving distances from an observer to a
galaxy seen at redshift z⋆ by an observer at the origin at time t0. What is the
present proper size of the observable universe, in terms of its age t0?

3. The particle horizon at time t̃ is defined as the maximum distance light might have
travelled from t = 0 to t = t̃. Compute this as well.

4. The effective speed is defined as the time derivative of the proper distance seen by

the observer, veff (t̃) :=
d
dt
dP (t)

∣∣∣
t̃
. Beyond which distance is the effective speed of

a photon such that it moves away from the observer? This quantity defines the
Hubble sphere DH(t̃) at time t̃.

5. In a spacetime diagram with conformal time on the vertical axis and comoving
distance on the horizontal axis, draw the following quantities (computed for the
matter dominated universe):

⋆ Past light-cone of an observer sitting at the origin at present time;

⋆ World-line of a galaxy at comoving distance ℓ;

⋆ Particle horizon (centered at the origin);

⋆ Hubble sphere (centered at the origin). Is this surface a causal horizon?

Problem 28

Imagine there existed a neutral spin 3
2
particle χ, of mass mχ = 10 keV, which interacts

with the standard model sector only through the reaction

χχ↔ e+e−
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1. Find the freeze out temperature of this particle assuming thermal equilibrium and
that the cross section is σ = α

m2
χ
, with α ∼ O(10−27) (The chemical potential can

be taken to be negligible).

2. After χ freeze out only neutrinos, electrons, photons and baryons are left interacting
in the plasma. Use the conservation of entropy to estimate the ratio between the
effective temperature of the χ particles and the temperature of photons, after e+e−

freeze-out.

3. Determine the present cosmological abundance of χ particle: is the presence of
these particles consistent with cosmological observations? For this recall Tγ,0 ∼
2.34× 10−13GeV and ρcrit ∼ 3.7× 10−47GeV4.

Problem 29

1. Recall the definition of a deceleration parameter q = − ä
aH2 . Using the Friedmann

equations find a general expression for q in terms of Ωi. Show that in the Universe
which contains only matter and Λ > 0:

q =
1

2
Ωm − ΩΛ (5)

2. Solve Friedmann equations in the flat Universe with matter and cosmological con-
stant. Define the time origin by a(0) = 0. Express your result in the form

a(t) = A · sinh2/3

(
3H0

2
t
√

1− Ωm,0

)
(6)

where H0 is the Hubble expansion rate today and Ωm,0 is the matter density pa-
rameter today.
Hint: Use the change of variables a = xα.

3. Find the age of the universe, t0, in terms of Ωm,0. Use the normalization a0 ≡
a(t0) = 1 to determine the integration constant A in formula (6).
Hint: Use the formula

arccoth x =
1

2
log

x+ 1

x− 1
. (7)

4. If today in the Universe Ωm,0 = 0.3, calculate the redshift, z, at the moment when
the expansion changes from the deceleration to acceleration. Also calculate the
present-day value of the deceleration parameter, q0.

Problem 30

Consider massive particles and antiparticles with mass m and number densities N(t) and
N̄(t). If they interact with cross-section σ at velocity v, the evolution of N(t) is described
by

∂N

∂t
+ 3HN = −(NN̄ −NeqN̄eq)⟨σv⟩. (8)
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The first term to the right represents the rate of annihilation of particles with anti-
particles, while the second one represents the particle production rate, expressed in terms
of the equilibrium densities Neq and N̄eq. This equation is valid even for large deviations
of N from Neq.

1. Considering the analogous equation for the antiparticles, show that

(N − N̄)a3 = const.

Now consider a radiation-dominated universe, where the numbers of particles and an-
tiparticles are initially the same.

You may find it useful to choose a reference scale such that a(t) =
(
t
t0

) 1
2
= m

T
, where T

is the radiation temperature.

2. Defining w ≡ N
T 3 , show that

dw

da
= − λ

a2
(w2 − w2

eq), (9)

where λ ≡ m3⟨σv⟩
H⋆

and H⋆ is the Hubble constant when T = m.

Hint: Start by rewriting the left hand side of equation 8 as 1
a3
∂(Na3)
∂t

.

3. If λ is a constant, show that at times much later than freeze out, w approaches the
relic value

w∞ =
m

λTf
,

where Tf is the freeze-out temperature.
Hint: argue why at late times w ≫ weq.

Now apply this to proton-antiproton annihilation, assuming initial symmetry. You may
use the following: ⟨σv⟩ ≈ 100 GeV−2, at freeze-out the temperature is Tf ≈ 20 MeV and
g⋆ = 10.25 (since muons and pions have decoupled) and Mpl = 1.2× 1019 GeV.

4. Show that the (anti-)proton to photon ratio is

N

Nγ

=
N̄

Nγ

≈ 10−18

How does this compare with observational data? Which of the assumptions we
made should be revised?
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