
RELATIVITY AND COSMOLOGY II
Solutions to the final exam 23rd June 2025

Problem 1

(a) Determine the scaling of the energy density ρ with scale factor a for a component
with constant equation of state parameter w. Hence show that the Hubble parameter
can be written as H(z) = H0E(z), with

E(z) =

[∑
i

Ωi,0 (1 + z)3(1+wi)

]1/2
, (1)

where you should define Ωi,0 and where the sum is over components i with constant
equation of state parameters wi.

(b) For the rest of the problem, consider a universe containing only cold dark matter (m)
and a non-standard dark energy component (DE); the non-standard dark energy
component has an equation of state parameter that is not constant, but instead
depends on redshift in the following way:

w(z) = w0 +
wa z

1 + z
, (2)

where w0 and wa are constant parameters. Carefully show that in such a universe
the function E(z) is given by

E(z) =
[
Ωm,0(1 + z)3 +X(ΩDE,0, z, w0, wa)

]1/2
, (3)

where X(ΩDE,0, z, w0, wa) is a function you should specify.

(c) A bright source in a distant galaxy emits photons at a time ts that are received on
earth at time t0. The source’s redshift z1 is initially measured by astronomers at
time t0. The redshift of the same source is measured a second time, giving z2, after
waiting an interval ∆t0 (which corresponds to an interval ∆ts in the rest frame of
the source). Show that the difference ∆z ≡ z2− z1 (referred to as the redshift drift)
between the redshifts of the source at times t0 +∆t0 and t0 is given by

∆z =
a(t0 +∆t0)

a(ts +∆ts)
− a(t0)

a(ts)
. (4)

After relating ∆ts to ∆t0, show that the redshift drift ∆z is given by

∆z = f
(
z1,∆t0, E(z1), H0

)
, (5)

where you should determine the function f(z1,∆t0, E(z1), H0). You may perform
all calculations to linear order in H∆t ≪ 1 and ∆t/t ≪ 1.

(d) Assume w0 = −1 and |wa| ≪ 1. Given an (exceptionally high) redshift measurement
precision of δz ∼ 10−11, determine the smallest value of |wa| for which the predicted
∆z at z1 ≈ 1 over ∆t0 = 10yr would be measurably different from the wa = 0 case.
You can approximate H0 ≈ 10−10 yr−1.
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Solution

(a) A fluid with constant equation-of-state parameter w obeys the continuity equation

ρ̇+ 3H(1 + w)ρ = 0, H =
ȧ

a
.

Hence
dρ

ρ
= −3(1 + w)

da

a
=⇒ ρ(a) = ρ0 a

−3(1+w). (6)

Since the redshift z is related to the scale factor by

1 + z =
1

a
, a =

1

1 + z
, (7)

this may be written
ρ(z) = ρ0 (1 + z)3(1+w). (8)

Defining the critical density ρc,0 = 3H2
0/(8πG) and Ωi,0 = ρi,0/ρc,0, the Friedmann

equation H2 = (8πG/3)
∑

i ρi gives

H2(z)

H2
0

=
∑
i

Ωi,0 (1 + z)3(1+wi), H(z) = H0

[∑
i

Ωi,0(1 + z)3(1+wi)
]1/2

. (9)

(b) Now consider cold matter (wm = 0) plus dark energy (DE) with

w(z) = w0 + wa
z

1 + z
.

The DE density evolves according to

dρDE

ρDE

= −3
[
1 + w(z)

]da
a

= +3
[
1 + w(z)

] dz

1 + z
,

hence

ρDE(z) = ρDE,0 exp
[
3

∫ z

0

1 + w(z′)

1 + z′
dz′
]
. (10)

We split the integrand:∫ z

0

1 + w(z′)

1 + z′
dz′ =

∫ z

0

1 + w0

1 + z′
dz′ +

∫ z

0

wa z
′

(1 + z′)2
dz′. (11)

The first term is
(1 + w0) ln(1 + z),

and for the second we set u = 1 + z′:∫ z

0

z′

(1 + z′)2
dz′ =

∫ 1+z

u=1

u− 1

u2
du =

[
lnu+ 1

u

]1+z

1
= ln(1 + z)− z

1 + z
.

Thus ∫ z

0

1 + w(z′)

1 + z′
dz′ = (1 + w0) ln(1 + z) + wa

[
ln(1 + z)− z

1 + z

]
= (1 + w0 + wa) ln(1 + z)− wa

z

1 + z
.

(12)

2



Substituting back,

ρDE(z) = ρDE,0 (1 + z)3(1+w0+wa) exp
[
−3wa

z

1 + z

]
. (13)

The Friedmann equation then reads

H2(z)

H2
0

= Ωm,0(1 + z)3 + ΩDE,0(1 + z)3(1+w0+wa) exp
[
−3wa

z
1+z

]
, (14)

or, defining

X(ΩDE,0, z;w0, wa) = ΩDE,0(1 + z)3(1+w0+wa) exp
[
−3wa

z
1+z

]
, (15)

H(z) = H0

[
Ωm,0(1 + z)3 +X(ΩDE,0, z;w0, wa)

]1/2
. (16)

(c) A source which emitted at time ts and is observed at t0 has

1 + z1 =
a(t0)

a(ts)
.

After a small interval ∆t0 on Earth and ∆ts at the source,

1 + z2 =
a(t0 +∆t0)

a(ts +∆ts)
=⇒ ∆z ≡ z2 − z1 =

a(t0 +∆t0)

a(ts +∆ts)
− a(t0)

a(ts)
. (4)

Photons satisfy ∫ ts+∆ts

ts

dt

a(t)
=

∫ t0+∆t0

t0

dt

a(t)
=⇒ ∆ts

a(ts)
=

∆t0
a(t0)

.

Since 1 + z1 = a(t0)/a(ts), this gives

∆ts =
a(ts)

a(t0)
∆t0 =

∆t0
1 + z1

. (17)

Expanding a(t+∆t) ≈ a(t)[1 +H(t)∆t] to first order,

a(t0 +∆t0) ≈ a(t0)
(
1 +H0∆t0

)
, a(ts +∆ts) ≈ a(ts)

(
1 +H(z1)∆ts

)
,

so

a(t0 +∆t0)

a(ts +∆ts)
≈ a(t0)

a(ts)

[
1 +H0∆t0 −H(z1)∆ts

]
= (1 + z1)

[
1 +H0∆t0 − H(z1)

1+z1
∆t0

]
.

Subtracting 1 + z1 yields

∆z = H0∆t0 (1 + z1) − H(z1)∆t0 = H0∆t0
[
(1 + z1)− E(z1)

]
, (5)

where H(z1) = H0E(z1).

3



(d) In the CPL model with w0 = −1 and |wa| ≪ 1,

E(z) ≈ EΛ(z) +
3ΩDE,0

2EΛ(z)

[
ln(1 + z)− z

1+z

]
wa, EΛ(z) =

√
Ωm,0(1 + z)3 + ΩDE,0.

The wa–induced change in the drift is

∆z(wa)−∆z(0) ≈ −H0∆t0
3ΩDE,0

2EΛ(z1)

[
ln(1 + z1)− z1

1+z1

]
wa.

At z1 = 1, Ωm,0 = 0.3, ΩDE,0 = 0.7, EΛ(1) ≈ 1.76, ln 2− 1
2
≈ 0.193, H0 ≈ 10−10 yr−1,

∆t0 = 10 yr,

H0∆t0 ≈ 10−9,
3ΩDE,0

2EΛ(1)
× 0.193 ≈ 0.115,

so
|∆z(wa)−∆z(0)| ≈ 1.15× 10−10 |wa|,

and requiring ≳ 10−11 precision gives

|wa| ≳
10−11

1.15× 10−10
∼ 0.1.
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Problem 2

(a) Use the first law of thermodynamics T dS = dU + P dV to show that the entropy
in a expanding patch of volume V is conserved for a fluid with density and pressure
ρ, P satistying the continuity equation

dρ+ (ρ+ P )
dV

V
= 0 (18)

(you may assume that the chemical potential vanishes).
Show that the entropy density is given by

s =
ρ+ P

T
. (19)

Hint: consider variations of thermodynamic quantities that can be set to zero
independently.

Consider a hot big bang universe at temperatures T ≫ 100 GeV consisting of the Standard
Model (SM) and, in addition, a relativistic “dark” scalar particle ϕ. For T > Td the SM
particles and ϕ are in kinetic equilibrium, but for T < Td the particle ϕ is decoupled from
the SM. ϕ self-interacts through the processes ϕϕ ↔ ϕϕ and ϕϕ ↔ ϕϕϕ.

(b) What is the chemical potential of ϕ? Find the ratio of the entropy densities before
decoupling,

ξ(T ) ≡ sSM
sϕ

(20)

in terms of the thermal degrees of freedom gSM and gϕ. Estimate the magnitude of
ξ(T ) and briefly describe its evolution after decoupling.

(c) Some time after decoupling from the Standard Model, ϕ will become non-relativistic,
but it will be kept in a thermal state for some time due to its self-interactions.
Defining x ≡ mϕ/Tϕ, show that when x ≫ 1 we get

ρϕ ≃ mϕnϕ(T ) (21)

where nϕ is the number density of ϕ. Hence, derive following expression for the
entropy density

sϕ ≃
m3

ϕ

(2π)3/2
x−1/2 e−x . (22)

Show that long after decoupling from the Standard Model (but still assuming that
ϕ is in a thermal state), the ratio of temperatures between the photons and the ϕ
particles is

Tγ

Tϕ

≃ k

(
ξ

gSMeff

)1/3

x5/6 e−x/3, (23)

where k is a numerical factor to be determined, and gSMeff is the temperature-

dependent effective number of degrees of freedom, defined as gSMeff (Tγ) ≡
∑

i gi

(
Ti

Tγ

)3
,

where the index i runs over all the Standard Model particles.

Hint: ∫ ∞

0

y2e−y2 dy =

√
π

4
.
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(d) As long as the ϕ particles interact with each other, does their temperature decrease
faster or slower than the photon temperature as the universe expands?
After all the self-interactions between ϕ particles freeze out, argue why ϕ still obeys
a Bose-Einstein distribution for non-relativistic particles, and find how its effective
temperature T eff

ϕ scales with the scale factor a(t). How does T eff
ϕ scale with the

Tγ?

Solution

(a) Consider a comoving volume V ∝ a3(t) containing a fluid with energy density ρ,
pressure P , and temperature T , and assume the chemical potential vanishes, µ = 0.
The first law of thermodynamics reads

dU + P dV = T dS, (24)

with
U = ρ V, S = s V. (25)

Energy–momentum conservation in an FRW universe gives the continuity equation

dρ+ (ρ+ P )
dV

V
= 0. (26)

From (24) and U = ρV we get

d(ρV ) + P dV = T dS =⇒ V dρ+ (ρ+ P ) dV = T dS. (27)

Substituting (26) into this expression,

T dS = 0 =⇒ dS = 0 =⇒ S = const. (28)

Thus the total entropy in a comoving volume is conserved.

Next, write S = sV , so
dS = V ds+ s dV. (29)

Then
V dρ+ (ρ+ P ) dV = T (V ds+ s dV ). (30)

Rearrange to
V (dρ− T ds) + (ρ+ P − T s) dV = 0. (31)

This must stay true when we do not vary the volume of the system, i.e. dV = 0,
yielding

dρ = T ds. (32)

Now, if we plug this into (31) and consider a system whose size varies, we get

s =
ρ+ P

T
. (33)

(b) A relativistic scalar ϕ self–interacts via ϕϕ ↔ ϕϕ and ϕϕ ↔ ϕϕϕ, so there is no
conserved ϕ–number. Chemical equilibrium therefore imposes

µϕ = 0. (34)
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For T > Td, the SM and ϕ sectors share the same temperature T . A relativistic
species i has entropy density

si =
2π2

45
gi∗s T

3, (35)

where gi∗s counts entropy degrees of freedom. Thus

sSM =
2π2

45
gSM∗s T 3, sϕ =

2π2

45
gϕ∗s T

3. (36)

Just before decoupling (T ≳ Td),

ξ ≡ sSM
sϕ

=
gSM∗s

gϕ∗s
. (37)

After decoupling (T < Td), each sector conserves its own comoving entropy,

sSM a3 = const, sϕ a
3 = const, (38)

so the ratio ξ remains fixed at

ξ(T < Td) =
gSM∗s (Td)

gϕ∗s
. (39)

(c) We begin with the entropy density of the ϕ–sector,

sϕ =
ρϕ + Pϕ

Tϕ

≃ ρϕ
Tϕ

(
Tϕ ≪ mϕ

)
, (40)

since for a non–relativistic gas Pϕ ≪ ρϕ. The energy density is

ρϕ =
gϕ
2π2

∫ ∞

0

dp p2

√
p2 +m2

ϕ

exp
(√

p2 +m2
ϕ/Tϕ

)
−1

. (41)

Define the dimensionless variable

x ≡ mϕ

Tϕ

≫ 1. (42)

In this limit we expand
√
p2 +m2

ϕ ≈ mϕ + p2/(2mϕ) and pull out the Boltzmann

factor e−mϕ/Tϕ = e−x:

ρϕ ≃ gϕ
2π2

mϕ

∫ ∞

0

dp p2 exp
(
−x− p2

2mϕTϕ

)
= mϕ nϕ, (43)

nϕ ≡ gϕ
2π2

∫ ∞

0

dp p2 exp
(
−x− p2

2mϕTϕ

)
= gϕ

(
mϕ Tϕ

2π

)3/2
e−x. (44)

Therefore

sϕ ≃ ρϕ
Tϕ

=
mϕ nϕ

Tϕ

=
m3

ϕ

(2π)3/2
x−1/2 e−x. (45)

The SM (photon) sector has entropy density

sSM =
2π2

45
gSMeff (Tγ) T

3
γ . (46)
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After decoupling at T = Td, each sector conserves its comoving entropy:

sϕ a
3 = const, sSM a3 = const =⇒ ξ ≡ sSM

sϕ
=

gSMeff (Td)

gϕ
= const.

Equate (46) to ξ sϕ using (45):

2π2

45
gSMeff T 3

γ = ξ
m3

ϕ

(2π)3/2
x−1/2e−x, (47)

T 3
γ = ξ

m3
ϕ

(2π)3/2
45

2π2 gSMeff
x−1/2e−x. (48)

Finally, since Tϕ = mϕ/x,

Tγ

Tϕ

=

[
ξ

m3
ϕ

(2π)3/2
45

2π2 gSMeff
x−1/2e−x

]1/3
x

mϕ

= k
(

ξ
gSMeff

)1/3
x5/6e−x/3, (49)

k ≡
[

45
25/2π7/2

]1/3
. (50)

(d) As long as the ϕ particles continue to scatter among themselves, they remain
in true thermal equilibrium at a genuine thermodynamic temperature Tϕ. After
self–interactions freeze out, their distribution “freezes in” as a Bose–Einstein form
characterized by an effective temperature T eff

ϕ .

During the interacting phase, when Tϕ is still well-defined, (49) holds, and given
that Tγ is exponentially related to Tϕ, Tϕ changes very slowly as Tγ varies.
Once ϕ–ϕ interactions cease, the physical 3-momentum redshifts as p ∝ a−1 as
the universe expands. For non-relativistic ϕ particles with energy E = p2/2m ∝
a−2, we define T eff such that the ratio if variables appearing in the Bose-Einstein
distribution, E

T eff , stays constant and therefore

T eff
ϕ ∝ a−2, T eff

ϕ ∝ T 2
γ . (51)
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Problem 3

In this exercise we would like to study the evolution during early matter domination
of modes of density fluctuations of the cold dark matter component which entered the
horizon before matter-radiation equality ηeq. Recall the linearized Einstein equations

−∆Φ+ 3
a′

a
Φ′ + 3

a′2

a2
Φ = −4πGa2 ·

∑
λ

δρλ, (52)

Φ′ +
a′

a
Φ = −4πGa2 ·

∑
λ

[(ρ+ p)v]λ, (53)

Φ′′ + 3
a′

a
Φ′ +

(
2
a′′

a
− a′2

a2

)
Φ = 4πGa2 ·

∑
λ

δpλ, (54)

where λ labels the components of the cosmic fluid and the dash indicates the derivative
with respect to the conformal time. The Newtonian potential in momentum space at
radiation domination was computed in class to be (urad

s =
√
3)

Φγ(η) = −3Φ(i) ·
1

(urad
s kη)2

[
cos(urad

s kη)− sin(urad
s kη)

urad
s kη

]
, (55)

while the sub-horizon adiabatic mode of cold dark matter fluctuations during radiation
domination were computed in the homework to be:

δCDM (η) = −9Φ(i)

[
log

(
kη√
3

)
+ γE − 1

2

]
, (56)

with η the conformal time and γE the Euler-Mascheroni constant.

(a) Using the first Einstein equation (52), compute ΦCDM , the correction to the Newto-
nian potential Φγ generated by dark matter perturbations, deep inside the horizon
during radiation domination. Show that this contribution is dominant at time of
radiation-matter equality.

Hint 1: Argue why all terms with conformal time derivatives can be neglected.

The linearized covariant conservation of the energy-momentum tensor can be written in
the form

δρ′λ + 3
a′

a
(δρλ + δpλ) + (ρλ + pλ)

(
∇2vλ − 3Φ′) = 0, (57)

[(ρλ + pλ) vλ]
′ + 4

a′

a
(ρλ + pλ) vλ + δpλ + (ρλ + pλ) Φ = 0, (58)

Perturbation of the radiation medium induced by ΦCDM during matter domination are
small, and therefore can be neglected for the rest of the computations.

(b) Starting from equations (57) and (58), derive the evolution equations for the CDM
density contrast δCDM in a matter dominated background at leading order in 1

kη
.

Hint 2: recall the relation for background densities ρ′λ = −3a′

a
(ρλ + pλ).

Remark: The treatment of dark matter perturbations during matter domination
seen in class, which only required to solve (54), does not apply here, since for η ∼ ηeq,
the universe is still a multi-component fluid.
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The equation derived at the previous point is a homogeneous second order ordinary dif-
ferential equation in δCDM . In order to solve this equation, it is convenient to introduce
the variable x(η) := a(η)

aeq
; with this variable, the evolution equation for δCDM becomes:

x(x+ 1)
d2

dx2
δCDM +

(
1 +

3

2
x

)
d

dx
δCDM − 3

2
δCDM = 0, (59)

where we neglected baryon contribution to the energy density, while keeping the radiation
component contribution for the evolution of the Hubble parameter.

(c) Give a physical reason for why we can expect one solution of (59) to be linear in x.

For a homogeneous second order differential equation, once you know a solution
y(1)(x) you may find the second one with the ansatz y(2)(x) = q(x) · y(1)(x), and
solving a first order differential equation for q′(x).

Find then the most general solution to the differential equation (59).

Hint 3: You may find useful the solution to the following integral∫ x

−∞

dt

t
√
1 + t

(
1 + 3

2
t
)2 = ln

(√
1 + x− 1√
1 + x+ 1

)
+ 6

√
1 + x

2 + 3x
. (60)

(d) Determine the physical solution for δCDM(η) by imposing the correct initial condi-
tions at x ≪ 1. Comment on the late time expansion of this solution.
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Solution

(a) The 0−th component of the linearized Einstein equations reads

−∆Φ+ 3
a′

a
Φ′ + 3

a′2

a2
Φ = −4πGa2 ·

∑
λ

δρλ, (61)

where dash is again the derivative with respect to conformal time; once we take the
Fourier transform on the spatial slices:

k2Φ + 3
a′

a
Φ′ + 3

a′2

a2
Φ = −4πGa2 ·

∑
λ

δρλ. (62)

For the CDM component,

k2ΦCDM +3
a′

a
Φ′

CDM +3
a′2

a2
ΦCDM = −4πGa2 ·δρCDM = −4πGa2 ·ρCDMδCDM . (63)

Deep inside the horizon kη ≫ 1, so we can neglect all conformal time derivatives
and

ΦCDM = −a2(η)

k2
4πGρCDMδCDM(η). (64)

A similar equation holds for the Newtonian potential Φγ, reported in (55). Since
ρCDM ∝ 1

a3
, while ργ ∝ 1

a4
, and neglecting logarithmic terms coming from δCDM ,

within radiation domination we have{
Φγ ∝ 1

a2

ΦCDM ∝ 1
a

=⇒ ΦCDM ≪ Φ ⇐⇒ η < ηeq. (65)

Comment: perturbation of the radiation medium can be neglected during matter
dominations1

During matter domination, where ΦCDM is the dominant contribution to the Newtonian po-
tential, the zeroth component of linearized Einstein equations gives (always for modes well
inside the horizon)

δtot ∼
k2

4πGρa2
ΦCDM ∼ k2

a2H2
ΦCDM ≫ ΦCDM , (66)

since modes inside the sound horizon are well inside the cosmological horizon. Fourier transform
of equation (58) reads:

[(1 + wλ)vλ]
′ +

a′

a
(1− 3wλ)(1 + wλ)vλ + u2

s,λδλ = −(1 + wλ)Φ, (67)

where we used the definitions of the sound speed u2
s,λ = δpλ

δρλ
and of the parameter of

the equation of state wλ = pλ
ρλ
, together with the identity for background densities ρ′λ =

−3a′

a
ρλ (1 + wλ). For modes well inside the horizon (so to neglect time-derivative at first

approximation) of the relativistic component wγ = 1
3
, we obtain, during matter domination

δγ ∼ ΦCDM ≪ k2

a2H2
ΦCDM ∼ δtot, (68)

so we can safely neglect the effect of perturbations of the relativistic medium for further
computations.

1These comments in the solution are meant to justify assumptions and results given in the problem
text, but students were not required to comment during the exam and can be omitted at a first reading.
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(b) In order to derive the evolution equation for δCMB during matter domination, we
need to Fourier transform equations (57) and (58), and write it in momentum space:

δρ′λ + 3
a′

a
(δρλ + δpλ)− (ρλ + pλ)

(
k2vλ + 3Φ′) = 0. (69)

[(1 + wλ)vλ]
′ +

a′

a
(1− 3wλ)(1 + wλ)vλ + u2

s,λδλ = −(1 + wλ)Φ, (70)

Now we want to manipulate equations (69) and (70) so to have a differential equation
for δλ in terms of known quantities. Let’s start by noticing

δ′λ =

(
δρλ
ρλ

)′

=
δρ′λ
ρλ

− ρ′λ
ρλ

δλ =⇒ δρ′λ = ρλδ
′
λ + ρ′λδλ.

Using the hint we have

ρ′λ = −3
a′

a
ρλ (1 + wλ) =⇒ ρ′λδλ = −3

a′

a
δρλ (1 + wλ) = −3

a′

a
(δρλ + δpλ) ,

so equation (69) becomes

δ′λ − (1 + wλ)
(
k2vλ + 3Φ′) = 0, (71)

which, for the specific case of Cold Dark Matter (wCDM = 0), becomes

δ′CDM − k2vCDM = 3Φ′, (72)

and its time derivative is

δ′′CDM − k2v′CDM = 3Φ′′ ≪ k2ΦCDM , (73)

Equation (70) instead, for CDM perturbations, becomes (u2
s,CDM = wCDM = 0)

v′CDM +
a′

a
vCDM = −ΦCDM . (74)

After η ≳ ηeq we observe that ΦCDM(η) evolves very slowly, since ρCDM ∼ 1
a3

and
δCDM is expected to grow as ∼ a from the study of matter perturbations in a matter
dominated background. Therefore, we neglect time derivatives of Φ and substituting
(72) and (73) into (74) we get

δ′′CDM +
a′

a
δ′CDM = −k2ΦCDM = 4πGNρCDMa2(η)δCDM (75)

Comment: Rewriting the evolution equation for δCDM in terms of the variable
x(η) := a(η)

aeq

First of all, neglecting baryon contribution to non-relativistic energy density, Einstein’s equa-
tions at radiation-matter equality give

8π

3
GNρCDM (ηeq) =

8π

3
GNργ (ηeq) =

1

2
H2 (ηeq) :=

1

2
H2

eq (76)

Moreover, ρCDM ∝ 1
a3

while ργ ∝ 1
a4
, so

4πGNρCDM(η) = 4πGNρCDM(ηeq) ·
a3eq
a3

=
3

4
Heq ·

1

x3

4πGNργ(η) = 4πGNργ(ηeq) ·
a4eq
a4

=
3

4
Heq ·

1

x4

(77)
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Therefore, Einstein’s equation in terms of the new variable x read (remember that with con-
formal time, H = a′

a2
)

a′2

a2
=

1

2
H2

eqa
2
eq

(
1

x
+

1

x2

)
=⇒ H(x) =

Heq√
2
·
√
x+ 1

x2
. (78)

We can also transform the derivatives of conformal time to derivatives of x with the help of
chain-rule:

dx =
da

aeq
=

a′

aeq
dη =

a′

a2
x2aeqdη =⇒ d

dη
= Hx2aeq

d

dx
(79)

so the first derivative term of equation (75) becomes

a′

a
δ′CDM =

a′

a
Hx2aeq

d

dx
δCDM = H2x3a2eq

d

dx
δCDM . (80)

For the second derivative:

d2

dη2
=

d2

dη2

(
Hx2aeq

d

dx

)
= a2eqHx2 d

dx

(
Hx2 d

dx

)
=

= a2eqHx2

[
Hx2 d2

dx2
+ 2Hx

d

dx
+ x2dH

dx

d

dx

]
=

= a2eqH
2x4 d2

dx2
+ a2eqH

2x3

[
2− 1

2
· 3x+ 4

x+ 1

]
d

dx

(81)

where we used
dH

dx
=

Heq√
2

d

dx

(√
x+ 1

x2

)
= −Heq√

2
· 3x+ 4

2x3
√
x+ 1

= −1

2
H · 3x+ 4

x(1 + x)
.

(82)

Putting it all together, the differential equation in (75) becomes

a2eqH
2x4 d2

dx2
δCDM + a2eqH

2x3

[
2− 3x+ 4

2(x+ 1)
+ 1

]
d

dx
δCDM − 3

4
H2

eqa
2
eq ·

1

x
δCDM = 0

x(x+ 1)
d2

dx2
δCDM +

(
1 +

3

2
x

)
d

dx
δCDM − 3

2
δCDM = 0 (83)

as was given in the main text.

(c) From the study of Jeans’s instability that we have seen in class, you know that
matter perturbations during matter dominations will grow linearly at some point.
Therefore, a solution to the differential equation (59) should be (at least asymptot-
ically) of the form

y(1)(x) = A1x+B1; (84)

plugging it into (59) we easily get

A1 =
3

2
B1 (85)
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so the first homogeneous solution is:

y(1)(x) = C1

(
1 +

3

2
x

)
. (86)

Making use of the suggestion given in point (c) (the q in the hint is more generally
known as the Wronskian), we can write the second homogeneous solution as

y(2)(x) = q(x) · y(1)(x), (87)

and plugging it in equation (59) we find a first order differential equation for q′(x):

A(x)
d2

dx2

[
q(x) · y(1)(x)

]
+B(x)

d

dx

[
q(x) · y(1)(x)

]
+ C(x) · q(x) · y(1)(x) = 0

q′′(x)A(x)y(1)(x) + q′(x)
[
2A(x)y′(1)(x) +B(x)y(1)(x)

]
= 0

dq′

q′
=

[
2
y′(1)(x)

y(1)(x)
+

B(x)

A(x)

]
dx.

(88)

Substituting the values A(x) = x(1 + x) and B(x) = 1 + 3
2
x relevant for our case,

we can solve for q′(x)

ln q′ = −
∫

dx
3

3
2
x+ 1

+
1

x(x+ 1)︸ ︷︷ ︸
1
x
− 1

x+1

+
3

2

1

(x+ 1)
=

= −
[
2 ln

(
x+

2

3

)
+ lnx+

1

2
ln(x+ 1)

] (89)

so, using Hint 3:

q(x) = C2

∫ x

−∞
dt

1

t
√
1 + t

(
3
2
t+ 1

)2 =

= C2

[
ln

(√
1 + x− 1√
1 + x+ 1

)
+ 6

√
1 + x

2 + 3x

]
.

(90)

The full solution to equation (59) is then

δCDM(x) =

(
1 +

3

2
x

)[
C1 + C2

(
ln

(√
1 + x− 1√
1 + x+ 1

)
+ 6

√
1 + x

2 + 3x

)]
(91)

(d) In order to fix the constants C1 and C2, we need to match it with the solution for
δCDM(η) in the radiation-dominated regime; expanding (91) for x ≪ 1, we find:

δCDM(x) = C1 + C2 [lnx− 2 ln 2 + 3] = C1 + C2

[
ln

η

ηeq
− 2 ln 2 + 3

]
, (92)

where we also used that a(η) ∝ η during radiation domination. The behavior of
δCDM(η) is given in the text (56):

δCDM (η) = −9Φ(i)

[
log

(
kη√
3

)
+ γE − 1

2

]
, (93)
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so
C2 = −9Φ(i) (94)

and, at this level of approximation

C1 = −9Φ(i)

[
ln(kηeq) + γE − 7

2
+ ln

4√
3

]
. (95)

At late times instead, the second homogeneous solution is suppressed, and

δCDM(η ≫ ηeq) = C1 ·
3

2
x = −27

2

a(η)

a(ηeq)
Φ(i)

[
ln(kηeq) + γE − 7

2
+ ln

4√
3

]
≃ −27

2

a(η)

a(ηeq)
Φ(i) ln(0.15kηeq)

(96)

We can see that the mechanism of generation of dark matter perturbation is quite
efficient: compared to modes which enter the horizon at matter domination, those
which enter at radiation domination get not only a logarithmic enhancement, but
also an extra factor 3

2
, which would have not been obtained by simple matching of

(56) at η = ηeq.
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