RELATIVITY AND COSMOLOGY 1II

Solutions to the final exam 23rd June 2025

Problem 1

(a)

Determine the scaling of the energy density p with scale factor a for a component
with constant equation of state parameter w. Hence show that the Hubble parameter
can be written as H(z) = HyE(z), with

1/2
Z Qio(1+ 2)3(1“'”)] ; (1)

where you should define €2; o and where the sum is over components 7 with constant
equation of state parameters w;.

E(z) =

For the rest of the problem, consider a universe containing only cold dark matter (m)
and a non-standard dark energy component (DE); the non-standard dark energy
component has an equation of state parameter that is not constant, but instead
depends on redshift in the following way:

Wq 2
142’ 2)
where wy and w, are constant parameters. Carefully show that in such a universe
the function E(z) is given by

w(z) = wo +

1/2
E(z) = |Qmo(l+ 2)* + X(Qppo, 2, wo, we)| (3)

where X (Qpg.o, 2, wo, w,) is a function you should specity.

A bright source in a distant galaxy emits photons at a time ¢, that are received on
earth at time ty. The source’s redshift z; is initially measured by astronomers at
time to. The redshift of the same source is measured a second time, giving zs, after
waiting an interval Aty (which corresponds to an interval At in the rest frame of
the source). Show that the difference Az = 25 — 21 (referred to as the redshift drift)
between the redshifts of the source at times ty + Aty and ¢ is given by

a(to + Ato) a(to)

= - : (4)

a(ts + Aty) a(ts)

After relating At to Aty, show that the redshift drift Az is given by

Az = f(Zl,Ato,E(Zl),Ho), (5)

where you should determine the function f(zy, Ato, E(21), Hp). You may perform
all calculations to linear order in HAt < 1 and At/t < 1.

Assume wy = —1 and |w,| < 1. Given an (exceptionally high) redshift measurement
precision of §z ~ 107, determine the smallest value of |w,| for which the predicted
Az at z; = 1 over Aty = 10yr would be measurably different from the w, = 0 case.
You can approximate Hy ~ 10710 yr=1.



Solution

(a) A fluid with constant equation-of-state parameter w obeys the continuity equation

p+3H(L+w)p=0, H="2
a

Hence p p
L= 31+w) S = pla) = pa 1), (6)
p a
Since the redshift z is related to the scale factor by
1 1
1 == = 7
e a’ “Tiiy (™)
this may be written
p(z) = po (1 +2)°0+). (8)

Defining the critical density p.o = 3HZ/(87G) and Q; = pio/peo, the Friedmann
equation H? = (87G/3)>", p; gives

H(2) . ]2
T = S L L HG) = o[ a1+ 2]
(b) Now consider cold matter (w,, = 0) plus dark energy (DE) with
z
w(z) = wo + W, 52
The DE density evolves according to
dppg da dz
=31+ — =431+ :
po [ w(z)] - [ w(z)} T2
hence . )
l4+w(z
poE(2) = PDE0 eXp[?)/O T dzl]- (10)

We split the integrand:

21 ! Zl z a !
/ L(Z)dz':/ W dz’+/ WaZ gy (11)
o 1+7 0o 147 o (1+2)2

The first term is

(14 wp)In(1+ 2),

and for the second we set u =1+ 2’

z Z/ 1+zu_1 14z >
g = du=[lnu+1]" = (1 +2) - ——.
/0 1+ 22 o /uzl 2 [nu+ ], n(l+ z) 112

Thus - .
/l(z)dz’:(1—|—w0)1n(1+z)+wa[ln(1+z)— -
z
= (1 In(1 — .
(1 4+ wo + w,) In(1 + 2) wa1+z



Substituting back,

(1+w0+wa)

ppE(2) = poEo (1 + 2)3 GXP[—?)UJa

1+z]

The Friedmann equation then reads

H?(2)
Hg

= Qno(1 4 2)° + Qppo(1 + 2)30Fwotwa) exp[—?)wa li—z} :
or, defining
X (g0, 2 wo, W) = Qpp,o(1 4 2)*Fwotwe) exp[—3wa 1_-7-2’:|7

1/2
H(Z) = H(] [Qm70(1 -+ 2)3 + X(QDE,O; Z;Wo, wa)}

A source which emitted at time ¢, and is observed at ¢y has
a(t())
14 21 = .
a(ts)

After a small interval Aty on Earth and At, at the source,

Cl(t(] + Ato) a(to + Ato) a(to)
1 = Az=29— 2z = — .
TR AL TR T AT WLy AL al)
Photons satisfy
/tﬁ“s dt /t“AtO dt At, At
t at)  Ji, a(t) a(ts) — alto)

Since 1+ 21 = a(ty)/a(ts), this gives

Cl(ts) . Ato
B 1 -+ 21 .

Expanding a(t + At) =~ a(t)[1 + H(t) At] to first order,

a(to + Ato) =~ a(to) (1 + HoAty), alts + Aty) = a(ts) (1 + H(z1)Aty),

SO

a(to + Atg) _ a(to)
alt, + Aty alty)

Subtracting 1 + z; yields
Az = HO Ato (1 + 21) - H(Zl) Ato = Hg Ato [(1 + Zl) — E(Zl)],

where H(z) = Ho E(21).

[1 4 Hy Aty — H(z) Ats} — (1+2) [1 4 Hy Aty — 16

(13)

(14)

(15)

(16)

(4)

Ato} .

(5)



(d) In the CPL model with wy = —1 and |w,| < 1,

3 Qpro
2 EA(Z)

E(2) ~ Ex(2) + In(1 + 2) — L} Wa,  Ea(2) = /Quoll + 2)° + Q.

1+z

The w,—induced change in the drift is

3 pro
2 EA(Zl)

Az(w,) — Az(0) & — Hy Al [111(1 +2) — & ] Wq.

1+2z1
Atz =1, Qo = 0.3, Qpgo = 0.7, Eo(1) = 1.76, In2— 1 ~ 0.193, Hy ~ 1070 yr",
Ato = 10yr,

_ 3QpEo
HyAtg ~ 107 ~ % 0.193 ~ 0.115
0R7g ) 2EA(1) X )

SO
|Az(we) — Az(0)] = 1.15 x 10719 |w,,

and requiring > 107! precision gives

1011
> 01
[wal 2 7751010



Problem 2

(a)

Use the first law of thermodynamics T'dS = dU + P dV to show that the entropy
in a expanding patch of volume V' is conserved for a fluid with density and pressure
p, P satistying the continuity equation

av

dp+(p+P)7:0 (18)
(you may assume that the chemical potential vanishes).
Show that the entropy density is given by

p+P
=—. 19
s="7 (19)

Hint: consider variations of thermodynamic quantities that can be set to zero
independently.

Consider a hot big bang universe at temperatures 7' > 100 GeV consisting of the Standard
Model (SM) and, in addition, a relativistic “dark” scalar particle ¢. For T" > T, the SM
particles and ¢ are in kinetic equilibrium, but for 7" < Ty the particle ¢ is decoupled from
the SM. ¢ self-interacts through the processes ¢¢ <+ ¢ and pp <> Pppo.

(b)

What is the chemical potential of ¢? Find the ratio of the entropy densities before
decoupling,
§r) = = (20)
S¢
in terms of the thermal degrees of freedom ¢°™ and ¢?. Estimate the magnitude of
&(T) and briefly describe its evolution after decoupling.

Some time after decoupling from the Standard Model, ¢ will become non-relativistic,
but it will be kept in a thermal state for some time due to its self-interactions.
Defining « = m, /Ty, show that when z > 1 we get

po == mgng(T) (21)

where ny is the number density of ¢. Hence, derive following expression for the

entropy density
m3
S¢ ~ ¢
(27T)3/2
Show that long after decoupling from the Standard Model (but still assuming that
¢ is in a thermal state), the ratio of temperatures between the photons and the ¢

particles is
T ¢ 1/3
T~ (—) 2%/ e72/3, (23)

gV e (22)

S
T, 9ert
where k£ is a numerical factor to be determined, and gf%f is the temperature-

3
dependent effective number of degrees of freedom, defined as gg}v}(Tv) =) .0 ( %) ,
where the index ¢ runs over all the Standard Model particles.

Hint: .
/ eV dy = VT
0 4

bt



(d)

As long as the ¢ particles interact with each other, does their temperature decrease
faster or slower than the photon temperature as the universe expands?

After all the self-interactions between ¢ particles freeze out, argue why ¢ still obeys
a Bose-Einstein distribution for non-relativistic particles, and find how its effective
temperature T(Zf 7 scales with the scale factor a(t). How does T(;f 7 scale with the
T,?

Solution

(a)

Consider a comoving volume V' o a?(t) containing a fluid with energy density p,
pressure P, and temperature 7', and assume the chemical potential vanishes, ;= 0.
The first law of thermodynamics reads

dU + PdV = TdS, (24)

with
U=pV, S=sV. (25)

Energy—momentum conservation in an FRW universe gives the continuity equation

av

dp+(p+P)7:0. (26)
From (24) and U = pV we get
d(pV)+ PdV =TdS = Vdp+ (p+ P)dV =TdS. (27)
Substituting (26) into this expression,
TdS=0 = dS=0 = S = const. (28)

Thus the total entropy in a comoving volume is conserved.

Next, write S = sV, so

dS =Vds+sdV. (29)
Then
Vdp+ (p+ P)dV =T (Vds+ sdV). (30)
Rearrange to
V(dp—Tds)+ (p+P—Ts)dV =0. (31)

This must stay true when we do not vary the volume of the system, i.e. dV = 0,
yielding
dp =T ds. (32)

Now, if we plug this into (31) and consider a system whose size varies, we get

P
s = %. (33)

A relativistic scalar ¢ self-interacts via ¢¢ <> ¢¢ and ¢ < @p@p, so there is no
conserved ¢—number. Chemical equilibrium therefore imposes

po = 0. (34)



For T > Ty, the SM and ¢ sectors share the same temperature 7. A relativistic
species i has entropy density

S; = —— g*sT ) (35)
where ¢i, counts entropy degrees of freedom. Thus

272 3 272

_ SM _ ¢ 3
= T =—2g2 T".
Just before decoupling (T' 2 Ty),
SM
Ss Gis
{=—==". (37)
S¢ Gxs
After decoupling (7" < T}), each sector conserves its own comoving entropy,
ssma’ = const, sga’® = const, (38)
so the ratio £ remains fixed at
SM T
f(T < Td) = Frs 55 d> (39)
Jxs
(c) We begin with the entropy density of the ¢—sector,
+ P,
so = Pt~ L2 (T <my), (40)
Ty Ty

since for a non-relativistic gas P, < ps. The energy density is

00 2 +m?
g 24 ¢
Py = 2—¢2 dp p’ : (41)
™ Jo exp(, /p? —i—mi/Td,)—l

Define the dimensionless variable

m¢
= — 1. 42
x T, > (42)

In this limit we expand ,/p* +m7 = my + p*/(2my) and pull out the Boltzmann

factor e=™e¢/To = 7.

00 2
9e 2 ( P > _
~ 22 d —r — = 43
o5 3 m¢/0 pp° exp(—x 2maT, Mg N, (43)
_ Yo OO 2 < ? > <m¢T )3/2 —z
= d - = ¢ . 44
"= on? 0 PP exp\ ™ 2myTy Jo\ Tom ¢ (44)
Therefore 5
m
_ Po _ MeNy _ ¢ V2 o (45)

YUT, T L, @
The SM (photon) sector has entropy density

2
217 su

) T, (46)

SSM = ’y

7



After decoupling at T = T}, each sector conserves its comoving entropy:

SSM g (Ty)

Se a’ = const, Sgm a® = const = &= = const.
S¢ 9o
Equate (46) to £ s, using (45):
21 snia my ~1/2 —a
Egeff 5 _f (271')3/2 Zz e (47)
3
3 _ Mg 45 “1/2 -z
150 =¢ 7%, (48)

(2m)3/2 272 g5

Finally, since Ty = my/x,

T, my 45, )P e \'? s/6 —a/3
T, [5 (2m)7 272 g5 r/%e — =k (W) x?Pe 7, (49)

15 1/3

As long as the ¢ particles continue to scatter among themselves, they remain
in true thermal equilibrium at a genuine thermodynamic temperature 7j. After
self-interactions freeze out, their distribution “freezes in” as a Bose—Einstein form
characterized by an effective temperature T;;‘H.

During the interacting phase, when T, is still well-defined, (49) holds, and given
that 7', is exponentially related to Ty, T, changes very slowly as T, varies.

Once ¢—¢ interactions cease, the physical 3-momentum redshifts as p o< a~! as
the universe expands. For non-relativistic ¢ particles with energy £ = p?/2m
a2, we define T¢// such that the ratio if variables appearing in the Bose-Einstein

distribution, %, stays constant and therefore

Td‘fﬁ o a2, T(gﬂ x T72. (51)



Problem 3

In this exercise we would like to study the evolution during early matter domination
of modes of density fluctuations of the cold dark matter component which entered the
horizon before matter-radiation equality 7.,. Recall the linearized Einstein equations

12

a a 9
—AD 43—+ 3 = —4nGa® - EA: pa, (52)
al
o+ E(I) = —AnGa® - ;[(p + p)vly, (53)
CI,/ Cl” a/2 9
" /
A

where A labels the components of the cosmic fluid and the dash indicates the derivative
with respect to the conformal time. The Newtonian potential in momentum space at
radiation domination was computed in class to be (u[% = /3)

sin(u’*kn) }

., (n) = —3B -
~(n) 3Dy W

cos(urkn) — (55)

1
(ugedhn)?
while the sub-horizon adiabatic mode of cold dark matter fluctuations during radiation
domination were computed in the homework to be:

dcpm (1) = —9%(; [log (%) + e — %] : (56)

with 7 the conformal time and g the Euler-Mascheroni constant.

(a) Using the first Einstein equation (52), compute ®¢pyy, the correction to the Newto-
nian potential ®, generated by dark matter perturbations, deep inside the horizon
during radiation domination. Show that this contribution is dominant at time of
radiation-matter equality.

Hint 1: Argue why all terms with conformal time derivatives can be neglected.

The linearized covariant conservation of the energy-momentum tensor can be written in
the form
CL/
dph + 3E (6px + 0px) + (pr + pr) (VPur — 39") =0, (57)
/

a
[(px + D) va] + 4E (pa +Dpr) oA +pr + (pr +pr) © =0, (58)

Perturbation of the radiation medium induced by ®cpjy; during matter domination are
small, and therefore can be neglected for the rest of the computations.

(b) Starting from equations (57) and (58), derive the evolution equations for the CDM

density contrast dcpys in a matter dominated background at leading order in ﬁ

Hint 2: recall the relation for background densities p\, = —3%(0A + pa)-

Remark: The treatment of dark matter perturbations during matter domination
seen in class, which only required to solve (54), does not apply here, since for n ~ 7,
the universe is still a multi-component fluid.



The equation derived at the previous point is a homogeneous second order ordinary dif-
ferential equation in dcpys. In order to solve this equation, it is convenient to introduce
the variable z(n) := o). with this variable, the evolution equation for dcpys becomes:

Qeq ’

d? 3 d 3
x(x + 1)@501)1\4 + (14 3% a(;CDM - §5CDM =0, (59)

where we neglected baryon contribution to the energy density, while keeping the radiation
component contribution for the evolution of the Hubble parameter.

(c) Give a physical reason for why we can expect one solution of (59) to be linear in z.

For a homogeneous second order differential equation, once you know a solution
yM(2) you may find the second one with the ansatz y®(z) = ¢(z) - yM (), and
solving a first order differential equation for ¢'(z).

Find then the most general solution to the differential equation (59).

Hint 3: You may find useful the solution to the following integral

/r dat zln(m_1>+6m
2

A S~ A (60)
o t/1+1(1+ 3t VIitr+1 2+ 3z

(d) Determine the physical solution for dcpas(n) by imposing the correct initial condi-
tions at x < 1. Comment on the late time expansion of this solution.

10



Solution

(a) The 0—th component of the linearized Einstein equations reads

12

a a 9
—A® +3—0+3—0 = —4rGa’ - ; Spa, (61)

where dash is again the derivative with respect to conformal time; once we take the
Fourier transform on the spatial slices:

/ 2
K2 + 3%@' + 3‘;—2@ = —4xGa®- Y dpy. (62)
A

For the CDM component,

a/ /2
k2(I)CDM+3E(I)/ M+3 Popy = —4rGa*-Spepy = —47Ga* - pepudepur. (63)

Deep inside the horizon k‘n > 1, so we can neglect all conformal time derivatives

and

a*(n)
12
A similar equation holds for the Newtonian potential ®.,, reported in (55). Since

pPcpM X a%,, while p,, o a%l, and neglecting logarithmic terms coming from d¢cpay,
within radiation domination we have

Popy = — 47TG,OCDM5CDM(77)- (64)

(I%oci2
“ = CPopu K P = 1 <1 (65)
(I)CDMOCg

Comment: perturbation of the radiation medium can be neglected during matter
dominations'
During matter domination, where ®<p,, is the dominant contribution to the Newtonian po-
tential, the zeroth component of linearized Einstein equations gives (always for modes well
inside the horizon)
k2 k>
Otot ~ W(I)CDM ~ mq)CDM > Pepu, (66)

since modes inside the sound horizon are well inside the cosmological horizon. Fourier transform
of equation (58) reads:

!/

[(1+ wy)va] + %(1 — 3wa) (1 +wy)ox 4+ ul \0r = —(1 + wy)®, (67)

where we used the definitions of the sound speed uSA = g’% and of the parameter of

the equation of state w) = p* , together with the identity for background densities p)\ =

—B%p,\ (1 +wy). For modes weII inside the horizon (so to neglect time-derivative at first

approximation) of the relativistic component w., = % we obtain, during matter domination
k‘2

0y ~ Popu K I iE — 75 Pcpm ~ Ot (68)

so we can safely neglect the effect of perturbations of the relativistic medium for further
computations.

!These comments in the solution are meant to justify assumptions and results given in the problem
text, but students were not required to comment during the exam and can be omitted at a first reading.

11



(b) In order to derive the evolution equation for dcpp during matter domination, we
need to Fourier transform equations (57) and (58), and write it in momentum space:

a/
Sph + 3— (6px + 0px) — (px + pa) (K*vp + 30) = 0. (69)

[(1+ wy)oa] + %(1 —3wn) (1 + wy)oy + 12,0y = —(1+wy)®, (70)

Now we want to manipulate equations (69) and (70) so to have a differential equation
for 9, in terms of known quantities. Let’s start by noticing

spa\ 9ph ;

Jy = (ﬁ) = 0 Poag — 5pl = pad + phon
Px Px Px

Using the hint we have

/ /

a a a
P\ = =3P (I+wy) = phor= —355,% (1+wy) = =3 (0px +pa)

so equation (69) becomes

8 — (1 +wy) (ko) + 39") =0, (71)
which, for the specific case of Cold Dark Matter (wepayr = 0), becomes
Stipy — K2 vepar = 39, (72)
and its time derivative is
5tpar — K vepa = 39" < K2 ®opar, (73)

Equation (70) instead, for CDM perturbations, becomes (u3 cpy = wepy = 0)

!/

Vepym + , vepm = —Pcpum. (74)

After n 2 n., we observe that ®cpa(n) evolves very slowly, since pepar ~ a% and
dcpur is expected to grow as ~ a from the study of matter perturbations in a matter
dominated background. Therefore, we neglect time derivatives of ® and substituting
(72) and (73) into (74) we get

!/
1 a

com + g(chM = —k*®cpy = 4G pepna®(n)depar (75)

Comment: Rewriting the evolution equation for icp,, in terms of the variable
() = 42
=
First of all, neglecting baryon contribution to non-relativistic energy density, Einstein's equa-
tions at radiation-matter equality give

?GNPCDM (Meq) = gGNPv (Teq) = §H2 (Teq) = Qqu (76)
Moreover, pcpas o =5 while p, o< =, so
a, 3 1
47TGNPCDM(77) - 47TGNPCDM(776q) : ? = Z_lHeq . E ( )
77
as, 3 1
AnGrpy (1) = 4G NPy (Neq) - a_‘f = ZHeq A

12



Therefore, Einstein's equation in terms of the new variable = read (remember that with con-

formal time, H = %)

a’ 1 1 1 H, Vrx+1
—=-H*3 (-+—=) = H . 78
a2 277 eq (.CE + 332) ( ) \/§ .CE2 ( )

We can also transform the derivatives of conformal time to derivatives of x with the help of
chain-rule:

da o a’ d d
d = — = —d — e d — H’ 2 .
T o " a N=—’adn = a S (79)

so the first derivative term of equation (75) becomes

a a’ d d
EfSICDM = EHxQGeqd_écDM = H2 SCbqu—&CDM (80)
For the second derivative:
d? d? d
— = — | Hz?a,,—
af A < v "dx)
= a2 Ha?— | Hz? i —
dz dx (81)
d? d ,dH d
—a? He? |Ha*— + 2Hr—
feq [ xdxz—'— dx+ dxdx}
d? 1 3x+4| d
— H2 4 = H2 3 o_ .= 7 =
— Qe T g T { 2 x+4+1 } dz
where we used
dH Heq d /[Ve+1
dz 2 dz x?
B _Heq ' 3r+4 (82)
V2 2a3Vx +1
B _1 3x+4
27 2(1+a)

Putting it all together, the differential equation in (75) becomes

d? 3 4 d 3
aqu2$4_5CDM + aqugx:” lZ — 2$—+) + 1} aéCDM “H?a? 5CDM =0

da? (x+1 g eae”
d? 3 d 3
( + 1)F5CDM + (1 + 533) @(SCDM — E(SCDM =0 (83)

as was given in the main text.

(c) From the study of Jeans’s instability that we have seen in class, you know that
matter perturbations during matter dominations will grow linearly at some point.
Therefore, a solution to the differential equation (59) should be (at least asymptot-
ically) of the form

yD(x) = Az + By; (84)

plugging it into (59) we easily get

Al - gBl (85)

13



so the first homogeneous solution is:

3

yD(z) = C, (1 + 5:{:) : (86)

Making use of the suggestion given in point (c) (the ¢ in the hint is more generally
known as the Wronskian), we can write the second homogeneous solution as

yP(2) = q(z) -y (@), (87)
and plugging it in equation (59) we find a first order differential equation for ¢'(x):

AW) < o) (@) + Bl) = [ale) -y O @) + Ofa) - a(e) -0 (x) =

¢"(2) A2y (2) + ¢ (2) [24(2)y (2) + B(x)y (2)] =
/ /(1)
dg _ [V B@),
q y(x) )
Substituting the values A(z) = z(1 + z) and B(z) = 1 + 3x relevant for our case,
we can solve for ¢'(z)

3 1 3 1
lnq’:—/dx3 + +3 =

2

2 1
=— |:21I1 (:v—i—g) +lnx—|—§ln(a:—|—1)]

so, using Hint 3:

* 1
q(x):C’Q/ dt 5 =
o T4 (3t+1)
Vi+az—1 Vi+z
=Cy|In| ——=———| +6 :
Vi +1 2+ 3x

The full solution to equation (59) is then

seom(e) = (1452 ) |1+ ca (im (%) " ag)] (o1)

In order to fix the constants C; and (5, we need to match it with the solution for
dcpm(n) in the radiation-dominated regime; expanding (91) for = < 1, we find:

depm(z) =C1+ Cy[lnx —2In2+ 3] = Cy + Cy [lni —21n2—|—3} , (92)

776q

where we also used that a(n) « n during radiation domination. The behavior of
depar(n) is given in the text (56):

dcpm () = —9%(;) [bg (%) + 8 — %1 , (93)

14



SO

and, at this level of approximation

7 4
= —0d, |1 — —+In—|.
o 9 <l>{n(/~fneq)+w 5 +in \/g} (95)

At late times instead, the second homogeneous solution is suppressed, and

3 27 a(n) 7 4
=Cy - —x = —— D |1 ——+In—
5C'DM(77 > 77611) Ch 2$ 2 a(neq) (1) [n(kneq) +7E 5 +In \/§:|
27 al) (56)
~—— Dy In(0.15kn,
2 ) O OO

We can see that the mechanism of generation of dark matter perturbation is quite
efficient: compared to modes which enter the horizon at matter domination, those
which enter at radiation domination get not only a logarithmic enhancement, but
also an extra factor 2, which would have not been obtained by simple matching of

2
(56) at 1 = 1eq-
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