RELATIVITY AND COSMOLOGY 1

Solutions to Problem Set 9 Fall 2023

1. Escaping the Photon Sphere

(a) Because of the fact that the Schwarzschild metric is symmetric under § — 7 —6, we
deduce that orbits with 6 = 7, will always keep 6 constant. That makes intuitive
sense: similarly to the geodesics on the sphere, the only geodesics on Schwarlzschild
with constant ¢ are the ones that have § = 7. That means that specifying ourselves
to 6 = 7 simplifies the calculations, and by rotational symmetry there is no loss of

generality. Null geodesics with § = 7 satisfy
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The Killing vectors of interest to us are the vector field that generates time trans-
lations, K; = 0,, and the one that generates rotations in ¢, K, = 9, . For any
Killing vector K* there is a conserved quantity given by g, K “% . We thus have
the conserved energy
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and the conserved angular momentum
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Now, as we did in Problem Set 6, let us act with ds? on two copies of the vector
V= %@. We obtain
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This equation can also be derived by the action formulation, noting that the La-

grangian £ = g, @"&" is invariant under X translations. This gives us the conserva-
tion of the "Hamiltonian’ 8376@“ — L = g, V%", Since it’s a photon, this is equal to

0, which gives equation (4).

Solving for £ we find



By plotting the effective potential V' (r) we see that it has a maximum at r = 3M ,
defining a barrier for the photon to surpass in order to be free from the pull of the
black hole. The height of the maximum is
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The condition on the energy of the photon is thus
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First we need to define what an "angle” is. In this context we mean the spatial angle,

that therefore needs to be computed with the spatial part of the metric (which is
possible in Schwartzschild geometry since there are no dtdz® components in the
metric : we say that this metric foliates spacetime into spacelike slices). Recall the
usual definition for the angle o between two vectors V and W

V- W = |V]||W]|cosa.
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In geometry the scalar product and norms must be computed with the metric, hence

VW =g V'V,
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V] =1/g,Vivi.

In our problem the angular direction generated by d, is perpendicular to the radial
direction. We can thus compute the angle that the direction of propagation of a
photon makes with the radial direction from the definition of sin « in terms of a
ratio of one of the sides of the right triangle with respect to its hypothenuse (we
can also of course compute cosa by taking the dot product of V' and 0, and check

that cos? a + sin a = 1).
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. The condition we found on the energy
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as we wanted to prove. The fact that for » < 2M the right hand side is a negative
number also shows that photons below the event horizon cannot escape.

2. Orbiting Gargantua



(a)

The argument goes exactly like in Problem Set 8. Because the observers are static,
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so that equating the At in both cases gives the relation between the time intervals
that we were looking for.

As argued in the previous problem, we have that
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where for timelike geodesics we choose to normalize energy with respect to proper
time. We are considering radial geodesics, such that ¢ and 6 are fixed, but both ¢
and r change
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By acting with this tensor on two copies of the vector d,, we get
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Reshuffling terms, we get
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where we took the negative root because Cooper is moving towards decreasing values
of r. The absolute value of the finite proper time interval A7g is then
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We want to check that this is finite as rc — 2M . It suffices to expand the integrand

around that value. Specifically, the small dimensionless quantity is 1 — % We
obtain v Are . . 511
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where we are indicating by Args the absolute value of the difference between the
position of Cooper at the two different proper times.

This quantity is perfectly well behaved at the event horizon. Cooper does not
observe anything special when he crosses ro = 2M .



(c) Using the definition of energy, the coordinate time interval between the emission of
two light signals by Cooper can be expressed as
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Expanding near the horizon, we get
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which is clearly divergent as rc — 2M . The coordinate time interval associated
with Amelia’s reception of the photons is simply given by

AtA = Atc + AT‘C . (22)
Amelia is at rest in this coordinate frame, so
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which diverges as Cooper crosses the horizon.

3. Light Deflection in Scalar Gravity

(a) Let us start from the time component of the equations of motion
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where we've used that 9,®(z) = 0. Using that 9 = ~(v) we can write (24) as
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The spatial components of the equations of motion read, in terms of physical veloc-
ity,
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Using (25) we get '
= —(1 —v})0;®(x). (27)

From this differential equation it is clear that if a particle starts by moving at the
speed of light, v = 1, it stays at that speed at all times, independently of the
presence of the gravitational field, and the direction of its motion is not affected.

Varying the action with respect to the Lagrange multiplier E()), we get
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Imposing the vanishing of this variation for any dE we get
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The action with E(\) put on-shell is then
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We then vary the action with respect to x.
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Let us focus on the second term in the brackets.Integrating it by parts, the derivative
with respect to A is going to hit the exponential, the square root and z#. We get
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The second term in the brackets is null because a particle’s four-acceleration is
always orthogonal to its four-velocity (prove it). The equations of motion read
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where we’ve used that A is affinely related to 7. By using the fact that we are

considering timelike geodesics (U“U, = —1) and reshuffling, we can write it as
required
au#
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Alternatively, you can also compute the equation of motions for x* before replacing
E(X), and replacing its expression directly there. It should give the same result.



