Relativity and Cosmology I

Exam Solutions - January 2024

1. Time delays

(a) The wordlines of the two clocks can be parametrized as

[L’lf(t) = (tﬂ R17917¢1)7
x5 (t) = (t, R, 02, ¢2),

where {R;,0;, »;} are constants. The proper time element is
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The proper time along each worldline as a function of time is
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The amounts of ticks a clock can make in a certain interval of coordinate time At
is proportional to the associated proper time interval. Since R; < Rs, we see that
Ty > 71, so the clock on the tower ticks more in the same amount of coordinate time
relative to the clock on the ground. The clock on the tower thus ticks faster.

(3)

Extra comments:

Notice that we neglected the velocity due to the rotation of the Earth. Taking this
into account, we would find

7(t) = t\/l — QC;M — R202%sin%0 . (4)
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where ) = ‘2—1’ is the angular velocity of the Earth and 6 is a constant depending on

the position of the clocks on the Earth. For the Earth, we have
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~ 10712, (5)

The careful student may also worry that the rotation of the Earth should produce
a non-spherically symmetric metric (similar to the Kerr metric). These effects are
also small. We can estimate them noticing that the Kerr metric differs from the
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Schwarzschild metric (in relative terms) by order a?/(rsr) where rg = 2GM and
a = J/M, with J the angular momentum. But r > R; outside the Earth and
J ~ M R3Q. Therefore, the rotation of the Earth leads to a correction of order

a®> R3QO?

—_—

rgr GM

relative to the non-rotating approximation.

1073, (6)

(b) We are in the Newtonian approximation. The worldline of the clock in orbit can be
parametrized as

zh(t) = (t, R3,m/2,01). (7)
The angular velocity can be related to the radial position R3 through the centripetal
acceleration M MO
PRy =G 2= 8
S A > R} (8)
Then, its proper time is
¢ 2GM 3GM
73(t) = / dt\/l — — R302 = t\/l — . (9)
0 Rs R3

(¢) The two clocks stay synchronized if their proper times match

T (t) = 73(t) . (10)
This is only possible if
3
(d) The time difference between a GPS satellite and a clock on Earth is given by
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Substituting ¢t = 1 day, Rz = 2 x 10"m + R; and the rest of the constants, we obtain
13(1day) — 7 (1day) =~ 36us (13)

2. Period change

(a) Asin problem 1, we start by relating the angular velocity to the radius of the orbit
through the centripetal acceleration, obtaining again

Q:\/g. (14)

Angular velocity and period are related through 7' = %’r , giving
1
GMT?\*
R=(——] . 15
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The total mechanical energy is given by the kinetic and the potential energies

1L, GMm _ 1GMm __ (7GM\
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(b) In the current approximation, the star is fixed and the planet orbits around it. The

energy density is thus

T(t, ) = md(x — RcosQt)d(y — Rsin Qt)d(z) + M(2)d(y)6(z).

The quadrupole moment is then
I;(t) = /y"ijOO(t,?J)d?’y,

with non-vanishing components

L., = mR?cos* Ot I, = mR?sin® Ot , I, = mR? cos Qt sin Qt = Iy, .

(17)

(18)

(19)

To compute the average power emitted we first compute the traceless part of the

quadrupole
1
Jij = Iij — géij(skljkl ;
with non-vanishing components
2 2 1 2 (i 1
Joe = MR <COS Qt_g) , Jyy = mR” | sin Qt—g ,
1
Joy = mR?sin Ot cos Ot = Jya, J., = —ngQ.

The power emitted is given by

G <d3Jij d3Jij>

p=-—=
5\ dt? di?

The non zero third time derivatives of J are

S g = AR sin(201), T, = —40PmR?sin(204) |

J oy = —4D3mR% cos(20) = J . .
The average power is thus

32

P = —?32967712}%4 (sinZ(QQt) + COSQ<ZQt)) = —gGﬂﬁm2R4.

In terms of the period, we obtain

p_ 26 2<27r10G7M4>5

50\ T
Let us start from the relation between energy and period
3
E fr— _m 7“—GiM .
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We differentiate both sides with respect to time

_m 23 1 dT
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we substitute (25) into (27), and obtain

384 1/3

T53dT = —=m (40?75G7) " dt (28)
Integrating, we obtain
1024 3/8
T(t) = (T(0)8/3 _ 5m(4M27r8G5)1/3t> | (29)

(e) The orbit of the Earth around the sun today lasts one year, T'(0) = 1 yr. The
change in this period is given by

2_g5\ 1/3 \ /8
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5 T(0)8
(30)
384 [(4M2rSGo\ Y 3t
~—m| —
5 T(0)°
Imposing the left hand side to be 1 second, we obtain
5 T(0)5615 1/3 5

t= @ (ZM’W (18) ~ 9.1 x 10 years, (31)

the phenomenon can thus be largely neglected.

(f) In fact, the planet and the star both orbit around the center of mass (that can be
put at the origin without loss of generality) with respective radii

M m

R = T, r= T,
M +m M +m

(32)

where 7 = R + r is the distance between the star and the planet. Thanks to the
symmetry of the problem, to estimate the power emitted by the star it suffices to
switch R — r = R and m — M in (23) and add it to the traceless part of the
quadrupole J of the planet. Then, we obtain the total power

32 m
Ptot = —EGQGmQRA‘ (1 -+ O (M)) . (33)

Notice that the correction is negligible for the system Earth-Sun.

3. Black hole shadow

(a) First of all, recall that (affinely parametrized) geodesics can be found as the equa-
tions of motion of the Lagrangian

L(z", ") = g (x)i"s”, (34)
where i# = dz# /d\, with A an affine parameter along the null geodesic.
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Figure 1: Scheme of a photon scattering on a black hole, with b the impact parameter, r
the distance of closest approach, A¢ the deflection angle and « is the angle between the
(spatial) position vector 7 and the (spatial) momentum p’ of the photon.

We are interested in motion in the plane § = 7/2 of the Schwartzschild geometry
for which we get

. 1 .
LGt i) = = (1= 22) 4 o (35)
; —

Since the variables ¢t and ¢ are cyclic (they do not appear in the Lagrangian) we get
two obvious conserved quantities

oL .
— = const = (1 — 7’5> t = E = const,
ot r

L .
— = const — T2¢ = L = const.
o

(36)

A physical interpretation of those conserved quantities comes from looking in the
asymptotic region r — co where the geometry becomes Minkowski spacetime and
E =1 = p°is the energy of the particle while L = r?¢ = p, is its angular momentum.

A further constraint on null geodesics is that they have zero length, hence

0=guitesy = — - =+ =0, (37)

where we used the conserved charges to replace ¢ and ¢. Now we can use the chain

e dr_drdo _drL o5
d\ ded\  dor?
Plugging this result in (37) we get
(;)_f+ (1_ S) —0, (39)
which identifies 2
V(r) = r? (1 - %S - r2L2> . (40)



(b) As explained before, in the asymptotic region the conserved quantities £ and L
are respectively the energy and angular momentum of the photon. The angular
momentum can also be computed as

L =7Ap=rpsinaé.. (41)

The spatial momentum of the photon p is simply related to its energy by p = E,
and usual trigonometric relations, see fig. 1, yield b = r sin o, where b is the impact
parameter. Therefore we get

L (42)

L=bEb=—
b@bE

The equation of motion can then be written

ar\’ 2 's T
<d¢> + V(T) =0, V(T) =T (1 - — — b2> . (43)

Another way to find that the impact parameter is b = L/FE is by considering the
infinite radius limit in (39). As r — oo, we can neglect the term rg/r in (39). Then,
we can check that the straight line trajectory

b=rsing, (44)
is an exact solution of (39) with r¢ =0if b= L/E.

(c¢) The equation of motion (43) is a one dimensional particle of zero energy moving in
the potential V' (r), shown on fig. 2. If there is a region with V' > 0 between r = oo
and r = rg, the potential barrier is too high and the particle does not have enough
energy to go through. Therefore let us compute the maxima of the potential. We
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Figure 2: Potential energy of the photon for different impact parameters b.

have
, 493
Vv (7”) = —rg+ 2r — bT (45)
Therefore the position of the maxima r, satisfies
4r3 3
—w+wf-£:o@%21@ng (46)



The critical impact parameter b, will be the one for which V(r,) = 0. Therefore we
look for solutions of

re T« TS e 3
—rg— 2 =0=r,—r¢g— [——2) == - Zpq. A7
TS T Tl (2 4) 2 1" (47)
Therefore r,(b) satisfies
3
re(be) = 37s: (48)
Plugging this constraint in (46) we get
273 33
27"5 - 2b2 =0 = bc TTS (49)

Finally we want to express the function ¢(r) and compute the impact parameter
such that
Ad = 3. (50)

From (43) we have
dr 1

dp = —— , (51)
r \/r2/b2 +rg/r—1
where we chose the minus sign since r decreases when ¢ increases. The total angle
A¢ is twice the angle between r = oo and r = rq where rq is the point of closest
approach, that solves dr/d¢ = 0 which together with (43) gives V(r9) = 0. We
therefore get the relation

To

-2 2= = b= (52)
ro b? V1 —rs/ro
Therefore we want to solve
3 3 oo d 1
SAg =T = / @ . (53)
2 2 ro T \/r2/b2+rg/r—1

There is no analytical solution but we can give it to a computer. However computers
take numbers as inputs, and not physical parameters like rg or b. Therefore we start
by writing the integral in dimensionless quantities by defining p = ror, yielding

31 _ / (54)
Lp 4rsl
e
Using (52) for the first term in the square root we get
3 1
7: EF(TS/T()). (55)

1 p\/p 1+Ts 7_102)

The function F(z) can be plotted by a computer. We then just have to find for
which value it intersects 37 5~ which will give the point of closest approach rq for which
the photon does exactly one rotation around the black hole before escaping. Then
the relation (52) relates this ry to the impact parameter b;. We get

7”5/7”0 =0.644... = b = (2602) X Tg. (56)



— Fx)

Figure 3: Intersection of the solution of the equations of motion ¢(ry) with 2.



