
Relativity and Cosmology I

Exam Solutions - January 2024

1. Time delays

(a) The wordlines of the two clocks can be parametrized as

xµ
1(t) = (t, R1, θ1, φ1) ,

xµ
2(t) = (t, R2, θ2, φ2) ,

(1)

where {Ri, θi, φi} are constants. The proper time element is

dτ 2 = (1 + 2Φ)dt2 − (1 − 2Φ)dr2 − r2(dθ2 + sin2 θdφ2) , Φ = −GM

r
. (2)

The proper time along each worldline as a function of time is

τ1(t) =
∫ t

0
dt

√
gµν

dxµ

dt

dxν

dt
=
∫ t

0
dt

√
1 − 2GM

R1
= t

√
1 − 2GM

R1
,

τ2(t) = t

√
1 − 2GM

R2
.

(3)

The amounts of ticks a clock can make in a certain interval of coordinate time ∆t
is proportional to the associated proper time interval. Since R1 < R2, we see that
τ2 > τ1, so the clock on the tower ticks more in the same amount of coordinate time
relative to the clock on the ground. The clock on the tower thus ticks faster.
Extra comments:
Notice that we neglected the velocity due to the rotation of the Earth. Taking this
into account, we would find

τi(t) = t

√
1 − 2GM

Ri

− R2
i Ω2 sin2 θ . (4)

where Ω = dφ
dt

is the angular velocity of the Earth and θ is a constant depending on
the position of the clocks on the Earth. For the Earth, we have

10−9 ∼ GM

c2R1
� R2

1Ω2

c2 ∼ 10−12 . (5)

The careful student may also worry that the rotation of the Earth should produce
a non-spherically symmetric metric (similar to the Kerr metric). These effects are
also small. We can estimate them noticing that the Kerr metric differs from the
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Schwarzschild metric (in relative terms) by order a2/(rSr) where rS = 2GM and
a = J/M , with J the angular momentum. But r ≥ R1 outside the Earth and
J ∼ MR2

1Ω. Therefore, the rotation of the Earth leads to a correction of order
a2

rSr
∼ R3

1Ω2

GM
∼ 10−3 , (6)

relative to the non-rotating approximation.

(b) We are in the Newtonian approximation. The worldline of the clock in orbit can be
parametrized as

xµ
3(t) = (t, R3, π/2, Ωt) . (7)

The angular velocity can be related to the radial position R3 through the centripetal
acceleration

mΩ2R3 = G
mM

R2
3

→ Ω2 = MG

R3
3

. (8)

Then, its proper time is

τ3(t) =
∫ t

0
dt

√
1 − 2GM

R3
− R2

3Ω2 = t

√
1 − 3GM

R3
. (9)

(c) The two clocks stay synchronized if their proper times match

τ1(t) = τ3(t) . (10)

This is only possible if
R3 = 3

2R1 . (11)

(d) The time difference between a GPS satellite and a clock on Earth is given by

τ3(t) − τ1(t) = t

(√
1 − 3GM

c2R3
−
√

1 − 2GM

c2R1

)
≈ GMt

c2

( 1
R1

− 3
2R3

)
. (12)

Substituting t = 1 day, R3 = 2×107m+R1 and the rest of the constants, we obtain

τ3(1day) − τ1(1day) ≈ 36µs (13)

2. Period change

(a) As in problem 1, we start by relating the angular velocity to the radius of the orbit
through the centripetal acceleration, obtaining again

Ω =
√

MG

R3 . (14)

Angular velocity and period are related through T = 2π
Ω , giving

R =
(

GMT 2

4π2

) 1
3

. (15)

The total mechanical energy is given by the kinetic and the potential energies

E = 1
2mv2 − GMm

R
= −1

2
GMm

R
= −m

(
πGM√

2T

) 2
3

. (16)
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(b) In the current approximation, the star is fixed and the planet orbits around it. The
energy density is thus

T 00(t, ~y) = mδ(x − R cos Ωt)δ(y − R sin Ωt)δ(z) + Mδ(x)δ(y)δ(z) . (17)

The quadrupole moment is then

Iij(t) =
∫

yiyjT 00(t, ~y)d3y , (18)

with non-vanishing components

Ixx = mR2 cos2 Ωt , Iyy = mR2 sin2 Ωt , Ixy = mR2 cos Ωt sin Ωt = Iyx . (19)

(c) To compute the average power emitted we first compute the traceless part of the
quadrupole

Jij = Iij − 1
3δijδ

klIkl , (20)

with non-vanishing components

Jxx = mR2
(

cos2 Ωt − 1
3

)
, Jyy = mR2

(
sin2 Ωt − 1

3

)
,

Jxy = mR2 sin Ωt cos Ωt = Jyx, Jzz = −1
3mR2.

(21)

The power emitted is given by

P = −G

5

〈
d3Jij

dt3
d3J ij

dt3

〉
(22)

The non zero third time derivatives of J are
...
J xx = 4Ω3mR2 sin(2Ωt) ,

...
J yy = −4Ω3mR2 sin(2Ωt) ,...

J xy = −4Ω3mR2 cos(2Ωt) =
...
J yx .

(23)

The average power is thus

P = −G

5 32Ω6m2R4
(
sin2(2Ωt) + cos2(2Ωt)

)
= −32

5 GΩ6m2R4 . (24)

In terms of the period, we obtain

P = −256
5 m2

(
2π10G7M4

T 10

) 1
3

(25)

(d) Let us start from the relation between energy and period

E = −m

(
πGM√

2T

) 2
3

. (26)

We differentiate both sides with respect to time

P = m

3 (2πGM)2/3 1
T 5/3

dT

dt
(27)
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we substitute (25) into (27), and obtain

T 5/3dT = −384
5 m

(
4M2π8G5

)1/3
dt (28)

Integrating, we obtain

T (t) =
(

T (0)8/3 − 1024
5 m(4M2π8G5)1/3t

)3/8
. (29)

(e) The orbit of the Earth around the sun today lasts one year, T (0) = 1 yr. The
change in this period is given by

T (0) − T (t) =T (0)

1 −

1 − 1024
5 m

(
4M2π8G5

T (0)8

)1/3

t

3/8


≈384
5 m

(
4M2π8G5

T (0)5

)1/3

t

(30)

Imposing the left hand side to be 1 second, we obtain

t = 5
384

(
T (0)5c15

4π8m3M2G5

)1/3

(1s) ≈ 9.1 × 1015 years, (31)

the phenomenon can thus be largely neglected.

(f) In fact, the planet and the star both orbit around the center of mass (that can be
put at the origin without loss of generality) with respective radii

R = M

M + m
r̃, r = m

M + m
r̃, (32)

where r̃ = R + r is the distance between the star and the planet. Thanks to the
symmetry of the problem, to estimate the power emitted by the star it suffices to
switch R → r = m

M
R and m → M in (23) and add it to the traceless part of the

quadrupole J of the planet. Then, we obtain the total power

Ptot = −32
5 GΩ6m2R4

(
1 + O

(
m

M

))
. (33)

Notice that the correction is negligible for the system Earth-Sun.

3. Black hole shadow

(a) First of all, recall that (affinely parametrized) geodesics can be found as the equa-
tions of motion of the Lagrangian

L(xµ, ẋµ) = gµν(x)ẋµẋν , (34)

where ẋµ ≡ dxµ/dλ, with λ an affine parameter along the null geodesic.
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Figure 1: Scheme of a photon scattering on a black hole, with b the impact parameter, r0
the distance of closest approach, ∆φ the deflection angle and α is the angle between the
(spatial) position vector ~r and the (spatial) momentum ~p of the photon.

We are interested in motion in the plane θ = π/2 of the Schwartzschild geometry
for which we get

L(xµ, ẋµ) = −
(

1 − rS

r

)
ṫ2 + 1

1 − rS

r

ṙ2 + r2φ̇2. (35)

Since the variables t and φ are cyclic (they do not appear in the Lagrangian) we get
two obvious conserved quantities

∂L
∂ṫ

= const =⇒
(

1 − rS

r

)
ṫ ≡ E = const,

∂L
∂φ̇

= const =⇒ r2φ̇ ≡ L = const.
(36)

A physical interpretation of those conserved quantities comes from looking in the
asymptotic region r → ∞ where the geometry becomes Minkowski spacetime and
E = ṫ = p0 is the energy of the particle while L = r2φ̇ = pφ is its angular momentum.
A further constraint on null geodesics is that they have zero length, hence

0 = gµν ẋµẋν =⇒ − E2

1 − rS

r

+ ṙ2

1 − rS

r

+ L2

r2 = 0, (37)

where we used the conserved charges to replace ṫ and φ̇. Now we can use the chain
rule

dr

dλ
= dr

dφ

dφ

dλ
= dr

dφ

L

r2 . (38)

Plugging this result in (37) we get(
dr

dφ

)2

− r4 E2

L2 + r2
(

1 − rS

r

)
= 0, (39)

which identifies
V (r) = r2

(
1 − rS

r
− r2 E2

L2

)
. (40)
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(b) As explained before, in the asymptotic region the conserved quantities E and L
are respectively the energy and angular momentum of the photon. The angular
momentum can also be computed as

~L = ~r ∧ ~p = rp sin α~ez. (41)

The spatial momentum of the photon p is simply related to its energy by p = E,
and usual trigonometric relations, see fig. 1, yield b = r sin α, where b is the impact
parameter. Therefore we get

L = bE ⇔ b = L

E
. (42)

The equation of motion can then be written(
dr

dφ

)2

+ V (r) = 0, V (r) = r2
(

1 − rS

r
− r2

b2

)
. (43)

Another way to find that the impact parameter is b = L/E is by considering the
infinite radius limit in (39). As r → ∞, we can neglect the term rS/r in (39). Then,
we can check that the straight line trajectory

b = r sin φ , (44)

is an exact solution of (39) with rS = 0 if b = L/E.

(c) The equation of motion (43) is a one dimensional particle of zero energy moving in
the potential V (r), shown on fig. 2. If there is a region with V > 0 between r = ∞
and r = rS, the potential barrier is too high and the particle does not have enough
energy to go through. Therefore let us compute the maxima of the potential. We

Figure 2: Potential energy of the photon for different impact parameters b.

have
V ′(r) = −rS + 2r − 4r3

b2 . (45)

Therefore the position of the maxima r∗ satisfies

−rS + 2r∗ − 4r3
∗

b2 = 0 ⇔ r3
∗

b2 = 1
4(2r∗ − rS). (46)
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The critical impact parameter bc will be the one for which V (r∗) = 0. Therefore we
look for solutions of

r∗ − rS − r3
∗

b2 = 0 = r∗ − rS −
(

r∗

2 − rS

4

)
= r∗

2 − 3
4rS. (47)

Therefore r∗(b) satisfies
r∗(bc) = 3

2rS. (48)

Plugging this constraint in (46) we get

2rS − 27r3
S

2b2
c

= 0 =⇒ bc = 3
√

3
2 rS. (49)

(d) Finally we want to express the function φ(r) and compute the impact parameter
such that

∆Φ = 3π. (50)
From (43) we have

dφ = −dr

r

1√
r2/b2 + rS/r − 1

, (51)

where we chose the minus sign since r decreases when φ increases. The total angle
∆φ is twice the angle between r = ∞ and r = r0 where r0 is the point of closest
approach, that solves dr/dφ = 0 which together with (43) gives V (r0) = 0. We
therefore get the relation

1 − rS

r0
− r2

0
b2 = 0 =⇒ b = r0√

1 − rS/r0
. (52)

Therefore we want to solve
3
2∆φ = 3π

2 =
∫ ∞

r0

dr

r

1√
r2/b2 + rS/r − 1

. (53)

There is no analytical solution but we can give it to a computer. However computers
take numbers as inputs, and not physical parameters like rS or b. Therefore we start
by writing the integral in dimensionless quantities by defining ρ = r0r, yielding

3π

2 =
∫ ∞

1

dρ

ρ

1√
ρ2 r2

0
b2 + rS

r0
1
ρ

− 1
. (54)

Using (52) for the first term in the square root we get

3π

2 =
∫ ∞

1

dρ

ρ

1√
ρ2 − 1 + rS

r0

(
1
ρ

− ρ2
) ≡ F (rS/r0). (55)

The function F (x) can be plotted by a computer. We then just have to find for
which value it intersects 3π

2 which will give the point of closest approach r0 for which
the photon does exactly one rotation around the black hole before escaping. Then
the relation (52) relates this r0 to the impact parameter b1. We get

rS/r0 = 0.644... =⇒ b1 = (2.602...) × rS. (56)
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Figure 3: Intersection of the solution of the equations of motion φ(r0) with 3π
2 .
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