QUANTUM PHYSICS III

Solutions to Problem Set 6 15 October 2024

1. Symmetry restoration in the double-well potential

1. Let yo(x) be the low energy bound state wave function of the left well. Then, one
can build two eigenfunctions of the whole double-well potential as follows,

1 1
Y1(x) = —=o(x) +¥o(=2)) ,  ¥a(x) = —2(lﬁo(X) — Yo(=x)) . (1

2 V2

For the initial wave function of the particle in the left well we have

O(x,0) = Yo(x) = %(l/ﬁ(X) + (%)) . (2)

Time evolving this wave packet, one finds

L gy —ist E, - E,
D(x,1) = %e U (x) + e Nn(x), 0= -

where ¢ is the energy splitting between the states represented by ¢ (x) and ¥ (x).
The probability to detect the particle at the position x at the time ¢ is then given by

>0, 3)

1
P(x,1) = |00 = 50//1(?6)2 + Y2(x)* + 2411 () (x) cOs 67) . “4)

2. The probability for the particle to be found in the right well at the time ¢ can be
written as

P@) = f‘” P(x, 1) dx . (5)
0

We substitute eq. (4) into eq. (5), and note that integration of any term including the
function y(x) gives zero, since this function is localized in the left well, and that

f Yo(—xYdx =1, 6)
0
because of the normalization of the bound state wave function. Hence,
11 1 1 ot
PH==-|-+--2 = |=sin®> = . 7
(?) 2(2+2 Cos Ot 2) sin 7 )

It remains to compute exactly the energy splitting o,

7 1
5= _‘”exp(——f Ipldx) , (8)
b8 hJ_



where +x* are the turning points of the subbarrier transition, and w is the frequency
of the classical oscillations in the well. The expression (8) can be easily computed
in the limit £ < V. Indeed, near the left well bottom the potential is well approxi-
mated by a parabolic function,

V) = VoY’ +2x) ~4xVey?, y=x-x, ly/xl<1. )
From here, the oscillation frequency is extracted as

8)6% V()
m

V(y) = lma)y = W= (10)

Next, the integral in (8) is evaluated as follows,

x* X1 4
f |pldx ~ \/2mV0f \/(x — x)2(x + x1)2dx = \2mV, - gx? . (11)
—x

Thus,
8h2x2V0 4
0= mnlz exp (_3_h \/2mV0x?) . (12)
3. The average probability to detect the particle in the right well during the time 7 is
given by
1 (7
= P(t) dt . 13
- fo 0 (13)
Taking the limit 7 — oo, we obtain
sinoT 1
lim — 1 - =——-—1 =—. 14
gxgosz( cos 0t) dt = 5 25T1—I>Iolo T 3 (14)

So, indeed, we have the equal chance to find the particle in either well. In other
words, in the large time limit, the system forgets its initial state and exhibits a uni-
versal behaviour. In particlar, the parity symmetry of the potential, broken by the
initial distribution of the wave function, gets restored as the time passes by. Ba-
sically, this is the reason why in 1D quantum systems it is impossible to make a
spontaneous symmetry breaking.

2. WKB spectrum of the Hydrogen atom

1. It will be convenient to use electron’s momentum k related to its energy E as (we
work in natural units 2z = c = 1)

k2
E=—-—. 15
i (15)
Then, for the potential
1 (I +1/2)?
V(r)=- , 16
) aoMr T oM (16)

2



we have

fpdr_f\/k2 2 (z+1/2)2

(17)
_kf \/1—— ——1) :—(r1+r2—ZM)
where
1 1 (1+1/2)
T e \/(aok2)2 R "

are the turning points. Applying the Bohr-Sommerfeld quantization rule, we find

1 1 1
ﬂ(n,+§):7r(;.k—l—§), (19)

or, using eq. (15),
1 1
E, =— . 20
i 2Ma§ (n, + 1+ 1)2 (20)

This coincides with the exact answer.
. The ground state level is given by n, = [ = 0, and we have

1
2M a%

3y

E():—

In natural units, the Bohr radius equals ay = 2.68 - 10™*eV~!, while the electron
mass M = 5.11 - 10°¢V, hence

Ey=-13.6¢eV. (22)

. From eq. (20) we see that the energy of the level depends on the sum #n, + [, and it
can be the same for different values of the radial number #n,. Therefore, the energy
levels are degenerate. One can rewrite eq. (20) as

I 1

E}’l = - 5
2Mad} n?

(23)

where n = n, + [ + 1 is called a principal quantum number. It can take values n =
1,2, .... For any fixed n, there are n — 1 possible values of the orbital momentum /,
and for any fixed /, there are 2/+ 1 possible values of the magnetic number m. Recall
also that the levels are additionally degenerate due to the electron spin s = i%. So,
the full degeneracy of the n’th energy level is

n—1
2 Z(Zl +1)=2n2. (24)
=0



3. Classical scattering on a Coulomb potential

1. The energy of the particle moving in the potential U(r) in two dimensions is written
in polar coordinates as follows,

22 2

_m_2 242 _mr
E—E(I’ +r¢)+U(I’)—T+2mr2

+ U(r), (25)

where L = mr*¢ is the angular momentum. Expressing i- from the relation above,

we have
dr \/ 2 L2
= — = 7| —(E-U)) — ) 26
P= it ()= —33 (26)
Next, we observe that as long as i # 0,
d de dt L 1
d_(f - d_(fz’ = y 7
VEE-UC) - =
Taking the integral, we obtain
" L/r*dr
¢(r) = : (28)
o \2m(E — U(r)) — L2/ 1>
2. The deflection angle 6 is given by (see figure 1)
0 = |m = 2¢ol, (29)

where ¢, is the angle between the direction to the minimum distance from the scat-
tering center to particle’s orbit and the direction to the infinite distance between
them. Using eq. (28) with U(r) = a/r, we write

® Ldr
¢o = f . (30)
rmin T N2mEF? — 2mar — L2
This integral can be taken analytically, the answer is
—2mar -2L* |7
¢ = arcsin mer . 31

rV4m2a? + 8L2mE

It remains to find r,,;,. It is the point at which 7+ = 0. From eq. (26) it then follows
that
o = -+ = \Ja? 1 2E/m (32)
"t 2E  2E '
Substituting this into eq. (31), we have

¢o = —arcsin nd + z . (33)
Va2 +212E/m 2
Hence,
L o
6 = 2 arcsin (34)

Va? + 2[2E/m



3. Since the energy and the angular momentum are conserved, one can write E =
mv2 /2, hence vo, = V2E/m and L = mv.b = V2mEb. Eq.(34) is rewritten as

|

6 = 2 arcsin ———. (35)
Va? + 4E2b?
4. Firstly, let us express b through 6 :
a 0
b= _ﬁ COtE. (36)

Then, we note that dN = 2rnbdb = 2xnb42d6, and do- = dN/n = 2rb“d6. On the
other side, from eq. (36) we have

b al 1

—_— = —— 37
do  2E2sin’0/2) G7)
Hence, )
0 1 deo 6/2
do =25 cot(3) sy —5 =1 cosO/2) 4 (38)
2E 2/ 2E 2sin*(6/2) 4E- sin”(0/2)
Finally, dQ = 27 sin 8d6 = 4 sin(6/2) cos(6/2)df, and we arrive at
d 2 1
o_ o« 1 (39)

dQ ~ 16E? sin*(6/2)

5. The integral over eq. (39) is divergent. Therefore, the total cross section is infinite.
The physical interpretation of this is that the potential affects the motion of the
particle regardless its distance to the scattering center. This is a typical example of
the so-called long-range force.

Fic. 1 — The scattering potential with @ < 0.

4. Differential cross section transformation

For the difference between the laboratory frame and the center-of-mass frame, see figure
2. In the center-of-mass frame, two particles are traveling towards each other. One particle
with mass m; has a speed v¢y and is traveling in the +x-direction. The other particle with



mass m, has a speed v, and is traveling in the —x-direction. Since we are in the center-
of-mass frame, their momenta should be equal and opposite, so

ver = —Avey (40)

where 4 = m;/m,. After the collision, the first particle scatters into an angle 8¢y, with
the velocity uc;. But uc; = vey, because the collision is elastic. By the same reasoning,
ucr = veo. Expressing the velocities as vectors, we have

-

Vel = Veil,

R 2 . 2

ticy = ve1(cos Ocpyi + sin ey j) ,

) ? (41)
Ve = —Averl,

R > . 2
Uy = Aver(cos Oyl + sin QCM]) .

In the lab frame, the particle of mass m; comes in with the velocity v;; and collides
with the particle of mass m, with v;; = 0 sending them both off in different directions.
The scattered particle is deflected into an angle 6,45 and has the velocity u; ;. The target
particle is deflected into an angle 6, and has the velocity u;,. As vectors, the velocities are

-

L -
Vil =vt,
- 7 i 7
i1 = up(cosOpagi + Sinbag)), 42
o 42)
Vi =Y,

2 . 2
Uy = upp(cosBri —sin 6, ).

To relate eqs. (41) and (42), we observe that the two reference frames are transformed to
one another by a Galilean transformation, that is, to obtain the lab frame velocities, one
should subtract v¢; in the x-direction from the center-of-mass frame velocities. Doing so,
the velocities in the center-of-mass frame become,

Vi =1+ /1)V61?,

ity = ver((cos Ocy + )i+ sinbey ),

43
W =0, @
ﬁLZ = —Avc1((cosBcpy — 1)74‘ sin 9CM,7) .
Comparing egs. (42) and (43), one finds
ur;coso = vcy(cosbey + 1),
Ll ‘ LAB c1(. em + ) (44)
Urq SIn QLAB = V1 S1n HCM .
Hence,
in 6
tan HLAB = Sln—CM ) (45)
coSOcy + A
o I Ber + 4
+
cos O ap = cosbem (46)

\/1 +tan20LAB - \/1 +2/1COS9CM+/12 .

Since the total cross section should not depend on the reference frame, do- should be
the same in either the lab frame or the center-of-mass frame. However, since there is an
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angular dependence in d€Q, the differential cross section is different in different frames.
Since

do
do = —dQ, 47
T=-5 47)
we know that P P
fou o
- = dQag. 48
2Q M= as s LAB (48)
Therefore,
d d dQ
a0 _ 40 LAB (49)
dQley  dQlpap dQcm

Since dQ = 27 sin 6d6, we have,

dQap _ Sin O 4pdOpap

= . 50
dQCM Sil’l QCMdGCM ( )
Now, taking the derivative of eq. (46), we find
) ) 1+ Acosbcy
—SiN Oy pdOiap = — Sin Oy db . 51
S OLApiap = = St Bemdbem ((1 T+ 24c08 Oy + 2212 o1
We then see by plugging this into eq. (50) that
dQrap _ 1+ Acos Ocu (52)
dQcy (1 +24c0sbcy + 4232’
and, finally,
do _ (1+2acosbcy + A2 do (53)
dQliag 11 + Acos Oyl dQley
Center of mass frame Laboratory frame

Uct Upq
Vc1 Ocm Vi1 R OLaB
6,
Ur2

FiG. 2 — Different reference frames

5. Interaction picture
1. Recalling the relation between states and operators in the Schroedinger and Heisen-

berg pictures, we have

Y1) = U 0)¥s(t) = U, (00 Py

SO (54)
A1) = 03045 Uo(0) = 0300 0A0 0 0 0o(0)
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2. The evolution equation for the wave function in the interaction picture is obtained
straightforwardly :

hd hd . hdU (1)
——Y,1)=—==-U,0)¥s(t) = —~
par 0= =5 YY) ===
= ~U ®HYs(t) + U (O(Hy + V)¥s (1)

= UJ(OVU(0)¥1(0) = Vi()¥,(¢)

d¥s(1)
dt

ho~
‘mm—;mm
(55)

where in the last line we used the fact that Ws(¢) = Uo(t)¥,(7).

3. Similarly to the Schroedinger picture in which W (7) = U(#)¥(0), one can define an
operator U,(¢) such that ¥;(r) = U;(1)¥(0). From eq. (54) we have

Wi(1) = Ug(t)U(1)¥(0) . (56)
Hence U;() = U} (1)U (). Substitution of eq. (56) into eq. (55) gives

_hdUy
i dt

= ViU (0) . (57)

The initial condition for the operator U,(f) is U;(0) = 1.



