
QUANTUM PHYSICS III
Solutions to Problem Set 6 15 October 2024

1. Symmetry restoration in the double-well potential

1. Let ψ0(x) be the low energy bound state wave function of the left well. Then, one
can build two eigenfunctions of the whole double-well potential as follows,

ψ1(x) =
1
√

2
(ψ0(x) + ψ0(−x)) , ψ2(x) =

1
√

2
(ψ0(x) − ψ0(−x)) . (1)

For the initial wave function of the particle in the left well we have

Φ(x, 0) = ψ0(x) =
1
√

2
(ψ1(x) + ψ2(x)) . (2)

Time evolving this wave packet, one finds

Φ(x, t) =
1
√

2
e−

i
ℏE1t(ψ1(x) + e−iδtψ2(x)) , δ =

E2 − E1

ℏ
> 0 , (3)

where δ is the energy splitting between the states represented by ψ1(x) and ψ2(x).
The probability to detect the particle at the position x at the time t is then given by

P(x, t) = |ΦΦ∗| =
1
2

(ψ1(x)2 + ψ2(x)2 + 2ψ1(x)ψ2(x) cos δt) . (4)

2. The probability for the particle to be found in the right well at the time t can be
written as

P(t) =
∫ ∞

0
P(x, t) dx . (5)

We substitute eq. (4) into eq. (5), and note that integration of any term including the
function ψ0(x) gives zero, since this function is localized in the left well, and that∫ ∞

0
ψ0(−x)2dx = 1 , (6)

because of the normalization of the bound state wave function. Hence,

P(t) =
1
2

(
1
2
+

1
2
− 2 cos δt ·

1
2

)
= sin2 δt

2
. (7)

It remains to compute exactly the energy splitting δ,

δ =
ℏω

π
exp

(
−

1
ℏ

∫ x∗

−x∗
|p|dx

)
, (8)
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where ±x∗ are the turning points of the subbarrier transition, and ω is the frequency
of the classical oscillations in the well. The expression (8) can be easily computed
in the limit E ≪ V0. Indeed, near the left well bottom the potential is well approxi-
mated by a parabolic function,

V(y) = V0y2(y + 2x1)2 ≈ 4x2
1V0y2 , y = x − x1 , |y/x1| ≪ 1 . (9)

From here, the oscillation frequency is extracted as

V(y) =
1
2

mω2y2 ⇒ ω2 =
8x2

1V0

m
. (10)

Next, the integral in (8) is evaluated as follows,∫ x∗

−x∗
|p|dx ≈

√
2mV0

∫ x1

−x1

√
(x − x1)2(x + x1)2dx =

√
2mV0 ·

4
3

x3
1 . (11)

Thus,

δ =

√
8ℏ2x2

1V0

mπ2 exp
(
−

4
3ℏ

√
2mV0x3

1

)
. (12)

3. The average probability to detect the particle in the right well during the time T is
given by

1
T

∫ T

0
P(t) dt . (13)

Taking the limit T → ∞, we obtain

lim
T→∞

1
2T

∫ T

0
(1 − cos δt) dt =

1
2
−

1
2δ

lim
T→∞

sin δT
T
=

1
2
. (14)

So, indeed, we have the equal chance to find the particle in either well. In other
words, in the large time limit, the system forgets its initial state and exhibits a uni-
versal behaviour. In particlar, the parity symmetry of the potential, broken by the
initial distribution of the wave function, gets restored as the time passes by. Ba-
sically, this is the reason why in 1D quantum systems it is impossible to make a
spontaneous symmetry breaking.

2. WKB spectrum of the Hydrogen atom

1. It will be convenient to use electron’s momentum k related to its energy E as (we
work in natural units ℏ = c = 1)

E = −
k2

2M
. (15)

Then, for the potential

V(r) = −
1

a0Mr
+

(l + 1/2)2

2Mr2 , (16)
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we have∫ r2

r1

p dr =
∫ r2

r1

√
−k2 +

2
a0r
−

(l + 1/2)2

r2 dr

= k
∫ r2

r1

√(
1 −

r1

r

) (r2

r
− 1

)
dr =

kπ
2

(r1 + r2 − 2
√

r1r2) ,

(17)

where

r1,2 =
1

a0k2 ±

√
1

(a0k2)2 −
(l + 1/2)2

k2 (18)

are the turning points. Applying the Bohr-Sommerfeld quantization rule, we find

π

(
nr +

1
2

)
= π

(
1

a0k
− l −

1
2

)
, (19)

or, using eq. (15),

Enr = −
1

2Ma2
0

1
(nr + l + 1)2 . (20)

This coincides with the exact answer.

2. The ground state level is given by nr = l = 0, and we have

E0 = −
1

2Ma2
0

. (21)

In natural units, the Bohr radius equals a0 = 2.68 · 10−4eV−1, while the electron
mass M = 5.11 · 105eV , hence

E0 = −13.6 eV . (22)

3. From eq. (20) we see that the energy of the level depends on the sum nr + l, and it
can be the same for different values of the radial number nr. Therefore, the energy
levels are degenerate. One can rewrite eq. (20) as

En = −
1

2Ma2
0

1
n2 , (23)

where n = nr + l + 1 is called a principal quantum number. It can take values n =
1, 2, .... For any fixed n, there are n − 1 possible values of the orbital momentum l,
and for any fixed l, there are 2l+1 possible values of the magnetic number m. Recall
also that the levels are additionally degenerate due to the electron spin s = ±1

2 . So,
the full degeneracy of the n’th energy level is

2
n−1∑
l=0

(2l + 1) = 2n2 . (24)
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3. Classical scattering on a Coulomb potential

1. The energy of the particle moving in the potential U(r) in two dimensions is written
in polar coordinates as follows,

E =
m
2

(ṙ2 + r2ϕ̇2) + U(r) =
mṙ2

2
+

L2

2mr2 + U(r) , (25)

where L = mr2ϕ̇ is the angular momentum. Expressing ṙ from the relation above,
we have

ṙ =
dr
dt
=

√
2
m

(E − U(r)) −
L2

m2r2 . (26)

Next, we observe that as long as ṙ , 0,

dϕ
dr
=

dϕ
dt

dt
dr
=

L
mr2

1√
2
m (E − U(r)) − L2

m2r2

. (27)

Taking the integral, we obtain

ϕ(r) =
∫ r

∞

L/r2dr√
2m(E − U(r)) − L2/r2

. (28)

2. The deflection angle θ is given by (see figure 1)

θ = |π − 2ϕ0| , (29)

where ϕ0 is the angle between the direction to the minimum distance from the scat-
tering center to particle’s orbit and the direction to the infinite distance between
them. Using eq. (28) with U(r) = α/r, we write

ϕ0 =

∫ ∞

rmin

Ldr

r
√

2mEr2 − 2mαr − L2
. (30)

This integral can be taken analytically, the answer is

ϕ0 = arcsin
−2mαr − 2L2

r
√

4m2α2 + 8L2mE

∣∣∣∣∣∣∞
rmin

. (31)

It remains to find rmin. It is the point at which ṙ = 0. From eq. (26) it then follows
that

rmin =
α

2E
+

1
2E

√
α2 + 2L2E/m . (32)

Substituting this into eq. (31), we have

ϕ0 = − arcsin
α√

α2 + 2L2E/m
+
π

2
. (33)

Hence,

θ = 2 arcsin
|α|√

α2 + 2L2E/m
. (34)
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3. Since the energy and the angular momentum are conserved, one can write E =
mv2
∞/2, hence v∞ =

√
2E/m and L = mv∞b =

√
2mEb. Eq.(34) is rewritten as

θ = 2 arcsin
|α|

√
α2 + 4E2b2

. (35)

4. Firstly, let us express b through θ :

b = −
α

2E
cot

θ

2
. (36)

Then, we note that dN = 2πnbdb = 2πnb db
dθdθ, and dσ = dN/n = 2πbdb

dθdθ. On the
other side, from eq. (36) we have

db
dθ
=

α

2E
1
2

1
sin2(θ/2)

. (37)

Hence,

dσ = 2π
α

2E
cot

(
θ

2

)
α

2E
1
2

dθ
sin2(θ/2)

= π
α2

4E2

cos(θ/2)
sin3(θ/2)

dθ . (38)

Finally, dΩ = 2π sin θdθ = 4π sin(θ/2) cos(θ/2)dθ, and we arrive at

dσ
dΩ
=

α2

16E2

1
sin4(θ/2)

. (39)

5. The integral over eq. (39) is divergent. Therefore, the total cross section is infinite.
The physical interpretation of this is that the potential affects the motion of the
particle regardless its distance to the scattering center. This is a typical example of
the so-called long-range force.

O

θ

b

ϕ0

Fig. 1 – The scattering potential with α < 0.

4. Differential cross section transformation

For the difference between the laboratory frame and the center-of-mass frame, see figure
2. In the center-of-mass frame, two particles are traveling towards each other. One particle
with mass m1 has a speed vC1 and is traveling in the +x-direction. The other particle with
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mass m2 has a speed vC2 and is traveling in the −x-direction. Since we are in the center-
of-mass frame, their momenta should be equal and opposite, so

vC2 = −λvC1 , (40)

where λ = m1/m2. After the collision, the first particle scatters into an angle θCM with
the velocity uC1. But uC1 = vC1, because the collision is elastic. By the same reasoning,
uC2 = vC2. Expressing the velocities as vectors, we have

v⃗C1 = vC1⃗i ,

u⃗C1 = vC1(cos θCM⃗i + sin θCM j⃗) ,

v⃗C2 = −λvC1⃗i ,

u⃗C2 = λvC1(cos θCM⃗i + sin θCM j⃗) .

(41)

In the lab frame, the particle of mass m1 comes in with the velocity vL1 and collides
with the particle of mass m2 with vL2 = 0 sending them both off in different directions.
The scattered particle is deflected into an angle θLAB and has the velocity uL1. The target
particle is deflected into an angle θ2 and has the velocity uL2. As vectors, the velocities are

v⃗L1 = vL1⃗i ,

u⃗L1 = uL1(cos θLAB⃗i + sin θLAB j⃗) ,
v⃗L2 = 0 ,

u⃗L2 = uL2(cos θ2⃗i − sin θ2 j⃗) .

(42)

To relate eqs. (41) and (42), we observe that the two reference frames are transformed to
one another by a Galilean transformation, that is, to obtain the lab frame velocities, one
should subtract vC2 in the x-direction from the center-of-mass frame velocities. Doing so,
the velocities in the center-of-mass frame become,

v⃗L1 = (1 + λ)vC1⃗i ,

u⃗L1 = vC1((cos θCM + λ)⃗i + sin θCM j⃗) ,
v⃗L2 = 0 ,

u⃗L2 = −λvC1((cos θCM − 1)⃗i + sin θCM j⃗) .

(43)

Comparing eqs. (42) and (43), one finds

uL1 cos θLAB = vC1(cos θCM + λ) ,
uL1 sin θLAB = vC1 sin θCM .

(44)

Hence,

tan θLAB =
sin θCM

cos θCM + λ
, (45)

or
cos θLAB =

1√
1 + tan2 θLAB

=
cos θCM + λ√

1 + 2λ cos θCM + λ2
. (46)

Since the total cross section should not depend on the reference frame, dσ should be
the same in either the lab frame or the center-of-mass frame. However, since there is an
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angular dependence in dΩ, the differential cross section is different in different frames.
Since

dσ =
dσ
dΩ

dΩ , (47)

we know that
dσ
dΩ

∣∣∣∣∣
CM

dΩCM =
dσ
dΩ

∣∣∣∣∣
LAB

dΩLAB . (48)

Therefore,
dσ
dΩ

∣∣∣∣∣
CM
=

dσ
dΩ

∣∣∣∣∣
LAB

dΩLAB

dΩCM
. (49)

Since dΩ = 2π sin θdθ, we have,

dΩLAB

dΩCM
=

sin θLABdθLAB

sin θCMdθCM
. (50)

Now, taking the derivative of eq. (46), we find

− sin θLABdθLAB = − sin θCMdθCM

(
1 + λ cos θCM

(1 + 2λ cos θCM + λ2)3/2

)
. (51)

We then see by plugging this into eq. (50) that

dΩLAB

dΩCM
=

1 + λ cos θCM

(1 + 2λ cos θCM + λ2)3/2 , (52)

and, finally,
dσ
dΩ

∣∣∣∣∣
LAB
=

(1 + 2λ cos θCM + λ
2)3/2

|1 + λ cos θCM |

dσ
dΩ

∣∣∣∣∣
CM

. (53)

Fig. 2 – Different reference frames

5. Interaction picture

1. Recalling the relation between states and operators in the Schroedinger and Heisen-
berg pictures, we have

ΨI(t) = Û†0(t)ΨS (t) = Û†0(t)Û(t)ΨH ,

ÂI(t) = Û†0(t)ÂS Û0(t) = Û†0(t)Û(t)ÂH(t)Û†(t)Û0(t) .
(54)
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2. The evolution equation for the wave function in the interaction picture is obtained
straightforwardly :

−
ℏ

i
d
dt
ΨI(t) = −

ℏ

i
d
dt

Û†0(t)ΨS (t) = −
ℏ

i
dÛ†0(t)

dt
ΨS (t) −

ℏ

i
Û†0(t)

dΨS (t)
dt

= −Û†0(t)Ĥ0ΨS (t) + Û†0(t)(Ĥ0 + V̂)ΨS (t)

= Û†0(t)V̂Û0(t)ΨI(t) = V̂I(t)ΨI(t) ,

(55)

where in the last line we used the fact that ΨS (t) = Û0(t)ΨI(t).

3. Similarly to the Schroedinger picture in which ΨS (t) = Û(t)Ψ(0), one can define an
operator ÛI(t) such that ΨI(t) = ÛI(t)Ψ(0). From eq. (54) we have

ΨI(t) = Û†0(t)Û(t)Ψ(0) . (56)

Hence ÛI(t) = Û†0(t)Û(t). Substitution of eq. (56) into eq. (55) gives

−
ℏ

i
dÛI(t)

dt
= V̂I(t)ÛI(t) . (57)

The initial condition for the operator ÛI(t) is ÛI(0) = 1.
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