QUANTUM PHYSICS III

Solutions to Problem Set 4 1 October 2024

1. The one-turning point problem

In the classically forbidden region x < xj, the modulus of the momentum p =

\V2m(E = V) is estimated as
1P|~ 1x = x0)?| = =i(x = x0)? . ()
Switching to the polar coordinates,
Re(x —xg) =rcos¢, Im(x—xy) =rsing, 2)

we rewrite (1) as -
Ipl ~ €7 R . (3)

Now we continue this expression to the right side from the turning point, the classically
allowed region x > xj. This is done by changing the phase of the point at which p is
evaluated from r to either O or 27 :
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-3 1 .n -3 1 . 1
e'2R2e¢'7 — e€'2R2e"™ = +i(x — xp)? . (5)

So, bypassing the turning point clockwise (eq. (4)), amounts to replacing |p| — —ip, and
bypassing the counterclockwise (eq. (5)), we replace |p| — +ip. Hence, continuation of
the WKB wave function

¢’(x)x<x0 = Le_% f‘m (<"l (6)
2/lp(x)|
gives us two terms,
C tlypwarss € G fpwr-f o
24/p(x) 24/p(x)
summing which, we have
C 1
Y(X)xsxy = cos |~ f p(x")dx' — 7). (8)
V) \nJy, 4



2. Quantization rule in a half-space

1. Let x = xo > 0 be the turning point of the semiclassical wave function. Continuing
from the classically forbidden region x > x, we have at 0 < x < x,

Vo) = % cos (% f " - ;—T) . ©)

Since the potential is regular at all x > 0, the LO WKB approximation stays valid
arbitrarily close to zero. Then, the boundary condition (0) = O implies that ¢,
must approach zero as x — 0+. Hence, eq. (9) must admit the form

Yooy (1) = f};cos(% foxpdx_ g) . (10)

One can rewrite the argument of the last cosine as

1 [ 1 [ n
B dx — — dx +=| . 11
(hfxpx hfopﬂz) (11)

Comparing this with eq. (9), we deduce the condition

1
—%fo pa’x+g:—g+7m, (12)
or
X() 3
f pa’x:ﬂh(n+4—1), n=0,1,2,... (13)
0

2. Using the quantization condition (13), we have

X0 2 X0
f \2m(E — Vo — kx) dx :—'km(E — V) f VI—ydy
0 0

(14)
2 V2 3
:g—km(E ~ Vo) = nh (n + 4_1) )
Hence, "
3k 3
E,=Vy+ mhln+ - , (15)
vl
where m = m,/2 is a reduced mass of the two-quark system. Numerically,
E, ~ 1.42-n*” GeV. (16)



3. WKB spectrum of the Harmonic oscillator

1. Let +x, be the turning points of the WKB wave function in the potential
1
V(x) = Emwzxz : (17)

We have to compute the integral

X0 X0 1 X0 x2
f pdx =f 2m (E - —ma)zxz)dx = V2mEf 1 - —dx
~Xo —Xo 2 —Xo o0

(18)
X0 x2
=2 VZmEf l - —dx.
0 xo
At this point, it is convenient to change the variables,
X=Xxpsin¢, dx=xpcospdep. (19)
The integral becomes,
X0 /2
f pdx :2\/2mEf Xocos ¢ /1 — sin® ¢ dop
—X 0
’ /2
=2 VamExy f cos? ¢ d (20)
0
~2\V2mE 2—EZ7—T _E
mw*4  w
Thus,
1
E, =hw (n + 5) . (21)

We conclude that the LO WKB approach gives us the exact energy levels of the har-
monic oscillator. This somewhat surprising fact is not unique to the potential (17).
Later we will consider one more example of an integrable system whose energy
levels are captured exactly by the LO approximation.

2. Here it is convenient to write the LO WKB applicability condition, |1'| < 1, in the
form (see the lectures)

V2> iv”/2 . (22)
m
Applying this to (17) gives
mw'x > ho'm = mo*xt>ho . (23)
In other words,
h
E> 7“’ : (24)

or n > 1, as expected. As a general remark, we note that although the applicability
condition urges us not to trust the results of the WKB approach at small n, even for
them the answer can, in fact, be surprisingly accurate (or even exact).
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4. WKB spectrum in power-like potential

1. For the potential V(x) =V, xio d,

the integral to be calculated is

fpdx V2 f E - VO =2V2m f 1———
-1 25
=2V2mV, aonHf V1= dy 25)
0
=qE?" lr
where
2 I+ )
a= N2mnV,* xo——— ( ) (26)
Then, the Bohr-Sommerfeld quantization condition gives
[ 1 —%
E, = ["— (n + —)] o 27)
a 2

When o = 2, a becomes equal 7 /7 j—%, and

_ V2n VW, 1

One can express this through the frequency w of the harmonic oscillator,

W _ \/Ew , 29
X0 2

and we restore the expression (21).

2. From eq. (27) we see that at large n, the dependence of the energy of the bound
state on its number becomes

1
+

E~n"?, Bla)= (30)
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The function S(@) is shown on figure 1. Note first that the difference between the

adjacent energy levels,
E, n \ B
~ ~1+=, 31

E,_ (n - 1) n (D
goes to zero as a approaches zero. Hence, the flatter the potential, the denser the
energy levels. In the opposite limit, @ — oo, we have 8 — 2. This is fully expected
once we notice that the limit of infinite @ turns the potential into a box with two

infinite walls located at x = +x; (see figure 2), and the energy levels of a particle in
this box are proportional to n?.
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Ficure 1 — The exponent of the energy of the bound state S plotted against the exponent
of the potential a.
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Ficure 2 — The potentials V = Vj|x/xo|* for increasing values of a.

5. The multifold one-turning point problem

Here we use the method of bypassing the turning point in the complex plane. In the
classically forbidden region x > 0, the dependence of the momentum p on the coordinate
x is of the form

Ipl ~ 27 (32)

We switch to the polar coordinates as in Problem 1 and rewrite the momentum as
Ipl ~ R 260 . (33)

Now we continue this expression to the region x < 0 by changing the phase of the point
from O to 7 or to —x. This gives

Rk+%eo N Rk+%einkei§ ot Rk+%eO N Rk+%e—inke—i§. (34)
Hence,
pl = Dip or Ipl = (1)*ip. (35)
Applying these rules to the wave function
C .
Ym0 = —=e kb Pl (36)
2+lpl
we get two contributions
C eiffpavcnp-goy € Ppavcifaitey 37)
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and the answer is

_ 1y 0
¢x<o(x):£c0s(( D fpdx—z_ﬂ_k)_ (38)

Note that this expression matches with the general LO WKB solution in the allowed
region. Note also that such matching is impossible unless & is an integer. The reason lies
in the fact that if we promote the multiplicity of the turning point 2k + 1 to an arbitrary
real positive number, we loose analyticity around that point, and this makes the method
used here inapplicable. In that case, it remains to solve the Schroedinger equation directly
near the turning point as was done in Problem 5 of Problem set 5.



