QUANTUM PHYSICS III

Solutions to Problem Set 12 3 December 2024

1. General solution of the Dirac equation

1. Substituting the Ansatz

¥, = e%(p'x—wPl)uP (1)
into the Dirac equation,
h oYy :
———=Hp¥p, Hp-= iD; + 2
. o DTID D ,zzl a;p; + pm (2)
with
0 g _ 1 0
ai_(O'i O)’ ﬁ_(o _I)’ (3)
we arrive at
(aip; + Bm)up = wpup . “4)

2. Eq. (4) is a homogeneous system of four linear equations which is written in the
matrix form as follows,

Au, =0, A:(’"—“’P Pidi ) (5)

Dio —m — wp

A nontrivial solution of this system exists if and only if the determinant of A va-
nishes, that is,
detA = (m* + pi + p5+ p3 —ws)?* =0, (6)

wp = £\m? + p?. (7)

This is nothing but the relation between the momentum and the energy the on-shell
particle must obey.

from where it follows that

3. In the notation up = (¢p xp)’ the system (5) is written as

pioi ¢p = (wp + m)xp ,

pioi xp = (wp —m)dp .

)

From this, the general solution of the Dirac equation is read off straightforwardly.
Itis

up = (¢p, (piory)” (wp — mgp)" )
with ¢p an arbitrary two-dimensional vector.

4. In the non-relativistic limit wp = m, hence yp =~ 0, and the general solution (9)
becomes

up = (¢p, 0) . (10)
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2. Properties of the Dirac matrices

1. The transformation
o, =Uq;U™, g =UBU", (11)

with U a unitary matrix, does not spoil any properties of the Dirac matrices a; and .
To prove this, note first that their commutation relations remain unchanged, since,
for example,

o+ ) = U(U ' U+ ;U ' Ua)U™' =20U7'6;; = 265 (12)

Next,
o = (UaU™" =(UeU =UaU" = o, (13)
and similarly 8’7 = §’. Hence, hermiticity is also preserved. Finally,
Tra,=Tr(Ua;U ") =Tr (U 'U)=Tre; =0, (14)

and similarly Tr 8" = 0.
2. To obtain the Weyl representation, one can choose the transformation matrix as

I (-1 1
gl )
Then,
; —0; 0 ; 0 I
ai_(o O_L_),,B_(]O). (16)
3. Taking the massless limit m = 0 in the Weyl representation of the Dirac equation,
we have -
D / —oipi 0
__ =HpYp, Hp=alp; = . 17
Upon substituting ¥, = (¢, x)7, the equation above is spitted into two independent
equations :

ho, + pid =0,
(l + OipP (18)
(ihd; —oipi)x = 0.

These are the Weyl equations for massless particle. Hence, the advantage of using
the Weyl representation of the Dirac matrices is that it allows to disentangle the
components of the Dirac spinor ¥p in the massless limit.
Multiplying the first equation of the system (18) by %0, — o;p; and the second —
by ihd, + o;p;, we obtain
(1207 = p*)p = (-1°6; = p* ¥ = 0. (19)

These are nothing but the Klein-Gordon equation on the Fourier components of ‘¥'p,.
For the particle propagating along the x-line, p, = p, = 0, and egs. (18) become

iho, + o p)o =0,

(‘ t 1Px)¢ (20)

(ihd, — o1px = 0.

The general solution of this system is

; 1 ; 1 ; 1 ; 1
¢ = cei’ (1) + cpe 1P (_1) , x =der’ (_1) + dye 1P (1) ) (21)

2



4. In looking for a new representation of the Dirac matrices, we would like to keep
their form as block-diagonals of the Pauli matrices. Then, the requirements of 8> =
1 and Tr 8 = 0 constrain the choice of 5’ to

’ 0 (%) y _ | O2 0
ﬁ_(0-2 0)’ ﬁ_(o _0_2)' (22)
Let
[ U1 U
U —( — ) (23)
be the transformation matrix with u,, ... uy some appropriate 2 X 2 matrices. Then,

it is easy to see that the equation

, _ - (I 0
B =UBU™, ﬁ—(o _,) (24)

rules out the second possibility in (22) as it requires u; = +o,u; for all i. The first
possibility is acceptable and it demands

us = o Uy, Ug = —0rUyp . (25)

Therefore, the matrix U can be rewritten in the form

U:L( o b ) (26)

V2 \ oaur —oauy

We put the overall coefficient to ensure that U becomes unitary when u; and u, are
both unitary.
Now we have to choose u; and u, such that

Im (Ua,UHY =0, i=1,23. (27)
This is achieved, for example, by taking
M1:i0'2, MZZI. (28)

With this choice, the matrices @] become

r | O3 0 ro_ 0 (%) N 0
afl—(o 0_3), a, = l(_0_2 0), a3—(0 0'1)' (29)

This representation of the Dirac matrices is named after Majorana. It is used in
description of a certain type of neutral particles, e.g., Majorana neutrinos.

3. One useful relation

From the commutation relations of the Pauli matrices,

[0, 0] = 2ig ok,

o, o} = 26,1, (30)
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where [ 1s a unit 2 X 2 matrix, we have
[0, O'j] + {O',', O'j} = 2(i6ijk0-k + 51']'[) = 2O'Z'O'j,

hence
o= ieijko-k + 6ij1-
Contracting this with the vector 7, we obtain

= . >

(@ -A)F-7) =71 +id(@XA).

To compute the last product, we write the vector 7 in components,
- = . e . e
@X ) = e (—lha,- _%a j) (—lhak - —Ak)
C C
he
= l?fijk((ajAk) + A0)
he

7 B}
= i (ot A), = i-<B; .
C C

Substituting this into eq. (33) gives

he |
& @ R)=RI- 23 B.
C

4. On Landau levels

€1y

(32)

(33)

(34)

(35)

1. The potentials A and ® are related to the magnetic and electric fields as follows,

Taking

we have in components

B; = fijkajAk = _ézyxB(szi = nyzB(szi = dei , E=0.

(36)

(37)

(38)

Because of the antisymmetry of €, this result remains unchanged if we shift the

vector potential A by
A A+ ﬁa/()?) ,

(39)

where « is an arbitrary function of X. For example, choosing @ = xy$B, we obtain an

equivalent configuration

It is clear also that both A and @ can be shifted by an arbitrary constant.
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2. We plug the expression for the Dirac spinor,

S (‘j) , @1)

=(@ - 7+Pm+ed)V. (42)

into the equation
0¥

Yor
The result is
(E-m-e®)p=0 7y,

Lo (43)
(E+m—-eD)y=0-7¢.

Expressing y through ¢ in the second equation of (43) and substituting it to the first
equation, we arrive at
(E* —m*)$ = (& 7)'¢ . (44)

Let us rewrite the r.h.s. of this equation by the means of egs. (35) and (37),
Y (45)

Hence, eq. (44) becomes
(B2 = m*)p = (=V2 + ey B — 2ieyBo, — eBo3)s . (46)

3. Noticing that the coordinates x and z do not appear in eq. (46) except through the
derivatives, one can write the solution as

¢ = £l (Pxxtp:2) fO) . 47)

There will be two independent solutions for f(y) which can be taken, without loss
of generality, to be the eigenstates of o3 with eigenvalues +1. This means that we
choose the two independent functions in the form

_[ F+O) ([ O

Since o3 f.(y) = = f.(y), the differential equations satisfied by F'. are
EF, E*—m* —p>+eB)F. — (p, + eyB)’F. =0 49
dy2( m-—p; xeB)F. —(p.+eyB) F.=0. (49)

4. The change of variable
¢ = VeB (y + 2 (50)
eB
brings egs. (49) to the form
d? )

(d_g_g +ai)Fi(§):0, (51)
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where
E* —m? - p} £ eB

eB

This is a special form of Hermite’s equation, and the solutions exist provided that
a. =2n+1forn=0,1,2,.. This provides the energy eigenvalues

(52)

ai:

Ey =m’ + p. +2NeB. (53)

This is the relativistic form of Landau energy levels. They are two fold degenerate
in general : choosing n = N — 1 for the “+” sign yields the same energy level as
choosing n = N for the “—" sign. Also, because n is non-negative, the ground level
N = 01is not degenerate.



