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Multi-choice questions

What process sets the lower limit of the mass of main sequence
stars to approximately a tenth of the mass of our sun?

( ) There is no lower limit, but since the luminosity depends strongly on the mass
(power of 3-4), light stars radiate too little power to be detected.

(x) Since main sequence stars are gravitationally confined clouds of hydrogen, their tem-
perature increases with their mass and lighter clouds of hydrogen are not sufficiently
hot to initiate fusion reactions.

( ) There is a lower mass limit for gas to be gravitationally confined.

( ) Light stars have already burnt all their fuel and extinguished a long time ago.

At least hand-wavingly. A more rigorous argument, as presented in N. Meyer-Vernet,
Section 3.1.4) must also take into account the Fermi energy, which limits the contraction
of the system.

What happens when energy is added to a gravitational confined
system such as a star, i.e. through increased nuclear heating?

( ) The star heats up, potentially increasing nuclear reaction rates and giving rise to a
thermal instability.

( ) Nothing, since the temperature depends primarily on the mass of the system.

(x) The star cools down, as an increase of the system’s energy increases the radius and
hence cools down the star.

This is somewhat counter-intuitive and can be described by a negative heat capacity. It
can be easily shown using the virial theorem (also subject of exercise 1).
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Exercise 1 - On the role of gravitational energy for the

lifetime of our Sun

a) Let us start by demonstrating the virial theorem.
At a distance r from the center, a unit volume is subjected to the net outward pressure
force −dP/dr, and to the inward gravitational force ρMrG/r

2, where ρ is the density
and Mr the mass within the radius r.
Imposing a hydrostatic equilibrium (the balance between the two forces) we obtain,

dP

dr
= −ρMrG

r2
. (1)

Multiplying both sides by 4πr3 and integrating in dr over [0, R], we obtain,∫ R

0

dP

dr
4πr3dr = −

∫ R

0

ρMrG

r2
4πr3dr . (2)

Integrating the left-hand side by parts, we get,

−3

∫ R

0

P (r)4πr2dr = −
∫ R

0

ρMrG

r
4πr2dr , (3)

where we have considered P (R) = 0. We see that on the left-hand side there is three
times the average pressure times the volume of the object, while the term on the
right-hand side corresponds to the opposite of the gravitational energy,{ ∫ R

0
P (r)4πr2dr =

∫
PdV =

∫
PdV

V
V = 〈P 〉V

−
∫ R
0

ρMrG
r

4πr2dr = Eg
(4)

⇒ 3〈P 〉V = −Eg . (5)

b) Assuming an ideal gas of N particles with γ = 3 degrees of freedom inside the Sun,
we can write,

〈Eth〉 =
γ

2
NkB〈T 〉 =

3

2
NkB〈T 〉 ⇒ 〈P 〉V = NkB〈T 〉 =

2

3
〈Eth〉 . (6)

It then follows that
−2〈Eth〉 = Eg . (7)

So the total amount of energy of the Sun neglecting the contribution coming from
nuclear reactions is,

Etot = 〈Eth〉+ Eg =
Eg
2
, (8)

which is negative, meaning that the object is bound. The total energy is therefore,

|Etot| =
Eg

2
=

1

2

∫ R

0

ρMrG

r
4πr2dr =

1

6
(4πρ̄)2G

∫ R

0

r4dr =
1

30
(4πρ̄)2GR5 =

2



=
3

10

GM2
R

R
=

3× 6.67× 10−11N m2 kg−2 × 4× 1060kg2

10× 7× 108m
' 1.1× 1041J (9)

where we have used an average value of density ρ̄ = MR

4πR3/3
.

We can now estimate the lifetime of the Sun τ related to this energy knowing the
luminosity,

L = −dE
dt

⇒ τ ∼ |Etot|
L

=
1.1× 1041J

4× 1026J s−1
' 1014s ' 10 Myr , (10)

which is clearly less than the current age of the Sun. This is the typical life time of
a star undergoing Kelvin-Helmholtz contraction, i.e. the phase when the star has run
out of fuel for nuclear reactions.

To calculate the energy contribution from nuclear reactions we should first determine the
release of energy per proton, which is,

∆En = ∆m c2 =
(4mp −mHe)c

2

4
=

=
7× 10−3 × 1.67× 10−27kg × (3× 109m/s)2

4
' 2.6× 10−11J . (11)

We can now obtain an estimate of the number of protons of the Sun as MR/mp ' 1057

protons. Knowing that only 10% of them are available for nuclear reactions, the total
available energy is then:

En = ∆EnNS/10 = 2.6× 10−11J× 1056 = 2.6× 1045J (12)

We see that it is 104 times higher than the gravitational energy.

Exercise 2 - Convective speed at the Sun photosphere

Using the mixing-length approach, let us consider a blob which is in pressure equilibrium
with the external medium but at a higher temperature, so the relation ρT ∝ P indicates
that it has a lower density with respect to its surroundings. This generates the buoyancy
force that determines the upward motion of hotter blobs.

Since pressure and temperature decrease as we go upwards, a rising hot blob will encounter
a smaller external pressure which makes it expand, so that its temperature decreases. If
this temperature variation is less than the environmental temperature decrease, the blob
remains hotter than its surroundings and continues to rise.

a) Let’s start evaluating the pressure profile characteristic length H ≡
∣∣∣ P
dP/dr

∣∣∣ using the

ideal gas equation in the pressure gradient equation for an hydrostatic equilibrium,

dP

dr
= −ρg =︸︷︷︸

P=ρkBT/mp

−mpPg

kBT
= − 1

H
P with H =

kBT

mpg
. (13)
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We can now try to assume a constant temperature and gravitational field, and see a
posteriori if it was a reasonable assumption with the scale length we find. Integrating
the previous equation yields,

P (r) = exp

(
− r

H

)
. (14)

b) The kinetic energy density reached by the blob when it dissolves is equal to the density
of work done by the buoyancy force along `,

1

2
ρv2b ∼ ∆ρconvg` ⇒ vb = vconv ∼

√
2∆ρconvg`

ρ
, (15)

still assuming that g remains constant. We can now use the ideal gas relation P =
ρkBT/mp (assuming pure hydrogen plasma) and differentiate it, remembering the hy-
pothesis of pressure balance of the blob with the surrounding environment (∆P = 0),

∆ρconvT + ρ∆Tconv = 0 ⇒ ∆ρconv
ρ

= −∆Tconv
T

⇒ vconv =

√
2|∆Tconv|g`

T
.

(16)
As suggested in the problem set, the length of the path travelled by the blob is assumed
to be of the order of the characteristic pressure scale length (` ∼ H),

vconv ∼
√

2|∆Tconv|gH
T

∼

√
2|∆Tconv|kB

mp

. (17)

c) To compute ∆Tconv, we can consider the transfer of energy per volume with the change
of enthalpy, as indicated in the problem set, with the corresponding energy flux given
by,

Fconv =

(
1

mp

ρ

)
γ

γ − 1

(
kB ∆Tconv

)
vconv = ρ

γ

γ − 1

√
2

(
|∆Tconv|kB

mp

)3/2

. (18)

This energy flux cannot exceed the radiation flux at the sun’s surface that is determined
by its luminosity,

Fconv ≤ Flum ≡
L

4πr2
. (19)

Using Eq. 18, we obtain,

∆Tconv ≤
[
L(γ − 1)

4πr2ργ
√

2

]2/3
mp

kB
. (20)

d) Using the provided values we find,

H =
kBT

mpg
=

kBTR
2
S

mpMSG
=
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=
1.38× 10−23J/K× 106K× (7× 108m)2

1.67× 10−27kg × 2× 1030kg × 6.67× 10−11N m2 kg−2 ' 3×107 m ' 0.1RS , (21)

where we have used g = MSG/R
2
S. The resulting value of H suggests that the initial

assumption of constant T and g along H may not be justified. The corresponding
temperature difference is

∆Tconv ≤
[

3.84× 1026J s−1 × (5/3− 1)

4π × (0.7× 7× 108m)2 × 200kg m−3 × 5/3×
√

2

]2/3
1.67× 10−27kg

1.38× 10−23J K−1
' 0.4K ,

(22)
which is extremely small and the corresponding convection velocity is,

vconv ∼

√
2× 0.4K× 1.38× 10−23J K−1

1.67× 10−27kg
' 81 m/s . (23)
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