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Solutions to problem set 2 - February 28, 2025

Exercise 1 - The Bennett Z-pinch

a) The general form of the current density and magnetic field of a Z-pinch is,{
~B = [0, Bθ(r), 0]
~j = [0, 0, jz(r)]

.

Using Ampère’s law we obtain the relation between the current density and the mag-
netic field,

~∇× ~B = µ0
~j ⇒︸︷︷︸

∂z=∂θ=0

µ0jz(r) =
1

r

∂

∂r
[rBθ(r)] =

1

r

[
Bθ(r) + r

∂Bθ(r)

∂r

]
, (1)

which can be subsequently used to replace the current density in the ideal MHD force
balance equation,

~j × ~B = ~∇p ⇒ ∂p(r)

∂r
= −Bθ(r)jz(r) = −Bθ(r)

µ0

[
Bθ(r)

r
+
∂Bθ(r)

∂r

]
⇒

⇒ ∂

∂r

[
p(r) +

B2
θ (r)

2µ0

]
+
B2
θ (r)

µ0r
= 0 . (2)

b) The radial current density profile is assumed to be,

jz(r) =

{
2I
π

a2

(r2+a2)2
for r ≤ a

0 for r > a
.

The corresponding poloidal magnetic field can be caluclated by integrating Eq. (1).
For r ≤ a,

Bθ(r) =
µ0

r

∫ r

0

r′jz(r
′)dr′ =

2µ0Ia
2

rπ

∫ r

0

r′

(r′2 + a2)2
dr′ .

This integral can be easily solved performing a change of variables r′2 + a2 = b,∫ r

0

r′

(r′2 + a2)2
dr′ =︸︷︷︸

r′2+a2=b

∫ r2+a2

a2

1

2b2
db =

(
− 1

2b

)∣∣∣∣r2+a2
a2

=
r2

2a2(r2 + a2)
.
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For r > q the integrand becomes zero and the integral remains constant.{
r ≤ a :

∫ r
0

r′

(r′2+a2)2
dr′ = r2

2a2(r2+a2)

r > a :
∫ a
0

r′

(r′2+a2)2
dr′ = 1

4a2

It then follows,

Bθ(r) =

{ µ0I
π

r
r2+a2

for r ≤ a
µ0I
2πr

for r > a
. (3)

Note that the magnetic field outside the plasma column can be easily obtained without
knowledge of the radial current profile by integrating Ampère’s law over a cross section
of the plasma column and using Stokes theorem,

∇× ~B = µ0
~j ⇒

∫
C

~B · d~̀= 2πrBθ(r) = µ0

∫
S

~j · d~S = µ0I

⇒ Bθ(r) =
µ0I

2πr
where C is the contour of integration of the surface S.

We can now compute the pressure profile from Eq. (2),

p(r)− p(r = 0) = −B
2
θ (r)

2µ0

− 1

µ0

∫ r

0

B2
θ (r
′)

r′
dr′ .

Substituting Eq. (3) for r ≤ a (the pressure is of course inside the plasma column
only!), the integral becomes,∫ r

0

B2
θ (r
′)

r′
dr′ =

∫ r

0

(
µ0I

π

)2
r′

(r′2 + a2)2
dr′ =

(
µ0I

π

)2
r2

2a2(r2 + a2)

using the same change of variables of the previous calculation. The plasma pressure
radial profile is then given by,

p(r) = p0 −
µ0I

2

2π2

(
r2

r2 + a2

)(
1

a2
+

1

r2 + a2

)
= p0 −

µ0I
2

2π2

r2(r2 + 2a2)

a2(r2 + a2)2
.

If we now assume a pressure equal to zero at r = a, we obtain,

p(r = a) = p0 −
µ0I

2

2π2

3

4a2
= 0 ⇒ p0 =

3µ0I
2

8π2a2
.

The complete expression for the pressure radial profile is,

p(r) =
3µ0I

2

8π2a2

[
1− 4r2(r2 + 2a2)

3(r2 + a2)2

]
. (4)

We can now perform a numerical application using I = 1 kA and a = 1m to compute
the values of j0, B0 and p0,

j0 =
2I

πa2
=

2× 103A

π × 1m2
' 637 A/m2 , B0 = 0 , p0 =

3µ0I
2

8π2a2
' 4.8× 10−2 A2/m2 .

The normalised profiles are shown in Fig. 1.
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Figure 1: Assumed axial current density profile (red) and resulting poloidal magnetic field
(black) and pressure (blue) profiles of a Z-pinch equilibrium.

c) The total thermal energy is1,

Wth =

∫
p

γ − 1
dV =

3

2

∫ 2π

0

dθ

∫ L

0

dz

∫ a

0

dr p(r) r .

Using the radial pressure profile, Eq. 4, determined in b), the expression for the thermal
energy becomes,

Wth = 3πL
3µ0I

2

8π2a2

∫ a

0

dr

[
1− 4r2(r2 + 2a2)

3(r2 + a2)2

]
r . (5)

The integral of the first term in the parenthesis gives simply a2/2. The second term
requires more calculations,

−
∫ a

0

dr
4r3(r2 + 2a2)

3(r2 + a2)2
=︸︷︷︸

x=r/a

−4a2

3

∫ 1

0

x3
(x2 + 2)

(1 + x2)2
dx =

= −4a2

3

[ ∫ 1

0

x5

(1 + x2)2
dx +

∫ 1

0

2x3

(1 + x2)2
dx

]
. (6)

Both integrals can be solve by integration by parts, and we can actually obtain a
generic formula,

Im,n =

∫
xm

(1 + x2)n
dx =

∫
f(x)g′(x) = f(x)g(x)−

∫
f ′(x)g(x)

with

f(x) = xm−1 g′(x) =
x

(1 + x2)n
⇒ g(x) =

1

2(n− 1)(1 + x2)n−1
.

1The calculation of the thermal energy gets an extra factor 1/(γ − 1) = 3/2 from incorporating the
adiabatic condition and then computing the energy equation from the other equations of MHD. See for
example the textbook Fundamentals of plasma physics of P.M. Bellan (pp. 307-310)
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It follows,

Im,n = − xm−1

2(n− 1)(1 + x2)n−1
+

m− 1

2(n− 1)

∫
dx

xm−2

(1 + x2)n−1
.

We can write the expression 6 as,

−4a2

3
(I5,2 + 2I3,2) . (7)

The first integral is,

I5,2 =

∫ 1

0

x5

(1 + x2)2
dx = − x4

2(1 + x2)

∣∣∣∣1
0

+ 2

∫ 1

0

x3

1 + x2
dx =

= −1

4
+ x2 ln (1 + x2)

∣∣∣∣1
0

−
∫ 1

0

2x ln (1 + x2)dx =︸︷︷︸
1+x2=y

−1

4
+ ln 2−

∫ 2

1

ln ydy =

= −1

4
+ ln 2−

(
y ln y − y

)∣∣∣∣2
1

=
3

4
− ln 2 .

The second integral is,

I3,2 =

∫ 1

0

x3

(1 + x2)2
dx =

[
− x2

2(1 + x2)

]∣∣∣∣1
0

+

∫ 1

0

x

1 + x2
dx =

= −1

4
+

1

2
ln (1 + x2)

∣∣∣∣1
0

= −1

4
+

1

2
ln 2 .

We can therefore rewrite expression 7 as,

−4a2

3
(I5,2 + 2I3,2) = −4a2

3

(
3

4
− ln 2− 1

2
+ ln 2

)
= −a

2

3
.

It follows,

Wth =
9µ0LI

2

8πa2

(
a2

2
− a2

3

)
=

3µ0 LI
2

16π
. (8)

The magnetic energy can be computed as,

Wmag =

∫
B2
θ (r)

2µ0

dV =
µ0LI

2

π

∫ a

0

dr
r3

(r2 + a2)2
=
µ0LI

2

π

∫ 1

0

x3

(1 + x2)2
dx =

=
µ0LI

2

4π
(2 ln 2− 1) .

In this example the ratio of magnetic and thermal energies is,

Wmag

Wth

=
4

3
(2 ln 2− 1) = 0.51 ∼ O(1) .
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Exercise 2 - The screw-pinch

a) We can proceed in the very same way of the previous exercise. The general form of
the current density and magnetic field of a screw-pinch is,{

~B = [0, Bθ(r), Bz(r)]
~j = [0, jθ(r), jz(r)]

.

Using Ampère’s law we obtain relations between the components of the current and
magnetic field,

~∇× ~B = µ0
~j = µ0[0, jθ(r), jz(r)] =

{
0,−∂Bz(r)

∂r
,
1

r

∂

∂r
[rBθ(r)]

}
. (9)

Use these relations to eliminate the current density in the ideal MHD force balance
equation,

~j × ~B = ~∇p ⇒ ∂p(r)

∂r
= Bz(r)jθ(r)−Bθ(r)jz(r) = (10)

1

µ0

{
−Bz(r)

∂Bz(r)

∂r
−Bθ(r)

1

r

∂

∂r
[rBθ(r)]

}
⇒

⇒ ∂

∂r

[
p(r) +

B2
z (r) +B2

θ (r)

2µ0

]
+
B2
θ (r)

µ0r
= 0 .

b) The externally applied axial field can be modified by a poloidal plasma current, jθ.
We inspect the sign of this current by solving Eq. 10 for jθ,

jθ(r) =
1

Bz(r)

[
∂p(r)

∂r
+ jz(r)Bθ(r)

]
. (11)

Since the pressure profile generally peaks in the plasma centre, the pressure gradient
is negative, ∂p(r)/∂r < 0. As the poloidal field is created by the axial current, jzBθ is
always positive, jzBθ > 0. The sign of the sum in the parenthesis on the R.H.S. of Eq.
11 depends on the magnitude of the pressure gradient. Considering that Bz(r) > 0,

jθ =

 > 0 for
∣∣∣∂p(r)∂r

∣∣∣ < jz(r)Bθ(r) , i.e. low plasma pressure

< 0 for
∣∣∣∂p(r)∂r

∣∣∣ > jz(r)Bθ(r) , i.e. high plasma pressure

At low plasma pressure, the poloidal current jθ(r) is positive throughout the radial
profile and reinforces the toroidal magnetic field Bz(r), thus producing a paramagnetic
effect. Without any plasma pressure and, hence, pressure gradient, jθ/jz = Bθ/Bz,
which means that current and magnetic field have the same pitch angle and are, there-
fore, aligned and force-free. At sufficiently high plasma pressure, the poloidal current
changes sign and starts to reduce the toroidal magnetic field, thus producing a diamag-
netic effect. Note that the effect on the axial field remains the same when changing
the direction of the axial field as jθ changes its sign with Bz.
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c) The generic expression of the rotational transform ι(r) and safety factor profile q(r)
can be obtained from the continuous form of their definitions,

ι = lim
n→∞

1

n

n∑
k=1

dθk =

∫ 2π

0

dθ =

∫ L

0

dθ

dz
dz and q(r) =

2π

ι(r)
. (12)

The ratio of poloidal and axial advances along a magnetic field line depends on the
corresponding components of the magnetic field,

dθ

dz
=

Bθ(r)

rBz(r)
.

The integration in Eq. 12 is trivial, yielding,

ι(r) =

∫ L

0

dθ(r)

dz
dz = L

Bθ(r)

rBz(r)
and q(r) =

2π

ι(r)
=

2πrBz(r)

LBθ(r)
.
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