

Plasma II - Exercises

Dr. H. Reimerdes, Dr. E. Tonello - SPC/EPFL

Solutions to problem set 1 - 21 February 2025

Exercise 1 - Ideal Ignition

a) *Ideal ignition* occurs when the α particle heating, P_α , compensates for bremsstrahlungs losses, P_b . Neglecting He ash in the plasma, Z_{eff} in the expression of P_b is set to 1,

$$\frac{P_\alpha}{P_b} = \frac{\frac{1}{4}n^2\langle\sigma v\rangle_{DT}\Delta E_\alpha}{An^2T^{1/2}} = 1 \quad \begin{cases} \Delta E_\alpha = 3.5 \text{ MeV} \\ A = 5 \times 10^{-37} \frac{\text{Wm}^3}{\sqrt{\text{keV}}} \end{cases}$$

Since P_α and P_b have the same density dependence, the condition depends only on the plasma temperature and yields an *ideal ignition temperature*, T_{ideal} . Replacing $\langle\sigma v\rangle_{DT}$ with the quadratic expansion given in the exercise yields,

$$\frac{\frac{1}{4}1.1 \times 10^{-24} \frac{\text{m}^3}{\text{s keV}^2} T_{\text{ideal}}^2}{5 \times 10^{-37} \frac{\text{Wm}^3}{\sqrt{\text{keV}}} T_{\text{ideal}}^{1/2}} = 1. \quad (1)$$

Solving Eq. 1 for the temperature results in,

$$T_{\text{ideal}} = 2.2 \text{ keV}.$$

b) The value for T_{ideal} obtained in a) is clearly outside of the applicable range of the quadratic expansion of $\langle\sigma v\rangle_{DT}$ and further terms have to be taken into account. The resulting expression is easily solved graphically, which yields T_{ideal} of approximately 4.4 keV (see Fig. 1).

c) To study the stability of the system, the plasma energy dynamics can be considered,

$$\frac{dE}{dt} = P_\alpha - P_b \quad \Rightarrow \quad \frac{d(3nT)}{dt} = \frac{1}{4}n^2\langle\sigma v\rangle_{DT}\Delta E_\alpha - An^2T^{1/2}. \quad (2)$$

The stability of the system is determined by its response to small perturbations. Since the equilibrium does not depend on n , we only consider a perturbation δT to the equilibrium temperature T_{ideal} . A linear expansion of the temperature dependent terms in Eq. 2 at $T = T_{\text{ideal}}$ yields,

$$3n \frac{d(\delta T)}{dt} = \frac{n^2}{4} \frac{d\langle\sigma v\rangle_{DT}}{dT} \bigg|_{T=T_{\text{ideal}}} \Delta E_\alpha \delta T - \frac{An^2}{2} \frac{1}{T_{\text{ideal}}^{1/2}} \delta T.$$

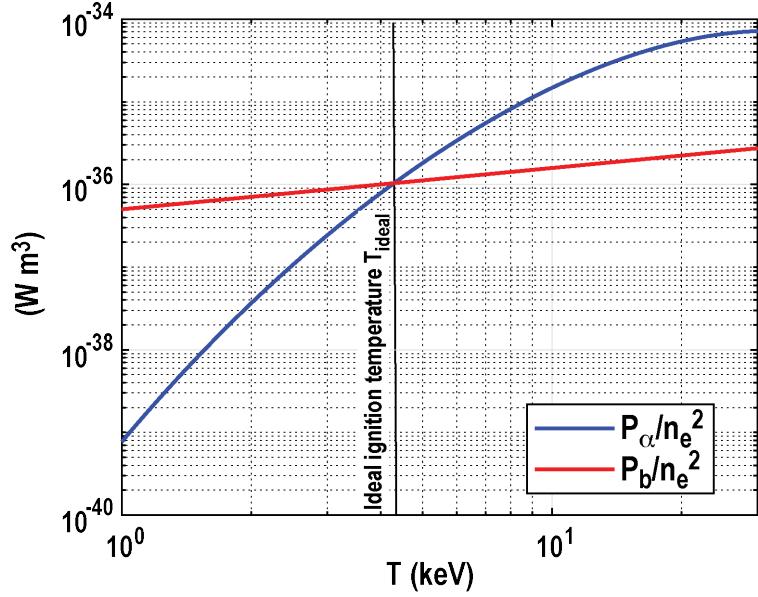


Figure 1: Temperature dependence of the alpha heating power P_α and bremsstrahlung losses P_b (assuming $Z_{\text{eff}}=0$) yielding the ideal ignition temperature T_{ideal} , where $P_\alpha = P_b$.

The analytical expression for $\langle \sigma v \rangle_{\text{DT}}$ given in the problemset is now used to evaluate its derivative,

$$3n \frac{d(\delta T)}{dt} = \frac{n^2}{4} \langle \sigma v \rangle_{\text{DT}}|_{T=T_{\text{ideal}}} \left(-\frac{\alpha a_{-1}}{T_{\text{ideal}}^{\alpha+1}} + a_1 \right) \Delta E_\alpha \delta T - \frac{An^2}{2} \frac{1}{T_{\text{ideal}}^{1/2}} \delta T .$$

The expression can be simplified using the equilibrium condition $1/4 \langle \sigma v \rangle_{\text{DT}}|_{T_{\text{ideal}}} \Delta E_\alpha = AT_{\text{ideal}}^{1/2}$,

$$\begin{aligned} 3 \frac{d(\delta T)}{dt} &= nA \left[T_{\text{ideal}}^{1/2} \left(-\frac{\alpha a_{-1}}{T_{\text{ideal}}^{\alpha+1}} + a_1 \right) - \frac{1}{2T_{\text{ideal}}^{1/2}} \right] \delta T \\ &= \frac{nA}{2T_{\text{ideal}}^{1/2}} \left[2T_{\text{ideal}} \left(-\frac{\alpha a_{-1}}{T_{\text{ideal}}^{\alpha+1}} + a_1 \right) - 1 \right] \delta T . \end{aligned} \quad (3)$$

To verify if the *ideal ignition* temperature is a stable or unstable condition, we have to check if the term in the square brackets on the right-hand side term of Eq. 3 is positive (exponentially growing) or negative (stable). This corresponds to study the following relation:

$$2T_{\text{ideal}} \left(-\frac{\alpha a_{-1}}{T_{\text{ideal}}^{\alpha+1}} + a_1 \right) \quad \begin{cases} > 1 & \text{unstable} \\ < 1 & \text{stable} \end{cases} \quad (4)$$

Substituting the coefficients into Eq. (4) yields,

$$2T_{\text{ideal}} \left(-\frac{\alpha a_{-1}}{T_{\text{ideal}}^{\alpha+1}} + a_1 \right) \simeq 7 > 1 \quad \Rightarrow \quad \text{unstable} .$$

Note that an even more complete parametric description of $\langle\sigma v\rangle_{DT}$ is given in [Freidberg, Plasma Physics & Fusion Energy, page 58],

$$\langle\sigma v\rangle_{DT} = 10^{-6} \frac{m^3}{s} \exp\left(\frac{a_{-1}}{T^\alpha} + a_0 + a_1 T + a_2 T^2 + a_3 T^3 + a_4 T^4\right) \quad (5)$$

$$\left\{ \begin{array}{l} \alpha = 0.2935 \\ a_{-1} = -21.38 \\ a_0 = -25.20 \\ a_1 = -7.101 \times 10^{-2} \\ a_2 = 1.928 \times 10^{-4} \\ a_3 = 4.925 \times 10^{-6} \\ a_4 = -3.984 \times 10^{-8} \end{array} \right.$$

where T is expressed in keV. However, since we want to study the stability around the ideal ignition temperature, we can neglect the higher order terms. Figure 2 shows that for $T \approx 4.4\text{keV}$ the omission of the 4th, 3rd and 2nd order terms introduces only a small error in $\langle\sigma v\rangle_{DT}$.



Figure 2: Plot of the analytical expression of $\langle\sigma v\rangle_{DT}$ previously provided, for several degrees of approximation, with the corresponding relative error with respect to the complete expression.