

# Plasma II - Exercises

Dr. H. Reimerdes, Dr. E. Tonello - EPFL/SPC

**Solutions** to problem set 12 - May 23, 2025

## Multiple-choice question

In the course (p14) you have seen that the Bremsstrahlung emission of a thermal plasma decreases with increasing frequency. What limits the increase of Bremsstrahlung at low frequencies?

- ( ) At sufficiently low frequency Bremsstrahlung is replaced by line radiation.
- ( ) There is no limit and Bremsstrahlung emission approaches a constant value as the frequency decreases towards zero. As the energy carried by each emitted photon,  $h\nu$ , depends on the frequency the photon flux diverges (*infrared divergence*).
- (x) At low frequency inverse Bremsstrahlung, i.e. photon absorption on free charges, becomes increasingly important and limits the net emission.

## Measuring emission of an optically thin plasma

The geometry is shown in the schematic below.

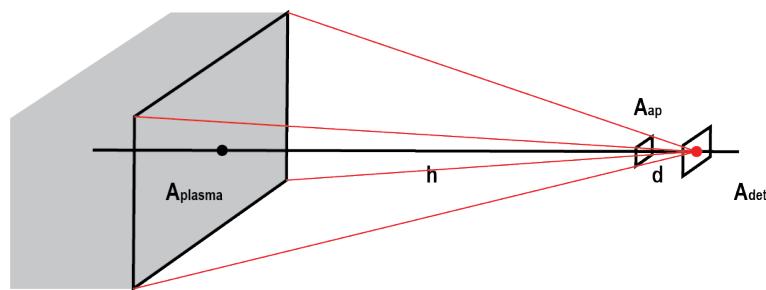



Figure 1: Schematic of the viewing geometry.

a) The seen plasma volume emits the power  $P = \int \epsilon dV_{\text{plasma}}$  isotropically, of which only a fraction  $dA_{\text{det}}/4\pi h^2$  is detected with the detector element,

$$dP_{\text{det}} = \int \epsilon dV_{\text{plasma}} \frac{dA_{\text{det}}}{4\pi h^2}$$

b) The plasma volume seen by the detector element is determined by the size and position of the aperture. The cross-sectional area of the plasma seen by the detector relates to the area of the aperture as the ratio of the squares of their respective distances to the detector,

$$\frac{A_{\text{plasma}}}{A_{\text{ap}}} = \frac{h^2}{d^2} .$$

The length of the plasma volume is determined by the length of the LoS. The plasma volume, therefore, is,

$$dV_{\text{plasma}} = A_{\text{plasma}} dl = \frac{A_{\text{ap}} h^2}{d^2} dl$$

c) The detected power is,

$$\begin{aligned} P_{\text{det}} &= \int_{\text{det}} \int_{\text{plasma}} \epsilon dV_{\text{plasma}} \frac{1}{4\pi h^2} dA_{\text{det}} \\ &= \int_{\text{det}} \int_{\text{plasma}} \epsilon \frac{A_{\text{ap}} h^2}{d^2} dl \frac{1}{4\pi h^2} dA_{\text{det}} \\ &= \frac{A_{\text{ap}} A_{\text{det}}}{4\pi d^2} \int_{\text{plasma}} \epsilon dl . \end{aligned}$$

The quantity  $A_{\text{ap}} A_{\text{det}}/d^2$  is also referred to as the *etendue* or *A Ω product* of the optical system. It describes how the optical system translates the radiant flux emitted by the plasma surface per unit solid angle (*radiance*)  $\frac{1}{4\pi} \int_{\text{plasma}} \epsilon dl$  into a signal.