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Multiple-choice question

Reconnection converts

() kinetic energy into magnetic energy.
() magnetic energy into kinetic energy.

(x) magnetic energy into kinetic energy and heat.

Design of an experiment to study the kink instability

Vacuum chamber

Figure 1: Sketch of the experimental setup.



a)

Considering the hardware available, we can place the two electrodes as shown in Figure
1 (in orange). In that way, the magnetic field lines generated by the central conductor
(in brown) are perpendicular to the electrode surfaces and confine the plasma produced
between the two electrodes. Once the plasma breakdown is obtained, the flux rope (in
orange) is poloidally contained (along é) between the anode and the cathode, with the
second magnetic field (B, in green) generated by the plasma current (I, in blue). A
semi-circular flux rope can thus be generated.

From the Paschen curve for H,, we can calculate the pd product corresponding to the
minimum voltage to obtain the gas breakdown,

Pd|min = 0.15mbar x 0.1m = 1.5Pam . (1)

To compute the distance between the electrodes (along the magnetic field lines), we
need to calculate the gas pressure of our experiment, assuming an ideal gas at room
temperature (7'=300 K),

nRT  10~*mol x 8.31J/(mol K) x 300 K

P " P= L 3.14 x (0.5m)? x 2m a- (2)
The corresponding distance between the electrodes is,
pd|min 1.5 Pam
P 1.53 Pa )
Let us take the expression for a plasma column safety factor,
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where ¢ is the length of the plasma column and we have kept the same coordinate
system of our problem. Since the threshold is given by the safety factor at the edge,
we can consider the previous expression at r = a,
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where we have used Ampere’s law to determine the magnetic field corresponding to
the plasma current inside the flux rope. Using the threshold condition, we obtain,
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To compute the current we study the constraints we have on the system. Let’s start
from the stability /instability kink condition.

To find the condition for the flux rope to become unstable against the kink instability,
we use the Kruskal-Shafranov condition I, > Ix_g, where I, is the plasma current



inside the flux rope. As indicated in the problem set, the plasma current can be
assumed to be equal to the ion saturation current I,
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where ¢, = \/kgT./m; is the ion sound speed, A is the effective collecting area of the
electrode and By is the poloidal magnetic field along the connection length between
the two electrodes. This can be written as,
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knowing that the two electrode surfaces are poloidally separated by 180 degrees (they
lay on the same plane).

Since it is reasonable to consider the whole electrode surface as collecting area, the
Kruskal-Shafranov condition, Eq. (7), becomes,
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We can obtain the electron density from the number of moles we have, considering the
information on the degree of ionization of the gas,

N Na 1073mol x 6 x 10% part/mol

~ 0.5 TF o ~ 2 x 10% part/m® . (10)

n. = 0.5n =0.5

The ion sound speed is,
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The Kruskal-Shafranov condition can be reduced to,
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We now have to verify for which values of magnetic field the plasma is magnetised.
If we consider the condition on the temporal scale lengths, we have,
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For the spatial scale length we have,
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It’s clear as the condition on the spatial scale length is the most constraining one, so
that the resulting range of the axial conductor current is,

= Ieona > ~ 200A . (14)

Loona € [0.2 + 85] KA . (15)

Let us evaluate the temperature increase associated with the Ohmic dissipation inside
the central axial conductor. The temperature variation AT of the axial conductor for
a current [ driven for a time At, is,
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Assuming a current of 2kA for one second, we obtain,
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72 % 8.96 x 103kgm—3 x 385Jkg ' K-1 (0.01m)*

This results in a negligible temperature increase, since the time scales of the exper-
iments are much smaller than 1sec. It should however be stressed that continuous
(CW) experiments do not involve complex power supply controllers and are, therefore,
simpler to implement. On the negative side, CW experiments usually need water cool-
ing of the active parts.

We should underline that the dependence of the temperature variation on the inverse
of the forth power of the cross section radius of the conductor. A conductor with 5 mm
cross section would have given a heating of 3 K per second (still with 2 kA of current)!

This question clearly requires the estimate of the characteristic growth-rate of the
unstable kink, that we have seen equal to,

N = 'UA_7T [p 2 1= 7T[c0nd Ho [p ’ -1 (18)
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where va = By/\/fom;n; is the Alfven velocity. Using the provided value of conductor
current we end up with,

~1.6x10°s7". (19)

L, VBxmx12x 105AX\/ 10-7H/m
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This corresponds to a characteristic time scale of,
T ~ B ~ 6us . (20)
8
This suggests that a fast camera should image the kinked flux rope with a time res-

olution of at least 6/10 us (assuming that you are happy with ten frames during the
expansion phase).



