

Plasma II - Exercises

Dr. H. Reimerdes, E. Tonello - SPC/EPFL

Problem Set 2 - February 28, 2025

Examples of one-dimensional (1D) MHD equilibria are the cylindrical magnetic pinches, of which three varieties exist: the θ -pinch, the Z-pinch, and the screw-pinch, also known as the linear tokamak. In these three configurations, all equilibrium quantities, such as current, magnetic field and plasma pressure, only depend on the radial coordinate r .

Exercise 1 - The Bennett Z-pinch

In a Z-pinch the plasma is confined using a toroidal current and a poloidal magnetic field. Therefore, using cylindrical coordinates $\{\vec{e}_r, \vec{e}_\theta, \vec{e}_z\}$, we can set $\partial/\partial z = \partial/\partial\theta = 0$ for the Z-pinch.

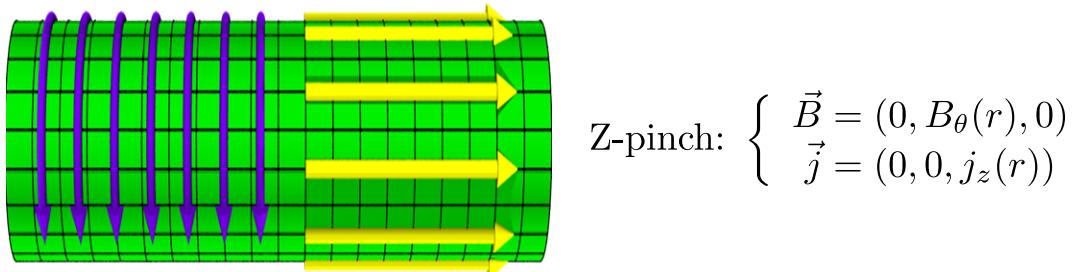


Figure 1: Schematic of a Z-pinch configuration with its \vec{e}_θ -directed magnetic field (purple) and \vec{e}_z -directed plasma current (yellow).

Remember that in cylindrical coordinates the gradient, divergence and curl of a vector field $\vec{A} = (A_r(r, \theta, z), A_\theta(r, \theta, z), A_z(r, \theta, z))$ are, respectively:

$$\vec{\nabla} = \left(\frac{\partial}{\partial r}, \frac{1}{r} \frac{\partial}{\partial \theta}, \frac{\partial}{\partial z} \right) \quad \vec{\nabla} \cdot \vec{A} = \frac{1}{r} \frac{\partial}{\partial r} (r A_r) + \frac{1}{r} \frac{\partial A_\theta}{\partial \theta} + \frac{\partial A_z}{\partial z}$$

$$\vec{\nabla} \times \vec{A} = \left(\frac{1}{r} \frac{\partial A_z}{\partial \theta} - \frac{\partial A_\theta}{\partial z}, \frac{\partial A_r}{\partial z} - \frac{\partial A_z}{\partial r}, \frac{1}{r} \frac{\partial}{\partial r} (r A_\theta) - \frac{1}{r} \frac{\partial A_r}{\partial \theta} \right)$$

- a) Determine the general equilibrium configuration, i.e. find a general expression for the equilibrium relating the plasma pressure $p(r)$ to the toroidal current $j_z(r)$ or poloidal magnetic field $B_\theta(r)$.
- b) Determine the radial profiles for the poloidal magnetic field $B_\theta(r)$ and the plasma pressure $p(r)$ for a Z-pinch with the radial current density profile,

$$j_z(r) = \frac{2I}{\pi} \frac{a^2}{(r^2 + a^2)^2}$$

where a is the radius of the plasma column. Assume that the pressure decreases to zero at $r = a$.

Calculate the on-axis values (i.e. at $r = 0$) of j_z , B_θ and p using $I = 1 \text{ kA}$ and $a = 1 \text{ m}$. Draw qualitatively the radial profiles of these quantities.

- c) (Optional - only, if you like to integrate) Compute the total thermal plasma energy W_{th} and the magnetic energy W_{mag} , assuming that this Z-pinch is built as a cylinder of finite length $L = 3 \text{ m}$, terminated at both ends with appropriate electrodes so that the plasma cannot escape. What can you say on the MHD equilibrium of the Bennett pinch based on the ratio $W_{\text{mag}}/W_{\text{th}}$?

Exercise 2 - The screw-pinch

We can now combine the Z-pinch and the θ -pinch, to obtain a screw-pinch, which corresponds to a linear tokamak, i.e. a tokamak which is not folded over upon itself but which still requires electrodes at its ends to confine the plasma. In this configuration we externally impose the toroidal magnetic field $B_z(r)$, and we generate a toroidal current $j_z(r)$ to produce the poloidal magnetic field $B_\theta(r)$.

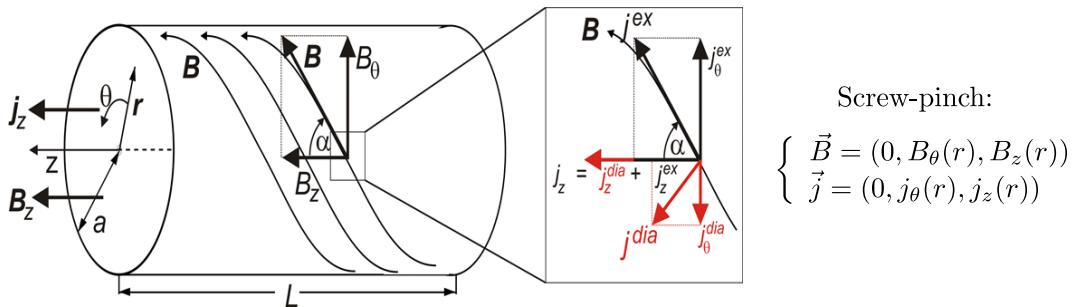


Figure 2: Magnetic configuration of a screw-pinch.

- a) Determine the general equilibrium configuration for the screw-pinch.
- b) If we impose a positive toroidal magnetic field $B_z(r) > 0$ and plasma current $j_z(r) > 0$, what are the conditions on the plasma pressure gradient to obtain a paramagnetic or diamagnetic behaviour? Think about j_θ and how it can affect B_z .

- c) Determine expressions for the rotational transform and safety factor profiles of a screw-pinch.