

# Plasma II - Exercises

Dr. H. Reimerdes, Dr. E. Tonello - EPFL/SPC

Problem Set 10 - May 9, 2025

## Multiple-choice question

### Why are sunspots cooler than their surroundings?

- ( ) The large magnetic field of sun spots suppresses convection and, thereby, the primary heat transport mechanisms from deeper regions towards the surface.
- ( ) The typical flaring of flux tubes caused by radial gradients in the magnetic field causes transported heat to spread over a greater surface area.
- ( ) The lower temperature is only an artefact of high magnetic field affecting our temperature measurements.

### Why does a dynamic dynamo require a sufficiently high magnetic Reynolds number $R_m$ ?

- ( ) Because MHD theory is not valid at low magnetic Reynolds number.
- ( ) A low magnetic Reynolds number indicates high resistive dissipation, which primarily leads to a conversion of mechanical energy (flow) into heat rather than magnetic energy.
- ( ) Plasmas with low Reynolds number rotate in the wrong direction for magnetic field amplification to take place.

## Exercise 1 - Magnetic buoyancy in the Sun

Calculate the rising speed of a magnetic flux tube (length  $L$  and minor radius  $a$ ) emerging from the convection region of the Sun into the photosphere. Assume for simplicity an ideal gas, a drag coefficient of 1 and a flux tube with:

- a magnetic field intensity much greater than the one outside the tube;
- the same temperature of the surrounding environment;
- a direction perpendicular to the solar gravity;
- a constant rising velocity.

Reminder: The drag force is  $F_D = \frac{1}{2}\rho v^2 C_D A$ , where  $C_D$  is a dimensionless drag coefficient and  $A$  the cross sectional area.

## Exercise 2 - Kink instability of a flux rope / screw pinch

Consider a screw pinch of length  $L$  and radius  $a$  as sketched in the following figure. Note that this picture could also be used to model a linear flux rope in the Sun.

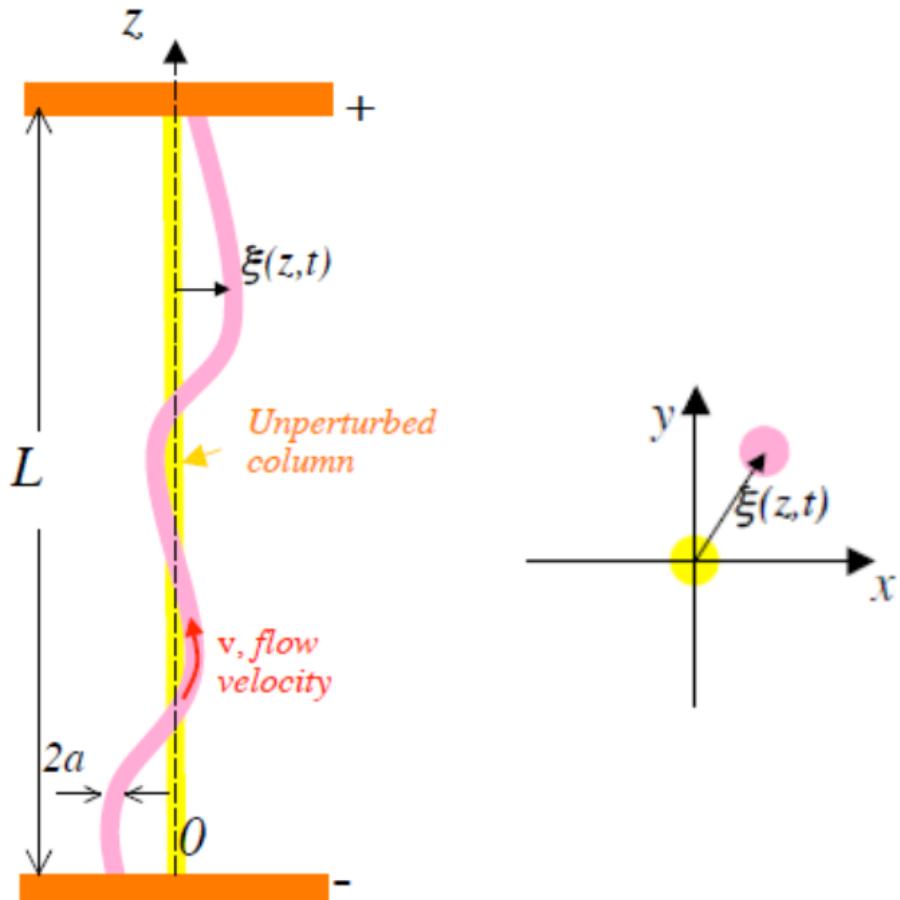



Figure 1: Schematic of a kink instability in a screw pinch.

Starting from the equation of motion obtained from the energy principle

$$\frac{\partial^2 \eta}{\partial t^2} = v_A^2 \left( \frac{\partial^2 \eta}{\partial z^2} + ik_0 \frac{\partial \eta}{\partial z} \right) \quad \text{with} \quad \eta = \xi_x + i\xi_y \quad k_0 = \frac{B_\theta}{aB_z} \quad (1)$$

where  $\eta$  is the plasma displacement in the  $x$ - $y$  plane and  $B_\theta$  computed at the edge of the plasma column, calculate the growth rate  $\gamma$  of the most unstable kink mode ( $n = 1$ ) as a function of the plasma current  $I$ , the length of the plasma column  $L$ , the Alfvén velocity  $v_A$  and the Kruskal-Shafranov critical current  $I_{K-S} = 4\pi^2 a^2 B_z / (\mu_0 L)$ . Consider as boundary conditions  $\eta(z = 0) = \eta(z = L) = 0$ , also known as line-tied BC (since the flux rope / screw pinch foot points are not allowed to move).