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the lead tube, Eq. (2) predicts for the interval of
the magnetic field strength corresponding to one
flux unit a value of H =0.5 oe. The experimen-
tally observed interval, however, reaches only

FIG. 2. Resonance amplitude divided by measuring
field H as a function of the applied field H . The
ordinate is proportional to the frozen-in flux. x—First
run; o- second run.

0.2 oe, that is about 40 k of the calculated value.
So far the reason for this discrepancy is not clear.
For example, an error of 60% in the determina-
tion of the lead tube's diameter would explain the
difference, but such an error is improbable.
The experiments are being continued with higher

fields H and other superconductors of various di-
arneters.
Mercereau and Vant-Hull' also tried to verify

London's postulate of the quantization of rragnetic
flux in a superconducting ring. The result of their
experiments was negative.
The authors are indebted to Professor %.Meiss-

ner who made possible and promoted this work.
The authors would further like to thank Professor
F. X. Eder for encouragement and helpful discus-
sions.
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EXPERIMENTAL DETECTION OF TRANSITION RADIATION*t

H. Boersch, C. Radeloff, and G. Sauerbrey
I. Physikalisches Institut of the Technische Universitat Berlin, Berlin, Germany

(Received February 17, 1961)

If an electron approaches the boundary between
vacuum and metal, a changing dipole field due to
the electron and its image charge is formed
which, according to the theory of Ginsburg and
Frank, effects the emission of "transition ra-
diation. " In the experiment electrons bombard-
ing a metal surface generate a visible radiation
known as "Lilienfeld radiation. " The results of
the experiments done before this work are, how-
ever, contradictory. ~ Therefore we undertook
to exclude by more careful experiments the in-
fluence of surface contaminations and to com-
pare the experimental Lilienfeld radiation with
the theoretical transition radiation by variation

of different parameters.
Our investigations were carried out at pres-

sures of about 10 mm Hg with massive beat-
able targets and with condensed films of more
than 1 p. thickness. The electron beam was pro-
duced by field emission and pulsed with a fre-
quency of 100 kc/sec. The energy of the elec-
trons was in general 2-12 kev. The intensity
of the Lilienfeld radiation was measured with
a photomultiplier tube and a phase discrimina-
tor. The results of our investigations are as
follows:
(1) The intensity of the Lilienfeld radiation

is independent of the temperature of the target.
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EXPERIMENTAL PROOF OF MAGNETIC FLUX QUANTIZATION IN A SUPERCONDUCTING RING*

H. Doll and M. Nabauer
Kommission fur Tieftemperaturforschung der Bayerischen Akademie der Wissenschaften,

Herrsching/Ammersee, Germany
(Received June 19, 1961)

H = p x (4/md2),y0 (2)

where d is the diameter of the tube. The diameter
has to be chosen sufficiently small that the fluc-
tuations of the earth's magnetic field can be ne-
glected relative to the magnetic field adequate to
freeze in one flux unit. This. has been achieved
with a tube of 10.3-micron diameter and 0.6-mm
length (see Fig. 1), which gives a magnetic field
of H&0=0. 5 oe, according to Eq. (2).
The sample consists of a small lead cylinder,

prepared by evaporating lead on a, quartz fiber
(of about 10-micron diameter and with a length
of about 1 mm).
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FIG. 1. Schematic diagram of the sample with the

directions of the applied field H& to be frozen in, and
the measuring field H .

From theoretical considerations, based on wave
mechanics, London' concluded that the magnetic
flux frozen in in a, twofold-connected superconduct--
ing body (ring or. tube) should not have any arbi-
trary value, but. only such values which are inte-
ger multiples of a basic unit P„

p, = bc/e = 4.12 x 10 gauss cm .
That means the magnetic flux should be quantized.
Bardeen and Schrieffer also agreed with this con-
clusion.
In order to verify a possible flux quantization,

the mechanical torque exerted by a magnetic
field H& on a small superconducting lead tube
with frozen-in magnetic flux has been measured.
From the following equation, one obta, ins the

magnetic field H 0 necessary to freeze in just
one flux unit Q, :

y0

The very small torque, proportional to the fro-
zen-in flux and to the measuring field H& (normal
to H ), can be observed by an already known auto-
resonance method. " The sample is suspended
on a thin torsion fiber (normal to H& and H~) in-
side a coil. In connection with a mirror for re-
cording the oscillation amplitude it represents
a system of damped torsion oscillation. The
oscillation of the system can be kept at a con-
stant amplitude by the alternating torque, caused
by periodically reversing the magnetic field H
of the coil. The oscillating system itself controls
the time of switching the field by means of a, pho-
toelectric device. The damping of the system
being known, the constant resonance amplitude
is a measure for the torque which acts on the
sample.
Each experimental value was obtained in the fol-

lowing manner: 1. The sample was heated above
the transition temperature; then a defined field to
be frozen in, Hy, was applied. 2. After recooling
below the transition temperature, Hy was switched
off. 3. The resonance amplitude was measured
as described above.
The resonance amplitude is proportional to the

product (measuring field H~) times (magnetic mo-
ment of the sample). The latter in turn is propor-
tional to the frozen-in flux. Figure 2 shows the
measured resonance amplitude divided by the
driving field H as a function of the field H . (H
has always been about 10 oe.)
As Fig. 2 shows, it is impossible to freeze in

any flux between H = -0.1 and +0.1 oe. Near +0.1
oe there occur marked steps. Upon increasing the
magnetic field Hy, the frozen-in fluxes remain
nearly constant between 0.1 and 0.3 oe. At 0.3 oe
another step occurs, again followed by a series of
constant values.
This is exactly what is expected of a quantized

magnetic flux in a twofold-connected superconduct-
ing body. If an arbitrary flux could be frozen in,
the relation between magnetic flux and field Hy
would be as shown in Fig. 2 by the dashed line.
This has been obtained by measurements at com-
paratively high fields (H& =10 oe), in which case
the value of one flux unit is already very small
compared with the entire frozen-in flux.
With the microscopically measured diameter of
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4.0—
FIG. 1. (Upper) Trapped flux

in cylinder No. 1 as a function
of magnetic field in which the
cylinder was cooled below the
superconducting transition. tem-
perature. The open circles are
individual data points. The solid
circles represent th, e average
value of all data points at a par-
ticular value of applied field in-
cluding all the points plotted
and additional data which could
not be plotted due to severe over-
lapping of points. Approximately
two hundred data points are rep-
resented. The lines are drawn
at multiples of hc/2e. (Lower)
Net flux in cylinder No. 1 be-
fore turning off the applied field
in which it was cooled as a func-
tion of the applied field. Open
and solid circles have the same
significance as above. The low-
er line is the diamagnetic cali-
bration to which all runs have
been normalized. The other lines
are translated vertically by suc-
cessive steps of hc/2e.
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values 0 and hc/2e represent, we believe, ex-
pected scatter from drift and noise. This scat-
ter has been greatly improved for sample No. 2.
For both samples the data are consistent with
values 0 and hc/2e for the trapped flux as de-
scribed above.
Near the transition to the second and third

steps the fluctuations in the data are greater,
and in addition points lie between the steps.
Some increased scatter is expected since the
absolute fluctuations due to changes in gain and

' vibration amplitude are proportional to the size
of the signal. The points between the steps do
not necessarily indicate trapping of nonintegral
values of flux. Since the observed signal is the
sum of the emf's from coils at the two ends of
the sample, a flux line passing out of the cylin-
der at some point other than the end may pro-
duce different signals in the two coils. The two
ends of the cylinder are not quite identical; so
near the transition region it is probable that the
two ends might trap a different number of units

provides a way of obtaining a truly zero-magnetic-
field region. ) (2) When the applied field exceeds
a certain value, flux is trapped both with the field
on, and after the applied field is turned off. The
amount of this trapped flux within the experi-
mental accuracy of the data is hc/2e.
The amount of trapped flux remains constant

as the applied field is increased until a value
approximately three times that for the initial
trapping is reached, at which point the trapped
flux increases to about twice the original amount.
There appears to be evidence for additional
changes at five and seven times the field for the
first trapping.
Fluctuations in the data are caused by vari-

ations in the zero of the magnetic field, changes
in the gain, vibration amplitude, drift, and ran-
dom noise in the detection system. The approxi-
mately two hundred data points for sample No. 1
were taken over a three-week period during
which the drift and noise were gradually im-
proved. The fluctuations of the data around the
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EXPERIMENTAL EVIDENCE FOR QUANTIZED FLUX IN SUPERCONDUCTING CYLINDERS
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We have observed experimentally quantized
values of magnetic flux trapped in hollow super-
conducting cylinders. That such an effect might
occur was originally suggested by London' and
Onsager, ' the predicted unit being hc/e. The
quantized unit we find experimentally is not hc/e,
but hc/2e within experimental error. s
Although the unit of quantized flux is small

(hc/2e =2.07x10 ~gauss cmm), it can be produced
by a magnetic field easily measured and con-
trolled in the laboratory if the area to which it
is confined is sufficiently small. For our sam-
ples, one flux unit corresponds to a magnetic
field of the order of 0.1 gauss. Measurements
were made on two hollow tin cylinders. Cylinder
No. 1 was 0.8 cm long, 2.33 x10 3 cm outside
diameter and 1.33 x10 3 cm inside diameter.
Cylinder No. 2 was 0.9 cm long, 1.64 x10 3 cm
outside diameter and 1,35x10 3 cm inside di-
ameter. These were fabricated by electroplat-
ing tin on a one-centimeter portion of a No. 56
copper wire. The sample, plus protrd. ding wire,
was jacketed for protection and strength with
electroplated copper to an approximate outside
diameter of 8x10 ' cm.
A field-free region (H = 0+ 0.001 gauss) is

prepared using three orthogonal Helmholtz coils.
The tin cylinder is placed in this region and
cooled through the superconducting transition
in the presence of a known applied axial magnetic
field. The net flux in the cylinder is measured
both with the field on and after the field is turned
off. The measurement is made by moving the tin
cylinder up and down one hundred times per sec-
ond with an amplitude of one millimeter and ob-
serving the electrical pickup in two small coils,
each of ten thousand turns, surrounding the ends
of the cylinder. The instrument is similar in
concept to that described by Foner. 4 The induced
emf measures the difference in the flux contained
within the area of the cylinder and that which
would have been in the same area if the cylinder
were absent (or in the normal state). The system
is calibrated by cooling the sample below the
superconducting transition in zero field and ob-
serving the signal from the completely diamag-
netic cylinder when a known magnetic field is
applied. From the value of the field and the meas-
ured cross-section area of the cylinder, the ab-

solute value of the flux for a given signal is cal-
culated.
The diameter of each cylinder was measured

with a microscope equipped with a micrometer
eyepiece. X-ray photographs verified the di-
mensions of the tin cylinder after the application
of the copper jacket. For the purpose of cal-
culating flux, the measured radii of the cylinders
are reduced by 0.6 micron due to an expected
loss of superconducting properties on the sur-
face of the tin in contact with the copper. ' That
this correction was approximately valid is in-
dicated by a 0.2'K decrease in the value of the
transition temperature for the sample No. 2
whose cylindrical walls were 1.5 microns thick,
leaving, we believe, only 0.3 micron of super-
conducting material in the center after allowance
for the effect of the center copper wire and the
outside copper jacket. This is in agreement with
the experimental results on electroplated tin. '
With this adjustment, the area used for the

diamagnetic calibration of cylinder No. 1 is
3.84 x10 cm, and the area of the hole is
1.65x10 cm . For cylinder No. 2 the corres-
ponding quantities are 1.81 x10 ' cm' and 1.70
x10-e cm2.
Data on sample No. 1 are shown in Fig. 1, and

on sample No. 2 in Fig. 2. The diagonal line
through the origin represents the calibration.
It is the signal corresponding to zero flux in the
cylinder and hole in the presence of the applied
field as described above. The experimental
points shown on the graph represent two types of
data for each value of the applied field. The
points on the bottom half of each graph represent
the signal in the presence of the applied field
after cooling through the transition in that field.
The points in the upper half represent the trapped
flux after the field is subsequently reduced to
zero. For each point in the lower curve there
is a corresponding point in the upper curve. The
solid lines represent calculated integral values
of hc/2e.
It can be seen that certain features of the data

are common to both samples. (1) Below a cer-
tain value of applied field, the total cross section
of the cylinder acts as a perfect diamagnet, ex-
cluding all the flux, and no flux is trapped when
the applied field is turned off. (We believe this
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We approximated the incommensurate CDW vector by
qCDW ¼ 1=3; 0; 0ð Þ2π=a, performing simulations within a super-
structure unit cell (Ω3×3) 3 × 3 × 1 times Ω1. The CDW reconstruction
was obtained by relaxing the lattice along the phonon instabilities
until all the modes were stable in a 2 × 2× 4 q-grid of the Ω3×3 cell.
We found that the CDW formation induces small-amplitude

atomic displacements reducing the minimum Nb–Se distance by
~1.0%. Remarkably, the dynamically stable reconstruction that we
predict has a unit cell with two crystallographically inequivalent
NbSe2 layers, L1 and L2. These are shown in Fig. 2c,d and
correspond, respectively, to the HC and CC patterns observed in
experiment. We note that the obtained structures closely
resemble those suggested in refs. 17,18,42. The calculated CDW
stabilization energy is of 3.7 meV per formula unit.
The CDW distortion is expected to induce relatively small

changes of the electronic structure. Figure 2a,b compares the

computed band structure and electronic DOS in the presence of
the CDW and in the undistorted system. The two DOSs differ
mainly by a broad dip developing in the CDW state slightly above
the Fermi level, such that the reduction in the DOS at the Fermi
level (NF) induced by the CDW is relatively small (about 10%). Due
to the large size of the supercell used in the calculations (54
atoms), the BZ folding makes the band structure in the CDW state
hard to interpret. We thus employed a technique of band
unfolding43,44 from the supercell BZ to the larger BZ of the Ω1
unit cell. As one can see, the CDW and undistorted bands largely
overlap. A closer inspection, however, reveals band gap openings
at several points of the BZ path, especially along the MK line, as
well as energy shifts at the K point throughout the entire valence-
band width.
The CDW effect on the electronic structure can be seen more

clearly by considering a horizontal cut through the BZ. Fig. 3a
shows the CDW reconstruction of the FS at kz= 0 obtained from
the unfolding procedure. The unperturbed FS sheets (blue curves)
are included for direct comparison. A double-walled cylindrical
sheet of Nb 4d bands and a pocket of Se 4p character are
centered at the Γ point. A second pair of Nb 4d-derived FS
cylinders is located at the K point. This last double sheet appears
to be significantly broader and blurred, indicating a stronger effect
of the CDW distortion. Missing segments of the FS crossing the
MK line, signal the openings of the CDW gap, which occur in
excellent agreement with the ARPES measurements of refs. 32,45.
As already mentioned, the complexity of the CDW state is

increased by the fact that the two structural layers undergo
different reconstructions. To account for this aspect, we con-
sidered projections of the FS quasiparticle states onto the layers.
Selected cuts of the unfolded projected FS are shown in Fig. 4.
Most of the states (displayed in white) are found to span the entire
crystal, yet a significant fraction is strongly localized on one layer.
L1 states are highlighted in red on the left panel of the figure,
while L2 states are shown in blue on the right. We observe
significant differences: (i) On the kz= 0 plane, the FS of L2
develops ring structures, unlike L1. (ii) At kz ’ 2

3
π
c the inner K-

centered sheet is mainly composed by L2 states, whereas it has a
stronger L1 character on the ΓKM plane. (iii) By projecting the
Fermi-pocket resolved DOS onto the layers,

NiD
F ¼

X

nk2D
δ εnkð ÞPink; (1)

Fig. 1 Scanning tunneling microscopy measurements. a Constant-
current image of a clean NbSe2 surface (recorded with a Nb tip at a
set point of 10mV, 100 pA; the scale bar is 2 nm) to illustrate the
smooth evolution of the CDW with respect to the atomic lattice. The
frames highlight regions where the CDW maxima fall on a hollow
site (orange) or on a Se atom (blue). b Differential-conductance
dI/dV spectra taken at the positions indicated by stars in (a),
recorded in constant-height mode (feedback was opened at the
position of the blue spectrum for both traces with a set point of
5mV, 250 pA and a modulation of 15 μVrms).

Fig. 2 Electronic properties and CDW structure. a Unfolded band structure and (b) electronic DOS of the CDW (green) and undistorted
phase (black). CDW reconstruction of layers (c) L2, chalcogen-centered pattern, and (d) L1, hollow-centered pattern, in the Ω3×3 unit cell (blue
frame). The modulation of the atomic positions is highlighted by using a 2.53 Å cutoff for the plotted Nb–Se bond-sticks.
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with the spectrometer function g!E" and the Fermi-Dirac
distribution f!E, T " ! #exp!E$kBT " 1 1%21. Note that
the Fermi-Dirac distribution has an independent, absolute
temperature scale which cannot be expressed by the re-
duced temperature T$Tc. For the description of the trans-
fer of spectral weight by thermal excitations we define the
absolute temperature by setting Tc ! Tc!V3Si" ! 17.1 K
in this Fig. 1.

For the numerical simulation of the data, the BCS DOS
can be integrated analytically over the finite step size dE
of the spectra, avoiding problems with the divergence at
6´!T ". The discrete convolution with the spectrometer
function was performed via a fast-Fourier transform [16].

Figure 2 shows the experimental data above (filled
circles, T ! 19 K) and below the transition temperature
(open circles, T ! 11 K). The normal metallic spectrum
above Tc can be described by a constant DOS (normalized
to unity), which is cut off by the Fermi-Dirac distribution
of the respective temperature and convoluted with the
spectrometer resolution function. Lowering the sample
temperature significantly below Tc has two dramatic
effects on the PE spectra: A narrow peak appears at an
energy of E ! 23.9 meV, and the spectral weight at EF
drops by more than a factor of 5. In addition, a small peak
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FIG. 2. Comparison of experimental data at T ! 11 and 19 K
with the broadened BCS density of states. Free parameters of the
least-squares fit: energy resolution DE ! 2.9 meV, gap width
´!11 K" ! 2.5 meV, normal conducting fraction of the surface
C$!1 1 C" ! 13%. The dotted line describes a metallic Fermi
edge at T ! 11 K. The residuum of the fit at 11 K is given as
black bars at the bottom of the figure.

appears at E & 2 meV above EF which is the residue
of the thermally occupied singularity of the BCS DOS.
Taking into account the finite energy resolution, this is
exactly what would anticipate from the BCS theory (cf.
Fig. 1).

The solid and the dashed line in Fig. 2 display the nu-
merically modeled spectra at T ! 11 K and T ! 19 K,
respectively, given by Eq. (4). The other parameters of
the theoretical spectrum are DE ! 2.9 meV and a (half)
gap width of ´!11 K" ! 2.5 meV, which is close to the
zero temperature value ´0. Published values of ´0 of V3Si
are in the range of ´0 ! 2.6 6 0.2 meV [4,5,7,8]. Al-
though the photoemission information depth is limited to
approximately 10 20 Å at this photon energy, the analy-
sis of the spectra of various samples gives good agree-
ment with the results from bulk sensitive measurements:
If there are particular surface properties, the consequence
for the transition temperature Tc is small. On the other
hand, we assume that normal metallic contributions at the
surface lead to the high intensity in the gap region, which
we describe by a fraction of C$!1 1 C" ! 13% to the to-
tal spectrum S!E, T ". A different data modeling with a
distribution of different transition temperatures (instead of
the normal conducting fraction) could not explain the high
intensity in the gap and the shape of the spectra near EF .

The importance of the energy resolution is demonstrated
in Fig. 3. The solid line represents the modeled spectrum
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FIG. 3. Importance of energy resolution to the photoemission
spectra. Modeled spectrum for T ! 11 K from Fig. 2 (solid
line) in comparison to unbroadened DOS (dotted) and spectrum
with increased energy resolution of DE ! 10 meV (dashed).
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terest to devise a procedure for "inverting"
the gap equation to obtain a phonon density of
states and coupling constants from the experi-
mental information on the electronic density
of states. We report below a procedure which
accomplishes this and obtain the strength of
the electron-phonon coupling, the screened
Coulomb interaction, and the phonon density
of states in lead.
The integral equations for the normal and

pairing self-energies of a dirty superconduc-
tor" are

OO

((m) = [I-Z((d)](u = d(u' Re
( „„)„,0

x G~ G (d F (d D 4' +(d
q q q q

D((u-'-(u)],
q

(dc
,2 &,aP&20

X d&d Q ((d )F((d )[D ((d' + (())
q q q q

+D (&u'-()))]-U
q c

where Dq((d) = ((u+ (dq f0+) '-, a((d) = y((u)/&(~),
and b, ,=b.(Ao). F(w) is the phonon density of
states

p(~)=Q f,a(~-w ),

and a'(&u) is an effective electron-phonon cou-
pling function for phonons of energy co,

a (~)E(~) fd'tf, ~, ,Q=g

x f)((u-&u, ) d'f),P-P"A.

where g~p, ~&' is the dressed electron-phonon
coupling constant, ~q~ is the phonon energy
for polarization x and wave number q (reduced
to the first zone), and vF is the Fermi velocity.
The two surface integrations are performed
over the Fermi surface.
In Eq. (2) the (d' integration has been cut off

at roc, and the Coulomb interaction has been
replaced by a Coulomb pseudopotential given
approximately» by

N(o)v
Uc [I+N(0)V In(E /&e )]'c F c

where P' is the static, screened Coulomb in-

(4)

5 10
I I f I I I

5
ENERGY (meV)

FIG. 1. Curve A is the normalized second deriv-
ative, (d/dV) j(dI/dV)~/(dI/dV)„] (in units meV )
for a Pb-I-Pb junction at 0.8'K as a function of V
—26p Curve B is the ratio of the (tunneling) elec-
tronic density of states of superconducting and
normal lead as a function of ~-b.p. Curve C is
u (u)+(cu) (which is dimensionless) versus ru. The
arrows indicate the singularities discussed in the
text.

teraction averaged over the Fermi surface,
and N(0) is the electronic density of states at
the Fermi surface unrenormalized by the elec-
tron-phonon interaction. Schrieffer, Scalapino,
and Wilkins have shown that the (tunneling) elec-
tronic density of states in the superconductor
is given by

N (u)) i~lS
N(0) [(d'-a'((u)]'" '=Be—

and is measured directly in the superconduc-
tor-normal-metal tunnel junction at zero tem-
perature. At finite temperature T«T, we
have

(df/d V) N (~)
(df/d V) N (0)n

where f' is the derivative of the Fermi function.
One measures directly the electronic density

109

Pb MgB2

Eliashberg function
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electron-phonon interaction.
We are grateful to J. M. Howell and B.N.

Taylor for showing us their recent tunneling
data.

.Ol
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(Tr T, )'

I.O

the renormalization parameter. In our model

where Z„1is the rea, l part of Z for the normal
state (h =0). The values of m*im obtained in
this manner are listed in Table I and compared
with the experimental estimate of the effective
mass obtained from specific heat measure-
ments. It is clear that a large part of the ef-
fective-mass shift can be accounted for by the

FIG. 1. Deviation of the reduced critical field from a
parabolic curve as a function of the square of the re-
duced temperature. The experimental curves are taken
from D. K. Finnemore, D. E. Mapother, and R. W. Shaw,
Phys. Rev. 118, 127 (1960), and N. E. Phillips, Phys.
Rev. 114, 676 (1959), while the circles are the results
of our calculation using case 1 for our model of lead.
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LEAD PHONON SPECTRUM CALCULATED FROM SUPERCONDUCTING DENSITY OF STATES

W. L. McMillan and J. M. Rowell
Bell Telephone Laboratories, Murray Hill, New Jersey

(Received 18 December 1964)

The present theory of superconductivity, ' '
with the Eliashberg phonon-induced interaction
between electrons, predicts structure in the
electronic density of states which is related
to structure in the phonon density of states.
The electronic density of states is measured
directly in tunneling experiments, 4 ' and this
structure has been observed in lead and sev-
eral other metals. " Schrieffer, Scalapino,
and Wilkins4 have computed the electronic den-

sity of states in lead by solving the energy-gap
equation, taking a simple model for the phonon
density of states and coupling constants, and
obtain reasonably good agreement with tunnel-
ing experiments of Howell, Anderson, and
Thomas. ' However, it is evident from Fig. 1
of reference 10 that the phonon density of states
in lead must contain considerably more struc-
ture than the model considered by Schrieffer,
Scalapino, and Wilkins. It is therefore of in-
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FIG. 4. Bare bands, MDC maxima, and the right-

hand outer Eliashberg spectral function for the TiO2-

terminated surface. a) Bare bands (lines) and MDC max-
ima for the outer left (red), inner left (green), inner right (or-
ange), and outer right (blue) branches, together with the faint
band Fermi wavevectors (black dots). b) The Eliashberg func-
tion ω2F (ε) (magenta) with a 95% confidence interval (pink),
determined from the right-hand outer real !→(E) (blue) and
minus imaginary ↭!→→(E) (purple) self-energy data shown in
the inset with 95% confidence intervals and accompanied by
continuous lines reconstructed from the obtained ω2F (ε).
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where gel-el is the electron-electron scattering magnitude, denoted as wf,b in Ref. [19]. The real part !el→ is a
small contribution [19] that we assume to be 0. For the impurity self-energy, we consider a static imaginary term
!im(E) → i!im→→ [20]. We assume that !ph(E) is dominated by the Fan-Migdal self-energy [21] with negligible
momentum dependence in the range of the extracted self-energies, whereas in a treatment of the phonons up to second
order in the phonon displacements, the Debye-Waller term [21] is captured inside the bare band ω(k). Subsequently,
ε2F (ϑ) is obtained from inverting the following integral [22]:

!ph(E) =

∫ ↑

0
dϑε2F (ϑ)K(E,ϑ), (11)

where we use the following expression for the bosonic kernel [22]:

K(E,ϑ) =

∫ ↑

↭↑
dϖ

[
f(↑ϖ) + n(ϑ)

E ↑ ϑ ↑ ϖ + iϱ
+

f(ϖ) + n(ϑ)

E + ϑ ↑ ϖ + iϱ

]
, (12)

where ϱ is an infinitesimal value from the analytic continuation [23] that we set to 10↭5 meV.
We reduce the integration range of Supplementary Eq. (12) by assuming that scattering only occurs from the band

bottom EF ↑ Ebot to an equivalent energy Ebot + EF:

K(E,ϑ) =

∫ EF+Ebot

EF↓Ebot

dϖ

[
f(↑ϖ) + n(ϑ)

E ↑ ϑ ↑ ϖ + iϱ
+

f(ϖ) + n(ϑ)

E + ϑ ↑ ϖ + iϱ

]
, (13)

which can then be integrated to give the following analytic expression [24]:

K(E,ϑ) = ↭iς + φ

(
1

2
↑ i

E ↑ EF ↑ ϑ + iϱ

2ςkBT

)
↑ φ

(
1

2
↑ i

E ↑ EF + ϑ + iϱ

2ςkBT

)
+ ln

(
E ↑ EF + ϑ + Ebot + iϱ

E ↑ EF + ϑ + Ebot + iϱ

)

+ n(ϑ)

[
ln

(
E ↑ EF ↑ ϑ + Ebot + iϱ

E ↑ EF ↑ ϑ ↑ Ebot + iϱ

)
+ ln

(
E ↑ EF + ϑ + Ebot + iϱ

E ↑ EF + ϑ ↑ Ebot + iϱ

)]
, (14)

where φ(x) is the digamma function.
From the optimization step, we obtain the imaginary contributions of ↭!im→→ = 24.2 meV and ↭!im→→ = 20.7 meV

for the respective right-hand and left-hand outer branches. By contrast, the o”set of the inner bands ↭!im→→ → 7 meV
is smaller, which suggests that the electrons of the inner band experience a lower impurity scattering. From the
optimization, we also find that the gel-el in Supplementary Eq. (10) are e”ectively 0 for both branches. Consequently,
the electron contribution of !el(E) is found to be negligible in our system. We remark that !el(E) primarily a”ects
the MDC width, which might change when incorporating the energy resolution in the MDC fitting. Therefore, the
theoretically predicted ↭!el→→ of O(1 meV) for our system at T ↓ TF = EF/kB [19] might be too small to resolve
while neglecting the energy convolution. Further research into the energy resolution will be necessary to uncover the
magnitude of ↭!el→→ in our system.
The self-energies for the left-hand outer branch are shown in Supplementary Fig. 13a for an optimized mb = 0.62 me

and kF = 0.2109 Å↭1. Supplementary Fig. 13b shows the left-hand ε2F (ϑ) together with its model function m(ϑ)
and its 95% confidence interval. This confidence interval was obtained by propagating the self-energy uncertainties.
The spectral features at ϑ = 54 meV, ϑ = 69 meV, and ϑ = 88 meV in the left-hand ε2F (ϑ) may be related to
the respective LO3, TO4, and LO4 peaks, following the labelling convention of Ref. [25]. However, these peaks might
also contain contributions from surface phonons found at similar energies in first-principles calculations [26]. The
LO3 mode now only appears as a shoulder because the outlier in !→(E) at E ↑EF = ↭48 meV induces a pronounced
peak in ε2F (ϑ) at ϑ = 48 meV. The left-hand default model m(ϑ) has an optimized plateau height of m0 = 0.130,
whereas the right-hand plateau height is m0 = 0.129. We calculate the EPC parameter ↼ ↔ ↑↽!→(E)/↽E|E=EF as
the slope of !→(E) reconstructed from ε2F (ϑ), represented by the continuous red line in Supplementary Fig. 13a.
From the left-hand !→(E), we obtain ↼ = 0.68, yielding a quasiparticle mass of m↔ = Z↭1mb = 1.03 me, where
Z = (1 + ↼)↭1 = 0.59 is the quasiparticle residue [6] for the left-hand side. For the right-hand branch presented
in Fig. 4b, we have optimized mb = 0.59 me and kF = 0.2096 Å↭1, and additionally we obtain ↼ = 0.63, yielding
Z = 0.61 and m↔ = 0.96 me. These EPC quantities from the two branches are in good internal agreement, and the
e”ective masses are in good agreement with mb = 0.6 me obtained from visual inspection.
Lastly, we quantify the agreement between the left-hand outer Eliashberg function denoted explicitly as ε2FL(ϑ)

and the right-hand outer Eliashberg function ε2FR(ϑ) by calculating the di”erence function #ε2F (ϑ) ↔ ε2FL(ϑ)↑
ε2FR(ϑ). The 95% confidence interval of #ε2F (ϑ) is obtained from the uncertainties of the respective ε2FL(ϑ) and
ε2FR(ϑ). We assume that the covariances ⇀LR = 0 for all energies ϑj as the left-hand and right-hand branches have





What does optics can tell me?

a resolution of 1 K. The signal to noise ratio of the tempera-
ture dependent reflectivity in the midinfrared is about 2000.

In order to obtain the optical conductivity !1!"" in the
whole frequency range, we used a variational procedure de-
scribed in Ref. 20. In the first stage, the infrared reflectivity
and the ellipsometrically measured complex dielectric func-
tion in the visible and UV range were fitted simultaneously
with a Drude-Lorentz model. The corresponding parameters
at selected temperatures are listed in Table I. We found that
one Drude and four Lorentz terms form a minimal set of
oscillators fitting data well enough at all temperatures. The
Drude peak narrows with cooling down and transforms to a
condensate #-peak below Tc. The two lowest frequency os-
cillators which mostly describe the mid infrared absorption,
show dramatic changes below Tc, mimicking the formation
of the superconducting gap. The high-frequency Lorentzians
corresponding to the interband transitions, show very little
temperature dependence. In the second stage, the fitting was
refined with a variational dielectric function added on top of
the Drude-Lorentz model. The former is essentially a set of a
large number of narrow oscillators, each corresponding to
one or two spectral data points. This yields the Kramers-
Kronig consistent dielectric function which reproduces all
the fine details of the infrared reflectivity spectra while si-
multaneously fitting to the measured complex dielectric
function at high frequencies. In contrast to the “conven-
tional” KK reflectivity transformation this procedure anchors
the phase of the complex reflectivity to the one at high en-
ergies measured directly with ellipsometry.21

In Fig. 4 we show the optical conductivity at selected
temperatures. The spectral and temperature dependence of
!1!"" of Bi2223 is very similar to the one of Bi2212,5,22

although the conductivity of Bi2223 is slightly larger, likely
due to a higher volume density of the CuO2 planes in the
trilayer compound. The strongest changes as a function of
temperature occur at low frequencies. In the normal state the
dominant trend is the narrowing of the Drude peak. The on-
set of superconductivity is marked by the opening of the
superconducting gap which suppresses !1!"" below about
120–140 meV, slightly higher than in Bi2212. Such a large
scale is apparently caused by a large gap value in Bi2223,
which amounts up to 60 meV, as shown by tunnelling
measurements.23

The much smaller absolute conductivity changes at higher
energies, which are not discernible at this scale, can be better
seen in Fig. 5 where we show the temperature dependent
optical constants taken at selected photon energies. The
change induced by superconductivity in the optical constant
is clearly visible as a kink at Tc for energies up to at least
2 eV, which tells that the energy range where the redistribu-
tion of spectral weight takes place is very large.

III. INTEGRATED SPECTRAL WEIGHT

A. Experimental determination of W„!c…
The extraction of the spectral weight W!$c" from the

measured spectra is a delicate issue. Formally, one has to
integrate the optical conductivity over a broad frequency
range, including the region below the low-frequency experi-
mental cutoff $min !in our case about 100 cm−1" containing
the condensate # peak !below Tc" at "=0 and a narrow qua-
siparticle peak. According to a frequently occurring miscon-
ception the existence of such a cutoff inhibits the calculation
of this integral. Indeed if only the real part of the optical
conductivity in some finite frequency interval was available,
clearly an essential piece of information needed to calculate
W!$c" would be missing, namely, !1!"" below $min. How-
ever, due to the fact that the real and imaginary part of the
dielectric constant are related nonlocally via the Kramers-
Kronig transformation, any change in one of them will affect
the other in a broad region of the spectrum. In particular, any

TABLE I. Fit of the measured reflectivity and ellipsometry data
with one Drude and four Lorentz oscillators: %!""=%&

+#k"p,k
2 / !"0,k

2 −"2− i'k"" at selected temperatures. All parameters,
except %&, are given in cm−1, i.e., they should be multiplied by 2(c
to convert to angular frequencies in units of s−1.

%& "0,k "p,k 'k %& "0,k "p,k 'k

280 K 55 K

2.53 0 7184 160 2.46 0 10145 0
201 8598 706 1113 9997 1866

1607 15472 6670 4260 12460 7928
18553 12211 11911 18812 11655 11436
37110 39368 20474 37550 40829 21353

205 K 25 K
2.52 0 8497 152 2.45 0 10295 0

178 7768 787 1149 9730 1797
1759 15287 6750 4232 12583 7914

18647 11733 11390 18815 11580 11410
37190 39761 20750 37622 41095 21582

110 K
2.47 0 9872 82

943 11944 2636
5147 10490 8143

18757 12162 11992
37500 40563 21161

FIG. 4. In-plane optical conductivity of Bi2223 at selected tem-
peratures. The inset displays the low energy part of the spectrum.

IN-PLANE OPTICAL SPECTRAL WEIGHT TRANSFER¼ PHYSICAL REVIEW B 74, 024502 !2006"

024502-3

The conductivity is non-Drude, not a simple Fermi liquid

The SC gap is of the order of 60 meV
energy to break Cooper pairs, thus
energy that keeps them together…..
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Figure 8. Left panel: bosonic function of Pb as measured by tunneling experiment [90] (dotted line) and
calculated [97] (solid line). Right panel: phonon dispersion and density of states and bosonic function
calculated for MgB2 [98].

The k-space integrated bosonic function is defined as:

α2F(") =
∫

SF

dSk
!vk

α2F(k, ")
∫

SF

dSk
!vk

, (6)

dSk being an infinitesimal surface element of the Fermi surface SF and vk the Fermi velocity at
momentum k. These concepts have been successfully used [89] to explain the scattering proper-
ties of conventional metals that develop an isotropic superconducting gap in the electronic density
of states (#(ω,T)), at temperatures smaller than the critical temperature Tc. The close correspon-
dence between the α2F(") function measured [90] by tunneling experiments (see Figure 8) and
the phonon density of states F(") reconstructed by inelastic neutron scattering experiments [91]
is considered as one of the most convincing proofs of the phonon-mediated pairing mechanism
driving the formation of the Cooper pairs in metals.

The excited state dynamics in this formalism is expected to be characterized by the instanta-
neous Coulomb repulsion between charged QPs and a finite timescale attraction corresponding to
the retarded interaction with the phonons. In the prototypical case of Pb, the high-energy cutoff in
the α2F(") function ("c ! 9 meV) corresponds to !/"c ! 70 fs (" = 658 meV fs). This defines
the fastest timescale of the electron–boson interaction. The possibility of defining a retarded
electron–boson interaction was the key to the success of the Bardeen-Cooper-Schrieffer (BCS)
theory to explain superconductivity in conventional isotropic metals.

The critical parameter determining the Tc of the system is the electron–phonon coupling con-
stant, defined as λlat = 2

∫
α2F(")/" d". In the strong-coupling formalism, the McMillan’s

formula [92], based on the Eliashberg theory [93,94], can be corrected to calculate [95,96] the
critical temperature for pairing in the s-wave channel:

Tc = 0.83"̃ exp
[ −1.04(1 + λlat)

λlat − µ∗(1 + 0.62λlat)

]
, (7)

where ln"̃ = 2/λlat
∫∞

0 α2F(")ln"/" d" and µ∗ is the non-retarded screened Coulomb pseu-
dopotential that accounts for all the instantaneous electron–electron interactions.
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Figure 9. Summary of the electron–boson spectral function in Bi2212 extracted from: (a) B1g and (b) B2g
Raman data [112]; (c) optical conductivity [113,114]; (d) from nodal direction ARPES [110,111]. This figure
has been taken from [108].

the light polarization σ , that determines the symmetry of the scattering processes that can be
accessed. It has been demonstrated [112] that the Raman scattering rate is related to the bosonic
function through a relation very similar to Equation (3), provided a weighting that takes into
account the symmetry of the modes is introduced. In Figure 9(a) and 9(b), the bosonic func-
tion extracted by Raman experiments on optimally doped Bi2212 is reported. Depending on the
polarization of the light, the extracted bosonic function is weighted by a factor cos2(2θ ) (B1g

symmetry, sensitive to antinodal directions) and sin2(2θ ) (B2g symmetry, sensitive to nodal direc-
tions). Considering the average over the whole Brillouin zone, the #($) obtained by Raman
spectroscopy has features very similar to that obtained by ARPES. It consists of a strong peak at
low energy (∼40 meV), which is strongly temperature dependent, and a broad continuum up to
∼400 meV, which is less sensitive to temperature variations.

The frequency-dependent optical scattering rate (τopt(ω)) measured from IR optical spec-
troscopy can also be used to extract the electron–boson scattering rate, further corroborating the
results of ARPES and Raman spectroscopies. The k-space integrated #($) can be obtained from
the optical data through the so-called maximum entropy techniques [115], provided a relation
between the single-particle self-energy and the optical scattering rate, that involves particle–hole
excitations, is found. In Section 4.1.2 a more comprehensive overview of the optical spectroscopy
and of the underlying extended Drude model will be given. In Figure 9(c) the #($) function of
optimally doped Bi2212 samples is reported [113,114]. The results are in striking agreement with
those obtained by ARPES and Raman spectroscopy, confirming the presence of a temperature-
dependent peak at ∼40 meV and a background with a cutoff at about ∼400 meV. More recent

Modes at energies beyond 
highest phonon energy



0
Momentum (kx) Momentum (

M
om

en
tu

m
 (k

y)

YBCO6.5 surface as-cleaved

2π

0

2π

–2π

a

0.5

1.0

EF

Bi
nd

in
g 

en
er

gy
 (e

V)

0.46 eV

BaO

CuO2 
B–AB 

Min

Max

(–π ,–2π ) (–π ,2π )(–π ,–π ) (–π ,π )(–π ,0)

Momentum (kx = –π ;ky)

YBCO6.5 surface as-cleaved
a

DOI: 10.1038/nphys998

-0.30

-0.20

-0.10

0.00

E-E
F

Ve( 
)

MB

SB

SB

p

Y

-0.30

-0.20

-0.10

0.00

E-E
F

)
Ve( 

-2.0 -1.5 -1.0 -0.5 0.0
k|| ( /a)

MB

SB

MB

s

(a)

E-E
F

Ve( 
)

E-E
F

)
Ve( 

OP30K

1

0

k y
 (π

/a
)

1
kx (π/a)

M
D

C
 in

te
ns

ity

–0.1

0

E 
– 
E F

 (e
V)

0.60.4 0.60.4 0.60.4
Momentum (π/a)

0.60.4 0.60.4

Γ (0,0) 

Y (π,π)

a
b c d e

1
2

3
4

1 2 3 4

f

5

High

Low

Low

High
5

× 10

LM

LP

LSLPS

LP

LM

LS

LPS

doi:10.1038/nature08521

DOI: 10.1103/PhysRevLett.106.127005

All ARPES data shows nice Fermi 
surfaces with well-defined bands
Clearly mettalic and Fermi liquid
In contrast to optical conductivity
What are these bands???



dence monochromator with a resolving power of 104 at
1011 photons/s. We used 22-eV photons, with a 17-meV �full
width at half maixmum� energy resolution, and a momentum
window of radius 0.045� �in units10 of 1/a*).
The crystals, which were grown by the traveling solvent

floating zone method with an infrared mirror furnace, have
low defect densities with structural coherence lengths �1250
Å obtained from x-ray diffraction. The samples were cleaved
in situ at 13 K in a vacuum of �5�10�11 Torr. Most
samples have very flat surfaces after cleaving, as measured
by specular laser reflections. A flat surface is crucial for this
experiment since it directly affects the momentum resolu-
tion. Another measure of the sample quality is the observa-
tion of the ‘‘ghost’’ bands due to the superlattice distortion;
in our best sample �87-K Tc , with a 1-K transition width� we
have now also seen evidence for the second umklapps from
the superlattice. We will also present data from three other
samples with a 90-K Tc .
In Fig. 1, we show the 13-K experimental energy distri-

bution curves �EDC’s� for the 87-K Tc sample for various
locations on the main band Fermi surface �FS� in the Y quad-
rant. The spectra shown correspond to the minimum observ-
able gap along a set of k points normal to the FS �for a
detailed discussion of this in the context of a study of
particle-hole mixing, see Ref. 8�. These spectra are obtained
from a dense sampling of k space in the vicinity of the FS
which is almost five times denser than previous data. In Ref.
5 a k-step size of 0.064� normal to the FS and 0.064–0.081
� along the FS was used in the Y quadrant �the radius of the
k window is 0.045�). The problem is that the bands are
highly dispersive along �Y with an energy change of about
85 meV per 0.064� step, and thus kF cannot be located
accurately. Therefore, in our new measurements, we use a
step size of 0.0225� normal to the Fermi surface and 0.045
� along the Fermi surface. This not only allows us to map
out the nodal region more clearly, but also improves by a
factor of about 3 our ability to locate that spectrum whose
binding energy at the center of the momentum window is
closest to the Fermi energy �that is, the step size normal to
the Fermi surface now corresponds to a dispersion of about
30 meV per step�. In addition, at each k point the

photon polarization is chosen along �X so as to maximize
emission on the �Y diagonal direction, i.e., �Y� geometry
�a polarization rotated 45° relative to this was used in Ref.
5�.
In each panel of Fig. 1 we also plot the spectrum of a

platinum reference, in electrical contact with Bi2212, mea-
sured periodically to determine the chemical potential, and to
check for drifts in beam energy. �The polycrystalline Pt spec-
trum is a weighted density of states whose leading edge is an
energy-resolution limited Fermi function.� The simplest gap
estimate is obtained from the midpoint shift of the leading
edge of Bi2212 relative to Pt. This has no quantitative valid-
ity �since the Bi2212 EDC is a spectral function,6 while Pt is
a density of states� but yields an angular dependence which
is qualitatively similar to the results described below.
The simplest way to quantitatively estimate the gap is to

model5 the data in terms of a simple BCS line shape formula,
taking into account the measured energy dispersion and the
known energy and momentum resolutions. Two important
points need to be discussed in connection with such fits: first,
the lack of knowledge about the spectral line shape, espe-
cially its incoherent part, and, second, the large background
in Bi2212 whose origin is unclear. In the large gap region
near the M̄ point, we see a linewidth �imaginary self-energy�
collapse, for frequencies smaller than 3� , upon cooling well
below Tc .6,7 Thus the coherent piece of the spectral function
is modeled by the BCS line shape, with all of the incoherent
part lumped together with the experimental background in so
far as the fitting procedure is concerned. We also showed5
that it was self-consistent �though perhaps not unique� to
make the same assumption in the small gap region; the much
larger width of the EDC in the diagonal direction arising due
to the k resolution combined with the large dispersion.
The gaps extracted by fitting the spectra of Fig. 1 are

shown in Fig. 2. We emphasize that since the gap is deter-
mined by fitting the resolution-limited leading edge of the
EDC, it is relatively unaffected both by self-energy effects,
and by the experimental background which cuts off at low
frequencies. To check this, we have made an independent set
of fits to the small gap data where we do not use any back-
ground fitting function, and only try to match the leading

FIG. 1. Bi2212 spectra �solid lines� for a 87-K
Tc sample at 13 K and Pt spectra �dashed lines�
versus binding energy �meV� along the Fermi
surface in the Y quadrant, with locations shown
in Fig. 2.
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edges, not the full spectrum. The two gap estimates are con-
sistent within a meV. The �vertical� error bars of �3 meV on
the gaps in Fig. 2 come primarily from the quality of the fit
to the leading edge of the data and uncertainty in the location
of the center of the k window �near the diagonal direction�,
with smaller contributions coming from chemical potential
determination ��0.5 meV� and background modeling �� 0.5
meV�. Horizontal error bars represent the accuracy in which
we can determine the Fermi surface angle. This does not
include any effective error bar coming from k resolution,
since this is in principle taken into account in the fits. The
angular variation of the gap in Fig. 2 is in excellent agree-
ment with that expected from a d-wave order parameter of
the cos(kx)�cos(ky) form.12
Next we turn to the X quadrant of the 87-K Tc sample. It

is now recognized9 that the two node gap observed
previously5 in the �X�� geometry came from an even linear
combination of the ‘‘ghost’’ bands due to the superlattice.11
We thus choose the polarization along �Y , so that on the
diagonal we are in a �X� geometry which enhances emis-
sion from the main band.13 The X quadrant gaps, determined
from spectral function fits, are plotted in Fig. 3. We see that
the hump in the gap along �X �45°� seen previously5 has
indeed disappeared. The solid curve is a fit of the data to a
d-wave gap function with a small sample misalignment �1.4°
in real space�. Note that for this data set, the step size along
the Fermi surface was 0.135� and so is not dense enough
around 45° to address the question of the detailed behavior
around the node.
We next summarize the results �Fig. 4� for Y quadrant

gaps extracted from fits on three different 90-K Tc samples.
The main point is to note possible complications which arise
in interpreting data sets which are not as dense in k space as

the detailed Y quadrant measurements on the 87-K sample
described above �the step size along the Fermi surface being
twice as large�. The results on sample I have a region of
reduced gap, consistent with zero, near 45°. To some extent
this may be an artifact of the finite diameter of the k window,
which is 6° in FS angle.14 In addition, we found that for the
small gap points of sample I the leading edge of the data lies
above, i.e., to the right of, that of a zero gap spectral fit,
assuming the k window was centered at kF . We find that a
combination of factors (k-window center, chemical potential
drift, and background� discussed above can indeed conspire
to produce such an anomalous shift. These factors are al-
ready reflected in the �3-meV error bars on the gap esti-
mate, but we reiterate that the error bars must be borne in

FIG. 2. Y quadrant gap in meV versus angle on the Fermi sur-
face �filled circles� with fits to the data using a d-wave gap �solid
curve�. Labels of data points correspond to the spectra of Fig. 1.
Inset shows their locations in the zone as well as the photon polar-
ization direction.

FIG. 3. X quadrant gap in meV, for the 87-K Tc sample, mea-
sured at 13 K, versus angle on the Fermi surface �filled circles� with
fits to the data using a d-wave gap �solid curve�. The photon polar-
ization is along �Y .

FIG. 4. Y quadrant gap in meV, measured at 13 K, versus angle
on the Fermi surface for three different Bi2212 samples each with a
90-K Tc . For visual clarity only a representative error bar has been
shown.
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