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Exercise 1: The given variational state is,

|c⟩ = 1√
2
(|ab⟩+ c |ba⟩)

The variational energy of the above state is given by:

⟨c|H |c⟩
⟨c|c⟩

=
(⟨ab|+ c ⟨ba|)H (|ab⟩+ c |ba⟩)
(⟨ab|+ c ⟨ba|) (|ab⟩+ c |ba⟩)

Substituting ⟨ab |ba⟩ = L2, ⟨ab|H |ab⟩ = V, ⟨ab|H |ba⟩ = ⟨ba|H |ab⟩ = X :

E =
V + cX + cX + c2V

1 + cL2 + cL2 + c2

=
(1 + c2)V + 2cX

1 + c2 + 2cL2

Finding the extrema of the above function:

δE

δc
= 0 =⇒ c = ±1

Hence we have,

ψ+ =
1√
2
(|ab⟩+ |ba⟩)

ψ− =
1√
2
(|ab⟩ − |ba⟩)

with energies:

E+ =
V +X

1 + L2
, E− =

V −X

1− L2

Including the spin degrees of freedom and enforcing the anti-symmetry condition we obtain:

ψ+ =
1√
2
(|ab⟩+ |ba⟩) ( |↑↓⟩ − |↓↑⟩√

2
)

ψ− =
1√
2
(|ab⟩ − |ba⟩)


|↑↓⟩+|↓↑⟩√

2

|↑↑⟩
|↓↓⟩

Thanks to the anti-symmetry of the wavefunction (symmetric spatial term is a spin singlet,
and antisymmetric spatial term is a spin triplet) we can map a pure Coulomb interaction
(given by the spatial overlap terms of the orbitals expressed by L2, V , X) in an effective
interaction of spins. Here, there is not an real interaction between spins, but is the
symmetry of the state that allows to switch between the two representations.
Now we need to understand how the operator S1 · S2 acts on a triplet and a singlet state.
From S2

tot = (S1 + S2)
2 = S2

1 + S2
2 + 2S1 · S2, then S1 · S2 = 1

2(S
2
tot − S2

1 − S2
2). S1 acts

only on the first spin, and knowing that its eigenvalues are s(s + 1) with s = 1/2, we
get that S2

1 → 3/4. Same for S2
2 . S2

tot acts on the total spin of the singles (s = 0) or
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triplet (s = 1) state, obtaining that S1 · S2 → −3/4 for the singlet, and S1 · S2 → 1/4 for
the triplet. So the new effective Hamiltonian should give Hspinχsinglet = E+χsinglet, and
Hspinχtriplet = E−χtriplet, and this can be obtained using the Hamiltonian

Heff =
1

4
(E+ + 3E−)− (E+ − E−)S1 · S2

and neglecting the constant term, the effective Hamiltonian can be written as

Heff = −JS1 · S2

with J = E+ − E− = 2(X − V L2)/(1− L4).

Exercise 2:

a) The first order correction is zero since operator T creates a double occupancy and
hence the matrix element like ⟨α |T |β⟩=0

b) The second order correction to the Hamiltonian is:

⟨α|H(2) |β⟩ =
∑
γ

⟨α|T |γ⟩ ⟨γ|T |β⟩
Eα − Eγ

=
∑
γ

⟨α|T |γ⟩ ⟨γ|T |β⟩
−U

the states |γ⟩ correspond to states with single double occupancy. The dominator be-
come U because the energy of the states |γ⟩ is U due to the single double occupancy, while
the states |α⟩ have zero energy for the selected ground state hamiltonian.

If we write T explicitly we get:

⟨α|H(2) |β⟩ = − t
2

U

∑
γ

⟨α|
∑
ijσ

c†iσcjσ |γ⟩ ⟨γ|
∑
ijσ

c†iσcjσ |β⟩ (1)

The outer sum is only over γ so it can be brought inside the expression, giving:

⟨α|H(2) |β⟩ =
t2

U
⟨α|

∑
ijσ

c†iσcjσ
∑
γ

|γ⟩ ⟨γ|
∑
ijσ

c†iσcjσ |β⟩

= − t
2

U
⟨α|

∑
ijσ

c†iσcjσI
∑
ijσ

c†iσcjσ |β⟩

= − t
2

U
⟨α|

∑
ij

∑
σσ′

c†iσcjσc
†
jσ′ciσ′ |β⟩

Here we reconcile the two summations by including the indices σ and σ′, denote spin up
or down and we swap j and i on the first two operators so that, if σ = σ′, the result of
the whole operation is to move an electron from one sight and then move it back to the
same sight.
Therefore, in terms of fermionic creation and annihilation operators this can be written
as:

H(2) = − t
2

U

∑
ij

∑
σσ′

c†iσcjσc
†
jσ′ciσ′ (2)
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c) Considering {|α↑↑⟩ , |α↑↓⟩ , |α↓↑⟩ , |α↓↓⟩} as vectors of a space, the matrix element between
these states becomes:

⟨ασ1σ2 |H(2) |ασ3σ4⟩ = − t
2

U


0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0


which can be rewritten as:

⟨ασ1σ2 |H(2) |ασ3σ4⟩ =
2t2

U




1
4 0 0 0
0 −1

4
1
2 0

0 1
2 −1

4 0
0 0 0 1

4

− 1

4


=

2t2

U

(
Si · Sj −

1

4

)
Since each atom has two neighbours, summing over the possible interactions obtains:

⟨α|H(2) |β⟩ = 4t2

U

∑
<i,j>

(
Si · Sj −

1

4

)
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