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Chapter 1

Introduction

1.1 Scope

Solid state physics deals with the properties of condensed matter in its solid state,
that is in the phase in which the relative position of nuclei is fixed on average.
This definition excludes liquids but includes amorphous systems such as glasses, or
partially ordered systems such as liquid crystals. By properties we mean the way
solids behave in the presence of external stimuli such as a mechanical action, a heat
pulse, or an electromagnetic field in the broad sense (electric field, magnetic field,
electromagnetic wave). This subject is extremely vast, and it is absolutely necessary
to make a selection. The goal of this course is twofold:

1. Develop modern tools and concepts that allow one to deal with problems of
current interest in fundamental and applied research in solid state physics
(second quantization, degenerate perturbation theory, canonical transforma-
tions,. . . )

2. Use them to study a number of problems chosen for their intrinsic interest
(magnetism, Quantum Hall Effect, superconductivity, etc.).

This is not the only way to proceed. Indeed, once they are well understood, essen-
tially all phenomena discovered in solids can be described by elementary methods
with appropriate ingredients. It is thus perfectly possible to teach advanced solid
state physics without resorting to these sophisticated techniques. However, these
tools are of current (not to say systematic) use in contemporary scientific literature.
Besides, they are essential to convince oneself of the validity of the simple descrip-
tions of the phenomena. This justifies the choice of developing them in detail so
that they can be used in other contexts.
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2 CHAPTER 1. INTRODUCTION

1.2 Independent electrons in a periodic potential

1.2.1 Bloch theorem

A large number of mysteries have been elucidated in solid physics by considering
the electron gas as a gas of non-interacting fermions moving in a periodic potential.
From that point of view, the fundamental theorem is Bloch theorem. Let us look for
the solution of Schrödinger equation(

− ~2

2m∇
2 + U(r)

)
ψ(r) = εψ(r)

where U(r) is a periodic potential (U(r + R) = U(r) if R = ∑
j njaj with aj 3

linearly independent vectors and nj three integers).
First formulation of Bloch theorem
The solutions are of the form

ψk(r) = eik.ruk(r)
where uk(r) is a function that has the same periodicity as U(r).
Second formulation of Bloch theorem
The solutions satisty

ψk(r + R) = eik.Rψk(r)

Equivalence of the two formulations

Let us first prove that the two formulations of Bloch theorem are indeed equivalent :

1. Let us suppose that ψk(r) = eik.ruk(r), where uk has the periodicity of the
lattice. We have :

ψk(r + R) = eik.Reik.ruk(r + R)
= eik.Reik.ruk(r) = eik.Rψk(r)

2. Conversely, let us suppose that :
ψk(r + R) = eik.Rψk(r)

and let us define the function uk(r) by :
uk(r) = e−ik.rψk(r)

We have :
uk(r + R) = e−ik.r e−ik.Rψk(r + R)︸ ︷︷ ︸

ψk(r)

= uk(r)
⇒ uk is indeed periodic.
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Proof of Bloch theorem

Let us now prove the second formulation of Bloch theorem. For this, let us first
introduce the translation operator TR defined by

TRψ(r) = ψ(r + R) (1.1)

Now, if R = ∑
j
njaj, this operator commutes with H. Indeed,

Ta
∂2ψ

∂x2 (x) = ∂2ψ

∂x2 (x+ a)

and

∂2

∂x2Taψ(x) = ∂2

∂x2 [ψ(x+ a)] = ∂

∂x

∂ψ∂x (x+ a) d

dx
(x+ a)︸ ︷︷ ︸

=1


= ∂2ψ

∂x2 (x+ a) d

dx
(x+ a)︸ ︷︷ ︸

=1

⇒ Ta

(
− ~2

2m∇
2ψ(r)

)
= − ~2

2m∇
2Taψ(r)

This is true for all a, hence in particular for the lattice translations. So, TR commutes
with − ~2

2m∇
2.

Besides,

TRU(r)ψ(r) = U(r + R)ψ(r + R)
= U(r)ψ(r + R) = U(r)TRψ(r)

So TR commutes with H.
Now, if some operators commute, one can diagonalize them in a common basis.

So let us look for the eigenstates of Taj . They must satisfy :

Tajψ(r) = λjψ(r)

With Born-Von Karman boundary conditions :

ψ(r +Njaj) = ψ(r)

for a system with N = N1N2N3 unit cells, one must have :

TNjaj ψ(r) ≡ ψ(r +Njaj) = ψ(r)

But TNjaj ψ(r) = λ
Nj
j ψ(r)⇒ λ

Nj
j = 1⇒ λj = e

i 2π
Nj
mj
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Finally, TRψ(r) = e

∑
j

i 2π
Nj
mjnj

ψ(r)

The expression 2iπ
Nj
mjnj can be written as ik.R with k = ∑

j

mj
Nj

a∗j where the vectors
a∗j are defined by :

ai.a∗j = 2πδij
They define the reciprocal lattice.
This leads us to the second formulation of Bloch theorem :

ψk(r + R) = eik.Rψk(r).

Brillouin zones

Let G = ∑
j
mja∗j be a vector of the reciprocal lattice.

G.R =
∑
j

2πmjnj ⇒ eiG.R = 1⇒ ei(k+G).R = eik.R

This implies that two wave-vectors k lead to the same solution if they only differ by
a vector of the reciprocal lattice. It is thus sufficient to consider a unit cell of the
reciprocal lattice, for instance the 1st Brillouin zone.
Example : square lattice of parameter a.

a1 = ax̂, a2 = aŷ⇒ a∗1 = 2π
a

x̂, a∗2 = 2π
a

ŷ

���
�

�
�

� �

� 	 


� � 


� �

1.2.2 Band theory

If one looks for the solutions of the Schrödinger equation of the form ψk(r) =
eik.ruk(r), the function uk(r) must satisfy another differential equation that we can
simply determine :

∇
(
eik.ruk(r)

)
= ikeik.ruk(r) + eik.r∇uk(r)
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∇2
(
eik.ruk(r)

)
= −k2eik.ruk(r) + ikeik.r.∇uk(r) + ikeik.r.∇uk(r) + eik.r∇2uk(r)

= eik.r
(
−k2 + 2ik.∇+∇2

)
uk(r)

[
− ~2

2m
(
−k2 + 2ik.∇+∇2

)
+ U(r)

]
uk(r) = εkuk(r)

In general this equation has an infinite number of solutions that can classified ac-
cording to an additional quantum number n called the band index. The functions
εnk constitute the band structure.

� ���

� ���

� 	�


In the band theory, one assumes that the electrons do not interact with each other.
The eigenstates with N electrons can be obtained by putting one electron in each
quantum state. At that stage, one must take into account the spin 1

2 of the electrons.
Each quantum state is characterized by its energy εnkσ, σ =↑ or ↓. In the absence
of a magnetic field, and if the system has an inversion center, εnk↑ = εnk↓.
In general, there are energies that do not correspond to εnkσ for any value of

(nkσ). These energies build intervals called gaps.
Note : Strictly speaking, gaps only exist for infinite solids. When a surface is

present, other solutions exist whose energy can fall into a gap. These solutions look
like :

ψ(r + R) = zψ(r)

where z is a complex number of modulus not equal to 1. Such solutions are a priori
possible since the translation operator can of course have eigenvalues of modulus
6= 1. Such solutions are not acceptable in the bulk because their norm diverges
exponentially with the size of the system, but they are acceptable when there is a
surface if the function decreases away from the surface. Such states are called surface
states. They have been observed and play an important role in the electronic prop-
erties of surfaces (catalysis, . . . ). The Born-Von Karman solutions, which impose
|z| = 1, do not allow one to describe surface states.
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Tight-binding approach

The band structure can also be seen as the result of hybridizing atomic levels. This
is the tight-binding approach. The starting point is a set of atomic orbitals of energy
ε0 located at the sites i of a lattice. Let us denote by |i〉 the associated ket. In the
absence of hybridization between the states, which will be true in the limit where
the sites are very far apart, the energy level ε0 is N -fold degenerate, where N is the
number of sites. If the sites are brought closer to each other, a coupling will develop.
It will take the form of a perturbation V that lifts the degeneracy. Assuming that
the coupling decays fast with distance, one can assume that only nearest-neighbor
sites have a significant overlap:〈i|V |j〉 = −t if i and j are nearest neighbors

〈i|V |j〉 = 0 otherwise

where −t is the hopping amplitude (the minus sign is conventional). Then, according
to degenerate perturbation theory, the effective Hamiltonian is given by

H = −t
∑
〈i,j〉

(|i〉〈j|+ |j〉〈i|) + ε0
∑
i

|i〉〈i|

where the sum over 〈i, j〉 runs over pairs of neighoring sites.
Let us assume for simplicity that the orbitals sit at the sites of a cubic lattice of

parameter a in dimension D, and let us define the Fourier transform of the states
by

|~k >= 1√
N

∑
i

e−i
~k·~Ri |i > .

Applying the Hamiltonian to this state leads to:

H|~k > = ε0|~k > + 1√
N

∑
i

e−i
~k·~Ri(−t)

∑
~τ

|i+ ~τ >

= ε0|~k > + 1√
N

(−t)
∑
~τ

ei
~k·~τ ∑

i

e−i
~k·(~Ri+~τ)|i+ ~τ >

= ε0|~k > −t
∑
~τ

ei
~k·~τ |~k >

= E~k|~k >
(1.2)

where the vectors ~τ are the vectors connecting a site to its nearest neighbors, and
where the dispersion E~k is given by

E~k = ε0 − 2t
∑
α

cos(kαa)

where α runs over the directions of space. This band is centered at ε0, and the band
width is given by W = 4Dt. In the ground state, the particle goes to the bottom of
the band and gains and energy equal to half the bandwidth W/2.
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Physical implications of band theory

The ground state of a bulk system is obtained by filling the energy levels starting
from the lowest one. There are two possibilities :

1. All bands are either completely filled, or completely empty. The first excited
state is separated from the ground state by the energy ∆ that separates the
last occupied state from the first empty one. As a consequence, it is impossible
to move electrons by applying an arbitrarily small voltage ⇒ the system is an
insulator. Since there are 2N states per band, this is only possible if the
number of electrons per unit cell is even.

2. One or several bands are partially filled. The energy of the last occupied
state is called the Fermi energy and is denoted by εF . In that case, the
separation between the last occupied state and the first empty one goes to
0 when N → ∞. The system can react to infinitesimal excitations. Such
systems are called metals (or conductors).

This classification is probably the greatest success of band theory. Before this theory,
the existence of metals and insulators was a great mystery. Many consequences of
this theory have been verified. For instance, this theory predicts the existence of a
particular set of wave vectors called the Fermi surface defined by the equation :

εnkσ = εF

The topology of this surface has truly remarkable consequences. In particular, it
can lead to a conduction by holes, hence to a positive Hall coefficient, a result
impossible to understand in the context of Drude or Sommerfeld theories of metals.
It also has direct consequences for the de Haas-Van Alphen effect (oscillations of
the magnetization of metals with the magnetic field) or for the Chubnikov-de Haas
effect (oscillations of the magnetoresistance with the field) - see chapter on Electrons
in a Magnetic Field.
Besides, the density of states at the Fermi level can be very different from its value

in the Sommerfeld theory. Indeed, it is given by :

gn(εF ) =
∫
Sn(εF )

dS

4π3
1

|∇εn(k)|

where the integral runs over the Fermi surface. The density of states can have
singularities if the gradient vanishes, or even divergences in dimension 2 or 1. This
density of states directly enters quantities such as the specific heat :

cv = π2

3 k
2
BTg(εF )

or the Pauli suscpetibility :
χ = µ2

Bg(εF )
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Finally, the semiclassical theory of transport based on band theory allows one to
explain many properties.
Nevertheless it is not possible to stop at the description in terms of independent

electrons for two very different reasons :

1. Problem of principle : The Coulomb interaction between electrons is not neg-
ligible. It is not even small :

V (q) = 4πe2

q2 diverge pour q → 0

Why does this approximation of independent electrons, that consists in re-
placing this interaction by an average effective potential, work so well in a
large number of cases? To answer this question, and to understand the lim-
its of validity of this theory, it is necessary to work with many-body wave
functions. The only convenient representation goes under the name of second
quantization (see Appendix 6).

2. The failures of band theory : in spite of considerable effort, including by Bloch
himself, it has turned out to be impossible to explain superconductivity with
band theory. One knows by now that superconductivity corresponds to a state
described by a wave function that is radically different from the eigenfunctions
of band theory (see Chapter 5 on superconductivity). This failure is not a
complete one however since superconductivity is accurately described as an
instability from a state well described by band theory.
But there is a far more radical failure : certain systems with an odd number
of electrons per unit cell are insulators, something rigorously impossible in the
framework of band theory. This problem is the subject of the following section.

1.3 Mott insulators

In 1937, only a few years after the development of band theory (Bloch 1929, Peierls
1929, Wilson 1931), de Boer et Verwey noticed that NiO, an insulator with a gap
of about 4 eV , should be a metal according to band theory. In the discussion that
followed the presentation of the results, Peierls said that this could be a consequence
of electron-electron interactions. It is only several years later that Mott managed
to formulate this explanation in a precise way. Since then, many counter-examples
have been found. The most famous is La2CuO4 : doped with Sr (La2−xSrxCuO4)
this compound becomes a superconductor at 40K, a discovery for which Bednorz
and Müller have been awarded the 1987 Nobel prize.
The band structure of this compound has been calculated by Mattheiss in 1987

(see Fig. 1.1). Since there is an odd number of electrons per unit cell, there is at
least one partially filled band. This is indeed the case : one band is half filled.
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Figure 1.1: LAPW energy bands for La2CuO4 along symmetry lines in the bct
Brillouin zone. L.F. Mattheiss, Phys. Rev. Lett. 58, 1028 (1987).

To understand this band structure, the simplest thing to do is to see the solid as
a collection of atoms. Each atom has orbitals that are more or less filled.

La : [Xe] 6s2 5d1

Cu : [Ar] 3d10 4s1

O : 1s2 2s2 2p4

The relative position in energy of the external orbitals of the atoms controls their
filling in the solid. It turns out that the 2p orbitals of oxygen are lower than the
external orbitals of Cu and La. As a consequence, the electronic configurations in
the solid are as follows :

La3+ : [Xe]
Cu2+ : [Ar] 3d9

O2− : 1s2 2s2 2p6

In total, La3+
2 Cu2+O2−

4 is neutral, as it should!
Besides, if we think in terms of the tight-binding approach, the hopping integrals

between certain 3d orbitals of copper and certain 2p orbitals of oxygen are quite large
(' 1 eV ), and the separation between the atomic levels is not too large (' 2 eV ).
This leads to a significant hybridization between these orbitals, and the Fermi level
lies in an energy range where there are 17 overlapping bands : 5 originating from
the 3d levels of copper, and 12 (4×3) from the 2p levels of the four oxygen atoms
of the unit cell.
This approach is always possible, and it describes very well the band structure of

metals. Why does it fail to describe properly the ground state of several compounds
like La2CuO4 ? The central argument put forward by Mott consists in studying the



10 CHAPTER 1. INTRODUCTION

electronic excitations of a solid composed of hydrogen atoms as a function of the
distance between the atoms.
To keep things as simple as possible, let us try to build an imaginary solid forming

a square lattice with hydrogen atoms. The unit cell contains one hydrogen atom,
and there is one electron per unit cell. According to band theory, the system must
thus be a metal. However, if we denote by a the distance between hydrogen atoms,
the system cannot be metallic when a gets very large. Indeed, let us try to induce
a current into this system. To achieve this, we must take an electron and put it far
away. For the system to be metallic, it must be possible to do this only providing
the system with an infinitesimal energy. So let us try to evaluate the energy needed
for this process.
If a is very large, the system has essentially one electron per site to start with.

When sending an electron far away, one creates one hole and one doubly occupied
site :

The potential energy of that state is roughly given by :

E(H−) + E(H+)− 2E(H)

This energy is strictly positive because of the Coulomb repulsion between the elec-
trons. It is usually denoted by U .
However, the system can gain kinetic energy: the hole can delocalize, as well as

the doubly occupied site. Let us assume for simplicity that at all sites occupied by
a single electron, the spin is the same, say ↑. Then indeed the motion of the hole
can be described by a tight binding model of hopping amplitude −t since letting the
hole move to a neighbouring site is equivalent to letting the electron that occupied
that site hop on the empty site. If we denote by W the associated bandwidth, the
hole will occupy the bottom of the band and gain W/2.
The story is very similar for the doubly occupied site. If we assume again for

simplicity that all sites are occupied by a single electron with ↑ spin, the doubly
occupied site corresponds to a site with an extra electron with spin ↓, and this
electron can hop from one site to its neighbours with amplitude −t, leading again
to an effective motion of the doubly occupied site with hopping amplitude −t. Still
denoting by W the associate bandwidth, the doubly occupied site will occupy the
bottom of the band and gain W/2.



1.3. MOTT INSULATORS 11

In reality, the spins do not need to be the same at all sites, and W/2 is an upper
bound of the energy gain for both the hole and the doubly occupied sites, but the
order of magnitude can be shown to be correct.
Now, the bandwidth has been estimated in the context of the tight-binding method.

In 2D, the dispersion relation is given by:

E(k) = −2t(cos kx + cos ky)

and the bandwidth is given by W = 8t.
Finally, since both the hole and the doubly occupied site gain approximatelyW/2,

the energy of a configuration with one hole and one doubly occupied site is given
by:

∆c = U −W

In this expression, U is essentially independent of the lattice parameter a because
it is an atomic quantity. By contrast, W depends strongly on a. When a is large
as compared to the Bohr radius a0, the overlap between wavefunctions that enters
the calculation of the transfer integral t involves the exponential tails of the wave-
functions, and t ∝ e

− a
a0 is exponentially small. In that limit, ∆c ' U is a positive

and large number ⇒ the system is an insulator. Such insulators are called Mott
insulators. ∆c is then called the charge gap.
When a decreases, t increases, and there has to be a value of the order of a0 for

which U = W . Below this value, the calculation of ∆c is not valid anymore. The gap
cannot be negative! Mott’s argument thus predicts the existence of a metal-insulator
transition when a increases.
In principle, this transition can be observed by applying pressure to a Mott in-

sulator to reduce a and increase t. Historically a transition of this type has been
observed for the first time in V2O3 in the early seventies. There are other ingredients
that make the transition in that compound more complicated, but the validity of
Mott’s argument is now generally accepted.
There is a fundamental difference between a Mott insulator and a band insulator.

Indeed, if it is necessary to pay an energy ∆c to make a charge excitation in a Mott
insulator, it is not necessary to pay this energy to make a spin excitation: one can
flip the spin of an electron without creating a doubly occupied site. The description
of the magnetism of Mott insulators is treated in the next chapter. To discuss this
physics in a precise way in a general framework that includes simultaneously charge
and spin excitations, one must master tools that allow one to describe interacting
electrons. The best adapted formalism, the second quantization, is presented in the
last Chapter (Appendix).



Chapter 2

Magnetism of Mott insulators

2.1 Introduction

As we have seen in the previous chapter, Mott insulators are radically different
from band insulators because they possess low-energy magnetic excitations. Indeed
the insulating state correponds to a configuration where each atom carries an odd
number of electrons, say 1 for simplicity, and the spin of this electron can be ↑ or
↓. In the purely atomic limit where atoms are infinitely far apart, the excitation
spectrum is very simple. The ground state corresponds to all configurations with
one electron per site. It is thus 2N fold degenerate, and its energy is equal to Nε0,
where ε0, the energy of an electron on a site, can be taken as the reference of energy
(ε0 = 0).
The first excited state corresponds to a configuration where one site is empty and

one site is doubly occupied. Its degeneracy is N(N−1)2N−2, and its energy U . And
so on · · ·

E = 2U · · ·
E = U N(N − 1)2N−2

E = 0 2N .

If one brings the atoms closer to each other, the first effect will be to lift the
degeneracy in the subspace E = 0. The minimal model to describe this physics is
called the Hubbard model. It is defined by the Hamiltonian:

H = −t
∑

<i,j>,σ

(
c+
i,σcj,σ + h.c.

)
+ U

∑
i

ni,↑ni,↓.

The first term is a hopping term betwenn nearest neighbours. This is the term
that dominates the charge transfer processes when one brings atoms together from

12
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infinity. The second term measures the number of doubly occupied sites.

To determine the effective Hamiltonian that describes the lifting of degeneracy
in the ground state manifold, it is thus necessary to carry on degenerate perturbation
theory with respect to the kinetic term

H0 = −t
∑

<i,j>,σ

(
c+
i,σcj,σ + h.c.

)
.

2.2 Elementary two-site calculation

To understand the effect of the kinetic hopping term, it is useful to start with a two-
site calculation. Let us keep track of the two sites with indices 1 and 2. There are
four possible quantum states for a particle defined by the creation operators c+

1↑, c+
1↓,

c+
2↑ et c+

2↓. Let us build the two-particle states in the Fock space |n1↑, n1↓, n2↑, n2↓〉.
There are six of them, given by:

|1〉 ≡ |1, 0, 1, 0〉 = c+
1↑c

+
2↑|0〉

|2〉 ≡ |0, 1, 0, 1〉 = c+
1↓c

+
2↓|0〉

|3〉 ≡ |1, 0, 0, 1〉 = c+
1↑c

+
2↓|0〉

|4〉 ≡ |0, 1, 1, 0〉 = c+
1↓c

+
2↑|0〉

|5〉 ≡ |1, 1, 0, 0〉 = c+
1↑c

+
1↓|0〉

|6〉 ≡ |0, 0, 1, 1〉 = c+
2↑c

+
2↓|0〉

(2.1)

Applying the full two-site Hamiltonian to these states leads to:

H|1〉 = 0
H|2〉 = 0
H|3〉 = −t(|5〉+ |6〉)
H|4〉 = t(|5〉+ |6〉)
H|5〉 = U |5〉 − t(|3〉 − |4〉)
H|6〉 = U |6〉 − t(|3〉 − |4〉)

(2.2)

These results are obvious given the form of the Hamiltonian, up to one subtlety, the
sign, due to the fact that fermionic operators anticommute. Indeed, let us consider
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for example the effect of the term c+
2↓c1↓ on state |4〉. We get:

c+
2↓c1↓|4〉 = c+

2↓c1↓c
+
1↓c

+
2↑|0〉

= c+
2↓(1− c+

1↓c1↓)c+
2↑|0〉

= c+
2↓c

+
2↑|0〉

= −c+
2↑c

+
2↓|0〉

= −|6〉

Grouping states, we get:

H

(
|3〉+ |4〉√

2

)
= 0

H

(
|3〉 − |4〉√

2

)
= −2t

(
|5〉+ |6〉√

2

)

H

(
|5〉+ |6〉√

2

)
= −2t

(
|3〉 − |4〉√

2

)
+ U

(
|5〉+ |6〉√

2

)

H

(
|5〉 − |6〉√

2

)
= U

(
|5〉 − |6〉√

2

)
(2.3)

The states
(
|3〉−|4〉√

2

)
and

(
|5〉+|6〉√

2

)
lead to the eigenvalue equation

E(E − U)− 4t2 = 0

whose solutions are
E± = U ±

√
U2 + 16t2
2 .

Up to second order in t, these energies are given by

E− = −4t2
U
, E+ = U + 4t2

U

The ground state is thus a non-degenerate state of energy −4t2
U
, the first excited

state has energy 0, and it is three-fold degenerate. The other excited states are at
energies of order U , more precisely U and U + 4t2

U
. There are indeed four states

whose energy would be equal to 0 if the hopping integral t was equal to 0. They
correspond to the four states with one an only one electron per site. The hopping
term lifts the degeneracy and organizes the spectrum into a singlet of energy −4t2

U

and a triplet of energy 0. This is exactly what one would get for two spins 1/2
coupled by the Hamiltonian

H = 4t2
U

(~S1 · ~S2 −
1
4) (2.4)

We are now going to show that this is indeed the form of the effective Hamiltonian
to second order in t.
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2.3 Effective Hamiltonian

There are two methods to derive in a rigorous way the form of the effective Hamil-
tonian to second order: canonical transformations, and degenerate perturbation
theory. We will use a canonical transformation later in this course. In the present
case, one can directly apply degenerate perturbation theory.

To first order in H0, degenerate perturbation theory predicts that the effective
Hamiltonian is given by

< m|Heff |n >=< m|H0|n >

where |m > et |n > are kets of the ground state manifold. But since we are at
half-filling, both |m > and |n > must have one and only one electron per site. Since
H0 lets one electron hop from one site to another, it necessarily creates an empty
site and a doubly occupied site. Its matrix elements in the ground state manifold
thus vanish identically, and one must push degenerate perturbation theory to next
order.

To second order, the matrix elements are given by

< m|Heff |n >=
∑
|k>

′< m|H0|k >< k|H0|n >
E0 − Ek

where the sum ∑′
|k> is restricted to states which do not belong to the ground state

manifold.
Since H0 creates a doubly occupied site, Ek = U , which implies

< m|Heff |n >= − 1
U

∑
|k>

′
< m|H0|k >< k|H0|n >

The operator ∑′|k> |k >< k| is the identity in the subspace of states with a doubly
occupied site. It is convenient to replace it by another representation of the identity
in this subspace, namely ∑j nj,σnj,−σ, leading to

Heff = H0

∑
j nj,σnj,−σ
−U

H0

Let us consider the j-th term of this sum. Only terms of the type∑
i(j),σ

c+
j,σci,σ

will contribute, where i(j) means that one sums over the neighbors of j. The
corresponding term of Heff can be written

− t
2

U

∑
i(j)σ′σ′′

c+
i,σ′cj,σ′nj,σnj,−σc

+
j,σ′′ci,σ′′
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There are four cases to be considered:

σ′ = σ′′ = σ

c+
i,σcj,σnj,σnj,−σc

+
j,σci,σ = ni,σnj,−σcj,σnj,σc

+
j,σ.

Now

cj,σnj,σc
+
j,σ = (1− nj,σ)

since

c n = cc+c = (1− c+c)c = c =⇒ cc+ = 1− n.

The term of the Hamiltonian then takes the form:

c+
i,σcj,σnj,σnj,−σc

+
i,σcj,σ = ni,σnj,−σ(1− nj,σ)

But in the subspace in which Heff operates, all sites are occupied by one and only
one electron. Thus we have:

nj,σ + nj,−σ = 1 =⇒ 1− nj,σ = nj,−σ.

Besides, since nj,−σnj,−σ = nj,−σ, we get the following contribution:

c+
i,σcj,σnj,σnj,−σc

+
i,σcj,σ = ni,σnj,−σ.

σ′ = σ′′ = −σ

In the same way,

c+
i,−σcj,−σnj,σnj,−σc

+
i,−σcj,−σ = ni,−σnj,σ.

σ′′ = −σ′ = σ

c+
i,−σcj,−σnj,σnj,−σc

+
j,σci,σ = c+

i,−σci,σ cj,−σnj,−σ︸ ︷︷ ︸
cj,−σ

nj,σc
+
j,σ︸ ︷︷ ︸

c+
j,σ

= −c+
i,−σci,σc

+
j,σcj,−σ.

σ′′ = −σ′ = −σ
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Similarly,

c+
i,σcj,σnj,σnj,−σc

+
j,−σci,−σ = −c+

i,−σci,σc
+
j,σcj,−σ.

Collecting all terms, we get:

Heff = 2t2
U

∑
<i,j>,σ

(
−ni,σnj,−σ + c+

i,−σci,σc
+
j,σcj,−σ

)

where the prefactor 2 comes from the fact that, for each pair < i, j >, one term
comes from the term nj,σnj,−σ of the sum ∑

j nj,σnj,−σ, and one term from ni,σni,−σ.
Now, in second quantization, the spin operators can be written (see exercises):

Szi = 1
2 (ni,↑ − ni,↓)

S+
i = c+

i,↑ci,↓

S−i = c+
i,↓ci,↑

and the density operators ni = ni,↑ + ni,↓. Using the following identities:

Szi S
z
j −

1
4ninj = −1

2 (ni,↑nj,↓ + ni,↓nj,↑)

S+
i S
−
j + S−i S

+
j = c+

i,↑ci,↓c
+
j,↓cj,↑ + c+

i,↓ci,↑c
+
j,↑cj,↓

on can rewrite the effective Hamiltonian in terms of spin operators as:

Heff = 4t2
U

∑
<i,j>

(
Szi S

z
j −

1
4ninj + 1

2
(
S+
i S
−
j + S−i S

+
j

))
.

But ~Si · ~Sj = Szi S
z
j + 1

2

(
S+
i S
−
j + S−i S

+
j

)
and ni = nj = 1 in the ground state

manifold. Finally, the effective Hamiltonian takes the form:

Heff = 4t2
U

∑
<i,j>

(
~Si · ~Sj −

1
4

)
,

Up to a constant, this is the Heisenberg model defined by:

HHeis = J
∑
<i,j>

~Si · ~Sj,

with the coupling constant J = 4t2
U
. This constant is positive. So this Hamiltonian

tends to favour configurations where nearest neighbour spins are antiparallel. The
physical reason is very simple: if two electrons on neighbouring sites have parallel
spins, none of them can hop on the other site because of Pauli principle. By contrast,
if they spin are antiparallel, each electron can hop on the neighbouring site, and these
processes allow the system to lower its energy.
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2.4 Heisenberg model - general considerations

The Hamiltonian that we have obtained in the previous section is a particular case
of the Heisenberg model which can be defined by the more general Hamiltonian:

H =
∑

(i,j),α=x,y,z
Jαij S

α
i S

α
j .

The symbol (i, j) means that one sums over pairs. The parameters that determine
the properties of this model are:

1. The sign of the couplings.
If the couplings are positive, as in the previous section, they tend to align
the spins in opposite directions. One then speaks of antiferromagnetic cou-
plings. If they are negative, they tend to align the spins in the same direction.
In that case, one speaks of ferromagnetic couplings. (Beware! It is not un-
usual to write the Hamiltonian with a minus sign in front, in which case J > 0
corresponds to a ferromagnetic coupling and vice versa).

2. The anisotropy of the couplings. If the couplings Jx, Jy and Jz are equal, like
for the model derived from the Hubbard model, one speaks of isotropic cou-
plings. Otherwise the model is said to be anisotropic. The most important
special cases are the Ising model (Jx = Jy = 0) and theXYmodel (Jz = 0).

3. The range of the couplings.
One often considers couplings limited to first neighbours, but they are physi-
cal situations in which one must consider longer range couplings, with conse-
quences that can be quite dramatic (see the last section of this chapter).

4. The value of the spin S.
In the case of the Hubbard model, one gets a model with spin 1/2. But the
spin of a magnetic system can a priori take any half-integer or integer value
S. Some properties depend in a crucial way on the value of S. It is sometimes
very useful to consider that the spins are vectors of length 1 and not opera-
tors. This is called the classical limit. It corresponds in a certain sense to
the S → +∞ limit of the quantum case.

5. The dimensionality of space.



2.5. SPIN ALGEBRA 19

Most of the important properties are radically different depending on whether
one deals with a system of dimension 1, 2, or 3.

It is to a large extent the large number of parameters that makes magnetism a vast
subject, and we will limit ourselves to the investigation of a few special situations.
Besides, there are only a few cases where exact results could be obtained, usually
with rather involved calculations, and in most cases one has to resort to approximate
methods to study a given property. The method to choose depends on the energy
scale, or equivalently on the temperature scale one is interested in. If one wants to
study low-temperature properties, i.e. T/J � 1, one should try to determine the
ground state and the low-energy excited states. The most commonly used approach
is spin-wave theory. By contrast, if one is interested in temperatures of the order of
J or larger, all states play an important role, and a good understanding of the low-
energy states is no longer sufficient. The relevant techniques are those of statistical
physics: mean field, renormalization group, etc.

2.5 Spin algebra

The commutation relations between spin operators are:

[Sx, Sy] = iSz.

with the convention ~ = 1. The ladder operators defined by:

S+ = Sx + iSy

S− = Sx − iSy,

satisfy the commutation relations:
[S+, S−] = [Sx,−iSy] + [iSy, Sx] = 2Sz

[Sz, S+] = S+

[Sz, S−] = −S−

The action of the spin operators is given by :

S+|m > =
√
S(S + 1)−m(m+ 1) |m+ 1 >

S−|m > =
√
S(S + 1)−m(m− 1) |m− 1 >

S+S−|m > = (S(S + 1)−m(m− 1)) |m >

S−S+|m > = (S(S + 1)−m(m+ 1)) |m >
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One gets back the commutation relation:(
S+S− − S−S+

)
|m > = (−m(m− 1) +m(m+ 1)) |m >

= 2m|m >

and so

[S+, S−] = 2Sz

To determine the action of the operator ~S2, we first note that:(
S+S− + S−S+

)
= 2S(S + 1)− 2m2

But (Sz)2 = m2, leading to:(
(Sz)2 + 1

2(S+S− + S−S+)
)

= m2 + S(S + 1)−m2 = S(S + 1).

Symmetries: Let us determine the symmetries of the spin Hamiltonian

H =
∑
(i,j)

Jij ~Si · ~Sj.

Let us define ~Stot = ∑
i
~Si. One can prove that:

1) [Sαtot, H] = 0, α = x, y, z,+,−

2) [~S2
tot, H] = 0

Indeed,

[Szi , ~Si · ~Sj] = [Szi , Sxi ]Sxj + [Szi , S
y
i ]Syj

= iSyi S
x
j − iSxi S

y
j

[Szj , ~Si · ~Sj] = Sxi [Szj , Sxj ] + Syi [Szj , S
y
j ]

= iSxi S
y
i − iS

y
i S

x
j

⇒ [Szi + Szj , ~Si · ~Sj] = 0
⇒ [

∑
i

Szi ,
~Si · ~Sj] = 0

⇒ [Sztot, ~Si · ~Sj] = 0
⇒ [Sztot, H] = 0
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Since the Hamiltonian H only involves scalar products, this relation must be true
for any direction:

[Sαtot, H] = 0, α = x, y, z

In addition, since S+
tot et S−tot are linear combinations of Sxtot et S

y
tot, one also has:

[S+
tot, H] = [S−tot, H] = 0

Finally, since~S2
tot = (Sztot)

2 + (Sxtot)
2 + (Sytot)2, one sees immediately that:

[~S2
tot, H] = 0

2.6 Ferromagnetic case

Let us consider the Hamiltonian

H = −J
∑
<i,j>

~Si.~Sj, J > 0

where ∑<i,j> denotes the sum over nearest-neighbour pairs on a Bravais lattice.

2.6.1 Ground state

Classical case:

It is often very useful to start by studying the so-called classical limit in which
spins are assumed to be classical, 3-component vectors of unit length. In the case of
a ferromagnetic system, the energy is minimal for the configurations where all spins
point in the same direction since such a configuration independently minimizes the
energy of each term of the sum.

Quantum case:

By analogy with the classical case, one looks for the quantum equivalent of states
where all spins are aligned. To achieve this, one proceeds in three steps:

1) |m1 = S,m2 = S, ...,mN = S > is an eigenstate.

Szi S
z
j = S2, S+

i S
−
j gives 0. This state is thus an eigenstate of energy:

E = −J
∑
<ij>

S2 = −JS2
(
z

2N
)

︸ ︷︷ ︸
number of pairs
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2) This is the state of lowest energy. For this to be true, it is sufficient to prove
that:

< ~Si · ~Sj >≤ S2

But

~Si · ~Sj = 1
2

[(
~Si + ~Sj

)2
− ~S2

i − ~S2
j

]
= 1

2
(
~Si + ~Sj

)2
− S(S + 1)

and the maximum of ~Si · ~Sj is given by:

max(~Si · ~Sj) = 1
2max

(
~Si + ~Sj

)2
− S(S + 1)

= 1
22S(2S + 1)− S(S + 1) = S2

3) Degeneracy: 2NS + 1. Indeed, since S−tot commutes with the Hamiltonian, one
gets new ground states from the previous states by applying successively S−tot until
one reaches the state |m1 = −S,m2 = −S, ...,mN = −S >, which is annihilated by
S−tot.

2.6.2 Exact low-energy states:

Let’s consider the state
|i >= |S . . . S − 1︸ ︷︷ ︸

i

S . . . >

It is related to |F > by |i >= 1√
2SS

−
i |F > since

S−i |F >=
√
S(S + 1)− S(S − 1)|S . . . S − 1︸ ︷︷ ︸

i

S . . . >

Moreover,
S+
i |i >=

√
2S|F >

Let us act on it with the components of the Hamiltonian:

Hz|i > = −J
∑
<kl>

SzkS
z
l |i >= −JS2

(
z

2N − z
)
|i > −JS(S − 1)z|i >

= (−JS2 z

2N + JSz)|i >= (E0 + JSz)|i >
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H⊥|i > = −J
∑
j(i)

1
2

S+
i S
−
j + S−i S

+
j︸ ︷︷ ︸

=0

 |i >
= −J2

∑
j(i)

S−j S+
i |i >︸ ︷︷ ︸

=
√

2S|F>

= −J2
∑
j(i)

2S|j >

= −JS
∑
j(i)
|j >

Acting on the state |~k >= 1√
N

∑
i e
−i~k·~Ri |i >, this Hamiltonian gives:

H⊥|~k > = 1√
N

∑
i

e−i
~k·~Ri(−JS)

∑
~τ

|i+ ~τ >

= 1√
N

(−JS)
∑
~τ

ei
~k·~τ ∑

i

e−i
~k·(~Ri+~τ)|i+ ~τ >

= −JS
∑
~τ

ei
~k·~τ |~k >

=⇒

H|~k > = E0|~k > +JSz|~k > −JS
∑
~τ

ei
~k·~τ |~k >

= E~k|~k >

with

E~k = E0 + JS
∑
~τ

(
1− ei~k·~τ

)

Nota Bene 1: For ~k = 0, one finds E~k = E0. Is this possible? Yes. This state
can be obtained from |F > by a rotation of the total spin, and the Hamiltonian
commutes with the total spin.
Nota Bene 2: This calculation is very similar to that done for the tight-binding

model.
Dispersion:
ei
~k·~τ + e−i

~k·~τ = 2 cos(~k · ~τ), ~τ = ax̂, aŷ, aẑ

After transforming ∑~τ

(
1− ei~k·~τ

)
:∑

~τ

(
1− ei~k·~τ

)
=

∑
α

2 (1− cos(kαa))

= 4
∑
α

sin2
(
kαa

2

)
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=⇒

E~k = E0 + 4JS
∑
α

sin2
(
kαa

2

)

Emax

E

k

2JSz

For small ~k: sin2
(
kαa

2

)
∼ k2

αa
2

4 =⇒

E~k = E0 + JS~k2a2

The dispersion is quadratic for small ~k.

Exercise: Calculate < ~k|Sxi Sxj + Syi S
y
j
~k > et < ~k|Szi Szj |~k >.

Solution: Sxi Sxj + Syi S
y
j = 1

2

(
S+
i S
−
j + S−i S

+
j

)
, |~k >= 1√

N

∑
n e
−i~k·~Rn|n >

Let us first look at:

S−i S
+
j |~k >= 1√

N
e−i

~k·~RjS−i S
+
j |j >

Now
S+
j |j >=

√
S(S + 1)− S(S − 1)|F >=

√
2S|F >

and
S−i S

+
j |j >=

√
2SS−i |F >= 2S|i >

fSo

S−i S
+
j |~k >= 2S√

N
e−i

~k·~Rj |i > .

In the same way, one shows that:

S+
i S
−
j |~k >= 2S√

N
e−i

~k·~Ri |j > .
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We then get:

< ~k|12
(
S+
i S
−
j + S−i S

+
j

)
|~k > = 2S

2N
∑
n

ei
~k·~Rn

(
e−i

~k·~Rj < n|i > +e−i~k·~Ri < n|j >
)

= 2S
2N

(
ei
~k·(~Ri−~Rj) + ei

~k·(~Rj−~Ri)
)

= 2S
N

cos~k · (~Ri − ~Rj).

We now look for the expectation value of < ~k|Szi Szj |~k >. Following the same
procedure, we get:

Szj |~k >= 1√
N

∑
n 6=j

Se−i
~k·~Rn|n > +(S − 1)e−i~k·~Rj |j >


When i 6= j,

Szi S
z
j |~k >= 1√

N

 ∑
n 6=i,n 6=j

S2e−i
~k·~Rn|n > +S(S − 1)e−i~k·~Rj |j > +S(S − 1)e−i~k·~Ri |i >


Finally:

< ~k|Szi Szj |~k > = 1
N

∑
m

ei
~k·~Rm

 ∑
n6=i,n 6=j

S2e−i
~k·~Rn < m|n >


+

∑
m

ei
~k·~Rm

(
S(S − 1)e−i~k·~Rj < m|j > +S(S − 1)e−i~k·~Ri < m|i >

)

= 1
N

 ∑
n6=i,n6=j

S2 + S(S − 1) + S(S − 1)


= S2 − 2
N
S

independent of the indices i and j.

Figure 2.1: period ∼ 1
k

Low energy mode Goldstone Theorem (broken continuous symmetry =⇒ mode
whose energy goes to 0 as ~k goes to ~0).
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Are there ther low-energy states? Yes, of course. One can overturn 2 spins, 3
spins, etc . . ., but there is a problem. |~k, ~k′ >= 1

N

∑
i,j e

i(~k~ri+~k~rj)S−i S−j |F > is not
an eigenstate of H. Indeed, for the one magnon states, one looks for the solution
as |Ψ >= ∑

iAiS
−
i |F > and we have seen that Ai = ei

~k·~Ri allows one to diago-
nalize H. For the two-magnon states, one must look for a solution of the form
|Ψ >= ∑

i,j Ai,jS
−
i S
−
j |F >. But the coefficients Ai,j must satisfy different equations

depending on whether i and j are nearest neighbours or not. This problem does not
have an exact solution except in dimension 1 for spins 1/2 (Bethe ansatz, 1931).

2.6.3 Holstein-Primakoff transformation

For a given S, and provided it is not too small, one can create several spin deviations
on a given site → the operators S±i are rather bosons than fermions.
Exact representation: 

Szi = S − a+
i ai

S+
i =
√

2S
√

1− a+
i ai
2S ai

S−i =
√

2S a+
i

√
1− a+

i ai
2S

Approximations:

• One forgets that the condition a+
i ai ≤ 2S should be fulfilled.

• One only keeps terms linear in S in the Hamiltonian. So in particular one can
assume: S+

i =
√

2Sai and S−i =
√

2Sa+
i .

Let us check the commutation relations:
[S+, S−] = S+S− − S−S+

= 2S

√1− n

2S aia
+
i︸ ︷︷ ︸

1+a+
i ai

√
1− n

2S − a
+
i (1− n

2S )ai


= 2S

[
(1− n

2S ) +
√

1− n

2Sa
+
i ai

√
1− n

2S − a
+
i (1− n

2S )ai
]

Using the relations:
a+
i aiai = (aia+

i − 1)ai
niai = aini − ai

and

a+
i

(
1− ni

2S

)
ai = a+

i ai −
a+
i niai
2S

= a+
i ai

(
1− ni

2S

)
+ ni

2S
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leads to:

[S+, S−] = 2S
[
1− ni

2S +
(

1− ni
2S

)
ni −

(
1− ni

2S

)
ni −

ni
2S

]
= 2S

[
1− ni

S

]
= 2S − 2n = 2Sz.

In the same spirit,

1√
2S

[Sz, S+] = [n, S
+

√
2S

] = −[n,
√

1− n

2Sai]

= −n
√

1− n

2Sai +
√

1− n

2Sain

= −
√

1− n

2S [n, ai] = −
√

1− n

2S (−ai) = S+
√

2S

Let us now calculate the Hamiltonian:

H = −J

 ∑
<i,j>

S2 − Sa+
i ai − Sa+

j aj + 1
22S(a+

i aj + a+
j ai)


= −JNz2 S2 − JS

∑
<i,j>

(
−a+

i ai − a+
j aj + a+

i aj + a+
j ai

)
= −JNz2 S2 − JS

2
∑
i,~τ

(
−a+

i ai − a+
i+~τai+~τ + a+

i ai+~τ + a+
i+~τai

)

Let us define the Fourier transforms as:

a+
~k

= 1√
N

∑
i e
i~k·~ria+

i , a~k = 1√
N

∑
i e
−i~k·~riai

a+
i = 1√

N

∑
~k e
−i~k·~ria+

~k
, ai = 1√

N

∑
~k e

i~k·~ria~k

The Hamiltonian can be written:

H = −JNz2 S2 − JS

2
∑
i,~τ

1
N

∑
~k1,~k2(

−e−i~k1·~ri+i~k2·~ri − e−i~k1·(~ri+~τ)+i~k2·(~ri+~τ) + e−i
~k1·~ri+i~k2·(~ri+~τ) + e−i

~k1·(~ri+~τ)+i~k2·~ri
)

× a+
~k1
a~k2

= −JNz2 S2 − JS

2
∑
~τ

∑
~k1,~k2

(
−1− e−i~k1·~τ+i~k2·~τ + ei

~k2·~τ + e−i
~k1·~τ

)
δ~k1,~k2

a+
~k1
a~k2

= −JNz2 S2 − JS

2
∑
~τ

∑
~k

(
−1− 1 + ei

~k·~τ + e−i
~k·~τ
)
a+
~k
a~k
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Finally

H = E0 +
∑
~k

ε~k a
+
~k
a~k

with

ε~k = JS
∑
~τ

(
1− ei~k·~τ

)

Interpretation: Let us adopt the representation in terms of the boson occupation
numbers.

|0, · · · , 0 > → Ground state

|0, · · · , 1︸︷︷︸
~k

, · · · , 0 > → one magnon state

|0, · · · , 1︸︷︷︸
~k1

, · · · , 0, · · · , 1︸︷︷︸
~k2

, · · · , 0 > → two-magnon state· · ·

Thermodynamics of spin waves:

< Szi >= S− < a+
i ai > with a+

i ai = 1
N

∑
~k1,~k2

e−i
~k1~ri+i~k2~ria+

~k1
a~k2

.

The magnetization is given by:

< m > = 1
N

∑
i

< Szi >= S − 1
N2

∑
i

∑
~k1,~k2

e−i
~k1~ri+i~k2~ri < a+

~k1
a~k2

>

= S − 1
N

∑
~k

< a+
~k
a~k >

= S − 1
N

∑
~k

1
eβε~k − 1

= S − 1
(2π)D

∫ d~k

eβε~k − 1
,

with β = 1
kBT

.

Remember that ε~k ∼ JSa2k2. Let us evaluate the contribution from small wave
vectors:

< m >= S − aD

(2π)D
∫
|~k|≤k0

d~k

eβJSa2k2 − 1︸ ︷︷ ︸
I

− aD

(2π)D
∫
|~k|>k0

d~k

eβε~k − 1
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Let us suppose that β is fixed. For k small enough, eβJSa2k2 ∼ 1 + βJa2k2. The
integral I becomes:

I = aD

(2π)D
∫
|~k|≤k0

d~k

βJSa2k2

• 3D: This is a convergent integral because d~k ∝ k2dk. To get the temperature
dependence, we go back to the original integral and perform the change of
variables u =

√
βk. This leads to:∫ k2dk

eβJSa2k2 − 1 = 1
β3/2

∫ u2du

eJSa2u2 − 1 ∝ T 3/2 (2.5)

This is Bloch’s law: the correction to the magnetization of a ferromagnet at
low temperature is proportional to T 3/2.

• 2D:

a2

2π
1

βJS

∫ k0

|~k|=0

kdk

k2 Diverges!

• 1D:

a

(2π)
1

βJS

∫ k0

|~k|=0

dk

k2 Diverges even more!

In D = 1 and D = 2, there is no magnetic order at finite temperature (Hohenberg-
Mermin-Wagner theorem). By contrast, in dimension 3, there is a finite magnetiza-
tion if the temperature is not too high.

2.7 Antiferromagnetic case

2.7.1 Classical case

The classical ground state is the Néel state with all spins ↑ on sublattice A and all
spins ↓ on sublattice B:

↑ ↓ ↑ ↓
↓ ↑ ↓ ↑

2.7.2 Quantum formulation

By analogy, let us consider the state:

|mA
1 = S, · · · ,mA

N
2

= S,mB
1 = −S, · · · ,mB

N
2

= −S > .
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Is this the ground state? Certainly not: it is not even an eigenstate!
To see this, let us consider two neighbouring sites (i ∈ A, j ∈ B):S

+
i S
−
j → 0

S−i S
+
j → mA

i = S − 1, mB
j = −S + 1

This state is coupled to other states. How to proceed?
The situation is somehow similar to the ferromagnetic case at T > 0. One must

include fluctuations.

Holstein-Primakoff transformation
Since spins point in different directions on the two sublattices, one must distin-

guish two cases:
Sublattice A 

Szi = S − a+
i ai

S+
i =
√

2S
√

1− ni
2S ai

S−i =
√

2S a+
i

√
1− ni

2S

Sublattice B 
Szj = −S + a+

j aj

S+
j =
√

2S a+
j

√
1− nj

2S

S−j =
√

2S
√

1− nj
2S aj

Linear approximation

Keeping only terms of order S2 and S, the Hamiltonian becomes:

H = J
∑
i∈A

∑
j(i)

(
−S2 + Sa+

i ai + Sa+
j aj + 2S

2
(
aiaj + a+

i a
+
j

))

= −JS2N

2 z + SJ
∑
i∈A

∑
~τ

(
a+
i ai + a+

i+~τai+~τ + aiai+~τ + a+
i+~τa

+
i+~τ

)
= −JS2N

2 z + JS

2
∑
i

∑
~τ

1
N

∑
~k1,~k2

[(
e−i

~k1~ri+i~k2~ri + ei(−
~k1+~k2)(~ri+~τ)

)
a+
~k1
a~k2

]

+ JS

2
∑
i

∑
~τ

1
N

∑
~k1,~k2

[
ei
~k1~ri+i~k2(~ri+~τ)a~k1

a~k2
+ e−i

~k1~ri−i~k2(~ri+~τ)a+
~k1
a+
~k2

]

= −JS2N

2 z + JS

2
∑
~τ

∑
~k

(
a+
~k
a~k + a+

~k
a~k + a~ka−~ke

−i~k~τ + a+
~k
a+
−~ke

i~k~τ
)

Problem: The Hamiltonian is not the sum of harmonic oscillators because it con-
tains terms of the form a~ka−~k and a+

~k
a+
−~k.
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2.7.3 Bogolioubov transformation

If the Hamiltonian was of the form:

H =
∑
~k

ω~kα
+
~k
α~k + Cte

one would have:
[H,α~k] = −ω~kα~k

Now, since

[a+
~k
a~k, a~k] = a+

~k
a~k︸ ︷︷ ︸

−1+a~ka
+
~k

a~k − a~ka
+
~k
a~k = −a~k,

[a+
~k
a+
−~k, a~k] = [a+

~k
, a~k]a

+
−~k = −a+

−~k.

on gets the following expression for the commutator:

[H, a~k] = −JS2
∑
~τ

(
a~k + a~k + a+

−~k

(
ei
~k~τ + e−i

~k~τ
))

= −JS
∑
~τ

(
a~k + a+

−~k cos~k · ~τ
)
.

Similarly, since

[a+
~k
a~k, a

+
~k

] = a+
~k
a~ka

+
~k︸ ︷︷ ︸

1+a+
~k
a~k

−a+
~k
a+
~k
a~k = a+

~k
,

[a~ka−~k, a
+
~k

] = +a−~k

one gets:

[H, a+
−~k] = JS

∑
~τ

(
a+
−~k + a~k cos~k · ~τ

)
.

Since [H, a~k] and [H, a+
−~k] are linear combinations of a~k and a

+
−~k, it must be possible

to bring the Hamiltonian into the required form with bosonic operators α+
~k
and α~k

that are linear combinations of a~k et a+
−~k. More precisely, let us look for operators

of the form:

α~k = u~ka~k + v~ka
+
−~k
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The coefficients u~k and v~k are determined by the conditions:

[H,α~k] = JS
∑
~τ

[(
−u~k + v~k cos~k · ~τ

)
a~k +

(
v~k − u~k cos~k · ~τ

)
a+
−~k

]
= −ω~kα~k , ω~k > 0

which leads to: −u~kJSz + v~kJSz~k = −ω~ku~k
−u~kJSz~k + v~kJSz = −ω~kv~k

where we have introduced the notation:

z~k =
∑
~τ

cos~k · ~τ

Solutions exist provided:(
−ω~k − JSz

) (
JSz − ω~k

)
+ (JSz~k)

2 = 0

⇒ ω2
~k

= (JSz)2 − (JSz~k)
2

Besides, to ensure that [α~k, α
+
~k

] = 1, the coefficients u~k and v~k must satisfy the
normalization condition u2

~k
− v2

~k
= 1. But from the above equation we get

u2
~k
− v2

~k
= u2

~k

2ω~k
JSz + ω~k

.

Since JSz + ω~k > 0, this imposes to choose ω~k > 0:

ω~k = JSz
√

1− γ2
~k

with γ~k = z~k
z

= cos kx in1D, 1
2(cos kx + cos ky) in 2D · · · For small k, ω~k ∝ k: In an

antiferromagnet, the dispersion of spin waves is linear in k.

The eigenvalue equations imply:

v~k
u~k

= JSz~k
JSz + ω~k

= sign(z~k)

√
(JSz − ω~k)(JSz + ω~k)

JSz + ω~k

= sign(z~k)
√√√√JSz − ω~k
JSz + ω~k

Besides, the normalisation condition imposes

u2
~k

(
2ω~k

JSz + ω~k

)
= 1
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One can thus choose as solutions

u~k =
√√√√JSz + ω~k

2ω~k
v~k = sign(z~k)

√√√√JSz − ω~k
2ω~k

The Hamiltonian is thus of the form:

H =
∑
~k

ω~kα
+
~k
α~k + Cte

To determine the constant, one must invert these relationsα~k = u~ka~k + v~ka
+
−~k

α+
−~k = u~ka

+
−~k + v~ka~k

which leads to:a~k = u~kα~k − v~kα
+
−~k a+

~k
= u~kα

+
~k
− v~kα−~k

a+
−~k = −v~kα~k + u~kα

+
−~k a−~k = −v~kα

+
~k

+ u~kα−~k

and introduce these expressions into the Hamiltonian written in terms of the a+
~k

,
a~k given by:

H = −JS2 zN

2 + JS

2
∑
~k

(
2za+

~k
a~k + z~ka~ka−~k + z~ka

+
~k
a+
−~k

)

Now,

a+
~k
a~k =

(
u~kα

+
~k
− v~kα−~k

) (
u~kα~k − v~kα

+
−~k

)
= u2

~k
α+
~k
α~k + v2

~k
α−~kα

+
−~k − u~kv~k

(
α+
~k
α+
−~k + α~kα−~k

)
= u2

~k
α+
~k
α~k + v2

~k
α+
−~kα−~k + v2

~k
− u~kv~k

(
α+
~k
α+
−~k + α~kα−~k

)

a~ka−~k =
(
u~kα~k − v~kα

+
−~k

) (
−v~kα

+
~k

+ u~kα−~k

)
= −u~kv~k

(
α~kα

+
~k

+ α+
−~kα−~k

)
+ u2

~k
α~kα−~k + v2

~k
α+
−~kα

+
~k

= −u~kv~k
(
α+
~k
α~k + α+

−~kα−~k

)
− u~kv~k + u2

~k
α~kα−~k + v2

~k
α+
−~kα

+
~k

a+
~k
a+
−~k =

(
u~kα

+
~k
− v~kα−~k

) (
−v~kα~k + u~kα

+
−~k

)
= −u~kv~k

(
α+
~k
α~k + α−~kα

+
−~k

)
+ u2

~k
α+
~k
α+
−~k + v2

~k
α−~kα~k

= −u~kv~k
(
α+
~k
α~k + α+

−~kα−~k

)
− u~kv~k + u2

~k
α+
~k
α+
−~k + v2

~k
α−~kα~k
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Let us regroup the terms:

The constant term is given by 2zv2
~k
− 2z~ku~kv~k. But according to the eigenvalue

equations, one has:

v~kJSz − u~kJSz~k = −ω~kv~k

and so:
JS

2
∑
~k

(
2zv2

~k
− 2z~ku~kv~k

)
=

∑
~k

(
JSzv2

~k
− JSu~kz~kv~k

)
= −

∑
~k

ω~kv
2
~k

= −
∑
~k

ω~k
JSz − ω~k

2ω~k
= −JSz2

∑
~k

1
︸ ︷︷ ︸
N

+1
2
∑
~k

ω~k

The constant term of the Hamiltonian is thus equal to:

−JS(S + 1)zN2 + 1
2
∑
~k

ω~k

The non-constant terms are given by:

α+
~k
α~k ×

(
2zu2

~k
+ 2zv2

~k
− 4z~ku~kv~k

)
= α+

~k
α~k

((
2zu~k − 2z~kv~k

)
u~k +

(
2zv~k − 2z~ku~k

)
v~k

)
= α+

~k
α~k

( 2
JS

ω~ku
2
~k
− 2
JS

ω~kv
2
~k

)
= α+

~k
α~k

2
JS

ω~k

which leads to a contribution to the Hamiltonian equal to ∑~k ω~kα
+
~k
α~k. Finally,

α~kα−~k ×
(
−2zu~kv~k + z~ku

2
~k

+ z~kv
2
~k

)
= α~kα−~k

((
z~ku~k − zv~k

)
u~k +

(
z~kv~k − zu~k

)
v~k

)
= α~kα−~k

(
ω~ku~kv~k − ω~ku~kv~k

)
= 0

This leads to our final result:

H = −JS(S + 1) zN2 +∑
~k

(
α+
~k
α~k + 1

2

)
ω~k
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Staggered magnetization

The equivalent of the magnetization of the ferromagnetic case is the staggered
magnetization defined by:

Mstag = 1
N
<
∑
i∈A

Siz −
∑
i∈B

Sjz >

According to the Holstein-Primakoff transformation, we have:

Mstag = S − 1
N

∑
~k

< a+
~k
a~k >

Using the expression of a+
~k
a~k in terms of the operators α+

~k
, α~k, we get:

< a+
~k
a~k > = u2

~k
n(~k) + v2

~k

(
1 + n(~k)

)
=

(
u2
~k

+ v2
~k

)
n(~k) + v2

~k

• T = 0 :

< a+
~k
a~k >= v2

~k
= JSz − ω~k

2ω~k
6= 0 !

There are quantum fluctuations.

D = 1 :

< m >= S − 2
2π

∫ π
a

0
dk
JSz − ωk

2ωk
But for k small, ωk ∼ k. As a consequence, the integral diverges and there is
no antiferromagnetic order.

D ≥ 2 : There is antiferromagnetic order if the integral is smaller than S. It
is often true. For instance, on the square lattice, the integral is approximately
equal to 0.2. This calculation thus predicts that there must be antiferromag-
netic order for all S.

• T 6= 0 :

< a+
~k
a~k >= JSz

ω~k

1
eβω~k − 1︸ ︷︷ ︸

∼ 1
k2 for k small

+JSz − ω~k2ω~k

D ≤ 2: The integral diverges→ no long-range antiferromagnetic order at T > 0
(Hohenberg-Mermin-Wagner theorem).
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Spin-wave ground state:

The vacuum for the a+ bosons is the Néel state. This is not the ground state!
The ground state satisfies α~k|F >= 0. But

(
u~ka~k + v~ka

+
−~k

)
|0 >= v~ka

+
−~k|0 >6= 0.

One can show that the ground state is given by:

|F >=
∏
~k

′ 1
u~k

exp
(
−v~k
u~k
a+
~k
a+
−~k

)
|0 >

where ∏′~k means that the product is restricted to wave vectors ~k and ~k′ such that
~k 6= −~k′. To this end, one much show that:

α~k|F >= 0

with α~k = u~ka~k + v~ka
+
−~k.

a~k|F > = a~k
∏
~l

′ 1
u~l

exp
(
−v~l
u~l
a+
~l
a+
−~l

)
|0 >

=
∏

~l 6=~k,−~k

′ 1
u~l

exp
(
−v~l
u~l
a+
~l
a+
−~l

)
1
u~k
a~k

+∞∑
n=1

[
− v~k
u~k
a+
~k
a+
−~k

]n
n! |0 >

where the sum starts at n = 1 because the term n = 0 gives 0 since a~k|0 >= 0.
Now,

[a~k, (a
+
~k

)n] = n(a+
~k

)n−1

Let us prove this by recurrence. This is true for n = 1 since [a~k, a
+
~k

] = 1. Let us
suppose this is true for n− 1. Then:

[a~k, (a
+
~k

)n] = [a~k, (a
+
~k

)n−1]a+
~k

+ (a+
~k

)n−1[a~k, a
+
~k

]
= (n− 1)(a+

~k
)n−2a+

~k
+ (a+

~k
)n−1

= n(a+
~k

)n−1

Thus,

a~k(a
+
~k

)n = n(a+
~k

)n−1 + (a+
~k

)na~k︸ ︷︷ ︸
gives 0 on the vacuum

and one gets:

a~k|F > =
∏

~l 6=~k,−~k

′ 1
u~l

exp
(
−v~l
u~l
a+
~l
a+
−~l

)
1
u~k

+∞∑
n=1

(− v~k
u~k

)n(a+
~k

)n−1(a+
−~k)

n

(n− 1)! |0 >

=
∏

~l 6=~k,−~k

′ 1
u~l

exp
(
−v~l
u~l
a+
~l
a+
−~l

)
1
u~k

−v~k
u~k

a+
−~k exp

(
−v~k
u~k
a+
~k
a+
−~k

)
|0 >
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Finally:

u~ka~k|F >= −v~ka
+
−~k|F >

so that

α~k|F >= 0.

Finally, let us check the normalization of |F >.

< F |F > = < 0|
∏
~k

′ 1
u2
~k

∑
n

(
−v~k
u~k

)2n (a−~ka~k)n(a+
~k
a+
−~k)

n

n!2 |0 >

=
∏
~k

′ 1
u2
~k

∑
n

(
−v~k
u~k

)2n

=
∏
~k

′ 1
u2
~k

1
1− ( v~k

u~k
)2

= 1.
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2.8 Frustrated magnets

Definition: Frustrated magnets are magnets for which it is impossible to minimise
simultaneously the energy of each bond in the classical case.

Examples:

• Triangular lattice → topological origin

?

• Square lattice with first and second neighbour interactions

J2

?

2.8.1 Looking for the classical ground state

This is a problem that has no general solution. The solution is known however when
the magnetic moments sit on a Bravais lattice (i.e. when there is one magnetic site
per unit cell).
To see this, let us consider the energy of a configuration

E = 1
2
∑
i

∑
~Rn

J~Rn
~S~Ri · ~S~Ri+~Rn
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There is a factor 1
2 because each bond appears twice.

One must look for the minimum under the constraint ||~S~Ri ||
2 = 1 for all sites.

Fourier transform:

~S~k = 1√
N

∑
i

~Sie
−i~k·~Ri =⇒ ~Si = 1√

N

∑
~k

~S~ke
i~k·~Ri

J~k =
∑
~Rn

J~Rne
−i~k·~Rn =⇒ J~Rn = 1

N

∑
~k

J~ke
i~k·~Rn

E = 1
2
∑
~Ri

∑
~Rn

1
N2

∑
~k1~k2~k3

J~k1
~S~k2
· ~S~k3

e
~k1·~Rn+~k2·~Ri+~k3·(~Ri+~Rn)

=⇒ ~k2 = −~k3 = ~k1. The energy can be written as:

E = 1
2
∑
~k

J~k
~S~k · ~S−~k

On then proceeds in two steps:

• One solves the problem under the weaker constraint ∑i ||~Si||2 = N .

• One checks if one can find a ground state that satisfies the stronger constraint
||~Si||2 = 1 for all sites.

Now ∑
i

~S2
i = 1

N

∑
~k1~k2

∑
i

ei(
~k1+~k2)·~Ri ~S~k1

· ~S~k1

=
∑
~k

~S~k · ~S−~k

One must thus minimise

E = 1
2
∑
~k

J~k
~S~k · ~S−~k

under the constraint ∑~k
~S~k · ~S−~k = N = cst.

Let’s assume that J~k is minimal for ~k = ~k0. The minimum of the energy is
obtained iff ~S~k = ~0, ~k 6= ~k0, −~k0 and ~S~k0

~S−~k0
+ ~S−~k0

~S~k0
= N .

In real space, the spins are then given by

~Si = 1√
N

(
~S~k0
ei
~k0·~R + ~S−~k0

e−i
~k0·~R

)
Can one find ~S~k0

and ~S−~k0
such that:
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• ~S~k0
· ~S−~k0

= N
2

but also such that the local constraints:

• ~Si réel

• ||~Si||2 = 1

are satisfied for all i? Yes! For example:

~S~k0
=


√
N
2

−i
√
N
2

0

 ~S−~k0
=


√
N
2

i
√
N
2
0


leads to:

~Si =


cos

(
~k0 · ~R

)
sin

(
~k0 · ~R

)
0


One gest a helical structure of pitch vector ~k0.

Figure 2.2: Example of a 1D helix of wave vector ~k0 = 2π
12a .

Conclusions:

• The structure of the classical ground state is a helix whose wave vector is given
by the minimum of J~k.

• If there are several wave vectors that minimise J~k, one can sometimes make
linear combinations, and this can lead to a continuous degeneracy of the ground
state.

Example: J1 − J2 model on the square lattice

H = J1
∑
<i,j>

~Si · ~Sj + J2
∑

<<i,j>>

~Si · ~Sj

=
∑
~k

J(~k)~S~k · ~S−~k
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J2J1

J(~k) = J1
(
ei
~k~x + e−i

~k~x + ei
~k~y + e−i

~k~y
)

+ J2
(
ei
~k(~x+~y) + ei

~k(~x−~y) + e−i
~k(~x+~y) + ei

~k(−~x+~y)
)

= 2J1 (cos(kx) + cos(ky)) + 2J2 (cos(kx + ky) + cos(kx − ky))
= 2J1 (cos(kx) + cos(ky)) + 4J2 cos(kx) cos(ky)

The minimization leads to:
∂J

∂kx
= −2J1 sin(kx)− 4J2 sin(kx) cos(ky) = 0

∂J

∂ky
= −2J1 sin(ky)− 4J2 sin(ky) cos(kx) = 0

(
kx = 0, kx = π
ky = 0, ky = π

)
or

cos ky = −J1

2J2
= cos kx

which is only possible if J1
2J2

< 1→ J1
2 < J2.

kx = ky = 0→ J(~k) = 4J1 + 4J2

kx = 0, ky = π → J(~k) = −4J2

kx = ky = π → J(~k) = −4J1 + 4J2

cos kx = cos kx = −J1
2J2

→ J(~k) = 2J1

(−2J1

2J2

)
+ 4J2

J2
1

4J2
2

= −2J2
1

J2
+ J2

1
J2

= −J
2
1
J2
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But if J1 < 2J2, −4J2 <
−J2

1
J2

. The ground state is thus reached for kx = 0, ky = π
or kx = π, ky = 0.

For J2
J1

= 1
2 , the minimum J(~k) = −2J1 is reached for

kx = π,∀ ky ou ky = π,∀ kx

Finally, for J1 < 2J2, one can make a linear combination of two helices. This leads
to a continuous family of degenerate classical ground states.

a

E indep. de a

+ comb. lin.

kx = ky = π

kx = 0, ky = 
kx = 

π
π , ky = 0

1/2
J2/J1

2.8.2 Spin waves in a helical system

Let us consider a system described by the Hamiltonian

H = 1
2
∑
i

∑
~Rn

J~Rn
~Si · ~Si+~Rn

J(~k) =
∑
~Rn

J~Rne
−i~k·~Rn

and let us suppose that J(~k) is minimal for ~k = ~Q.

We are going to perform a rotation in spin space such that the classical ground
state is described by Sui = Svi = 0, Swi = 1.
To achieve this, let us suppose that the ground state is described by

~Si =

 0
sin( ~Q · ~Ri)
cos( ~Q · ~Ri)


and let us perform a rotation of angle θi = ~Q · ~Ri around Sx:
Su = Sx, Sv = cos θiSy − sin θiSz and Sw = sin θiSy + cos θiSz.
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Q.a

In the new basis, the Hamiltonian takes the form:

H = 1
2
∑
i

∑
~Rn

J~Rn [Sui Sui+n

+ (cos θiSvi + sin θiSwi )(cos θi+nSvi+n + sin θi+nSwi+n)
+ (− sin θiSvi + cos θiSwi )(− sin θi+nSvi+n + cos θi+nSwi+n)]

since

Sy = cos θiSvi + sin θiSwi
Sz = − sin θiSvi + cos θiSwi

H = 1
2
∑
i

∑
~Rn

J~Rn [Sui Sui+n

+ Svi S
v
i+n(cos θi cos θi+n + sin θi sin θi+n)

+ Swi S
w
i+n(sin θi sin θi+n + cos θi cos θi+n)

+ Svi S
w
i+n(cos θi sin θi+n − sin θi cos θi+n)

+ Swi S
v
i+n(− cos θi sin θi+n + sin θi cos θi+n)]

= 1
2
∑
i

∑
~Rn

J~Rn

[
Sui S

u
i+n + cos(θi − θi+n)

(
Svi S

v
i+n + Swi S

w
i+n

)
+ sin(θi − θi+n)

(
Swi S

v
i+n − Svi Swi+n

)]

Next, let us perform the Holstein-Primakoff transformation:

Swi = S − a+
i ai

S+
i ≡ Sui + iSvi '

√
2Sai

S−i ≡ Sui − iSvi '
√

2Sa+
i
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Sui S
u
i+n = 1

4
(
S+
i + S−i

) (
S+
i+n + S−i+n

)
= S

2
(
aiai+n + a+

i a
+
i+n + aia

+
i+n + a+

i ai+n
)

Svi S
v
i+n = −1

4
(
S+
i − S−i

) (
S+
i+n − S−i+n

)
= −S2

(
aiai+n + a+

i a
+
i+n − aia+

i+n − a+
i ai+n

)
Swi S

w
i+n = S2 − S(a+

i ai + a+
i+nai+n)

Swi S
v
i+n = S

√
2S

2i
(
ai+n + a+

i+n

)
Svi S

w
i+n = S

√
2S

2i
(
ai + a+

i

)
The Hamiltonian now takes the form:

H = 1
2
∑
i

∑
~Rn

J~Rn [S2 (aiai+n + a+
i a

+
i+n)(1− cos(θi − θi+n))

+ S

2 (a+
i ai+n + a+

i+nai)(1 + cos(θi − θi+n))

+ [S2 − S(a+
i ai + a+

i+nai+n)] cos(θi − θi+n)

+ S
√

2S
2i (ai + a+

i + ai+n + a+
i+n) sin(θi − θi+n)]

J~Rn = 1
N

∑
~k

J~ke
i~k·~Rn , ai = 1√

N

∑
~k

ei
~k·~ria~k , a+

i = 1√
N

∑
~k

e−i
~k·~ria+

~k

A priori this Hamiltonian contains one-operator terms of the form ai et a+
i . But

the classical energy, which is given by:

Eclass = 1
2
∑
i

∑
~Rn

J~Rn cos(θi − θi+n)

must be minimal. If one groups the terms containing a given angle θi, one gets∑
~Rn

J~Rn cos(θi − θi+n)

since each pair appears twice in the classical energy. Besides, the condition that the
energy be minimal imposes

∂Eclass

∂θi
= 0

=⇒
∑
~Rn

J~Rn sin(θi − θi+n) = 0
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As a consequence, the one-operator terms linear in ai et a+
i drop.

H = 1
2
∑
i

∑
~Rn

1
N2

∑
~k1,~k2,~k3

J~k1
ei
~k1·~Rn

[
S

2
(
a~k2
a~k3
ei
~k2·~ri+i~k3·(~ri+~Rn)

+ a+
~k2
a+
~k3
e−i

~k2·~ri−i~k3·(~ri+~Rn)
)1− ei

~Q·~Rn + e−i
~Q·~Rn

2


+ S

2
(
a+
~k2
a~k3
e−i

~k2·~ri+i~k3·(~ri+~Rn) + a+
~k3
a~k2
ei
~k2·~ri−i~k3·(~ri+~Rn)

)
×

1 + ei
~Q·~Rn + e−i

~Q·~Rn

2


+ S2 e

i ~Q·~Rn + e−i
~Q·~Rn

2
− S

(
a+
~k2
a~k3
e−i

~k2·~ri+i~k3·~ri + a+
~k2
a~k3
e−i

~k2·(~ri+~Rn)+i~k3·(~ri+~Rn)
)

×

ei ~Q·~Rn + e−i
~Q·~Rn

2


Let us look at the terms:

• ei ~Rn(~k1+~k3)ei~ri(
~k2+~k3) ~k1 = −~k3 , ~k2 = −~k3

→ 1
2
∑
~k

J~k
S

2 a~ka−~k

• ei ~Rn(~k1+~k3+ ~Q)ei~ri(
~k2+~k3) ~k3 = −~k1 − ~Q , ~k2 = ~k1 + ~Q

→ −1
4
∑
~k

J~k− ~Q
S

2 a~ka−~k

• ei ~Rn(~k1+~k3− ~Q)ei~ri(
~k2+~k3)

→ −1
4
∑
~k

J~k+ ~Q

S

2 a~ka−~k

• ei ~Rn(~k1−~k3)e−i~ri(
~k2+~k3)

→ 1
2
∑
~k

J~k
S

2 a
+
~k
a+
−~k
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• ei ~Rn(~k1−~k3+ ~Q)e−i~ri(
~k2+~k3)

→ −1
4
∑
~k

J~k− ~Q
S

2 a
+
~k
a+
−~k

• ei ~Rn(~k1−~k3− ~Q)e−i~ri(
~k2+~k3)

→ −1
4
∑
~k

J~k+ ~Q

S

2 a
+
~k
a+
−~k

• ei ~Rn(~k1+~k3)ei~ri(−
~k2+~k3)

→ 1
2
∑
~k

J−~k
S

2 a
+
~k
a~k

• and all the other terms:

→ 1
4
∑
~k

J−~k− ~Q
S

2 a
+
~k
a~k

→ 1
4
∑
~k

J−~k+ ~Q

S

2 a
+
~k
a~k

→ 1
2
∑
~k

J~k
S

2 a
+
~k
a+
~k

→ 1
4
∑
~k

J~k+ ~Q

S

2 a
+
~k
a~k

→ 1
4
∑
~k

J~k− ~Q
S

2 a
+
~k
a~k

→ 1
2
∑
i

∑
~Rn

S2J~Rn
ei
~Q~Rn + e−i

~Q~Rn

2 = S2

2 N
1
2
(
J ~Q + J− ~Q

)

→ −S4 J ~Qa
+
~k
a~k

→ −S4 J− ~Qa
+
~k
a~k

→ −S4 J− ~Qa
+
~k
a~k

→ −S4 J ~Qa
+
~k
a~k
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Let us group the terms:

(
a+
~k
a+
−~k + a~ka−~k

) S
4
∑
~k

(
J~k −

1
2
(
J~k+ ~Q + J~k− ~Q

))

+a+
~k
a~k

S
4
∑
~k

(
J−~k + 1

2
(
J−~k+ ~Q + J−~k− ~Q

)
+ J~k

+1
2
(
J~k+ ~Q + J~k− ~Q

))
− S

2 (J ~Q + J− ~Q)
]

+S
2

2 N
1
2
(
J ~Q + J− ~Q

)
or, since J~k = J−~k:

H = NS2

2 J ~Q + S

2
∑
~k

[
J~k + 1

2
(
J~k+ ~Q + J~k− ~Q

)
− 2J ~Q

]
a+
~k
a~k

+ S

4
∑
~k

[
J~k −

1
2
(
J~k+ ~Q + J~k− ~Q

)] (
a~ka−~k + a+

~k
a+
−~k

)

This Hamiltonian has the same for as in the antiferromagnetic case, and a Bogoli-
ubov transformation leads to:

ω~k = S

√(
J~k − J ~Q

) (1
2
(
J~k+ ~Q + J~k− ~Q

)
− J ~Q

)

ω~k = 0 si
{

~k = 0
~k = ± ~Q

2.8.3 Complement: J1 − J2 model

Let us describe some effects of quantum fluctuations in the case of the J1−J2 model.

- J2 >
J1
2 : lifting of the classical degeneracy by zero-point fluctuations.

E = cst +
∑
~k

(
α+
~k
α~k + 1

2

)
ω~k(θ)

→ E0 = cst +
∑
~k

ω~k(0)

The collinear structures are selected:
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- J2 <
J1
2 :

< m >= S −
∫ d~kf(~k)

ω~k︸ ︷︷ ︸
∆<m>

f(~k)→ cst when ~k → ~0.

The correction will thus be large if the spin-wave velocity is small. But

ω~k =
{[
SJ1z + SJ2z(β~k − 1)

]2
−
(
SJ1zγ~k

)2
} 1

2

γ~k = 1
z

∑
~τ1

ei
~k·~τ1 , β~k = 1

z

∑
~τ2

ei
~k·~τ2

Expanding at small k leads to ω~k ∼ ck with c→ 0 when J2 → J1
2 .

−→ the correction diverges:

Pas d’ordre longue distance

J2/J1

5

0.5

1/S

Is this true for large S? Probably not. The correction is infinite for S infinite,
but for S < +∞, one must take the higher order corrections into account. It turns
out that ∆ < m > diverges as lnS:



2.8. FRUSTRATED MAGNETS 49

→ < m >= S − cst× lnS > 0 when S → +∞
What happens for S = 1

2? Another kind of ground state, a product of dimer
singlets, has been suggested, but this is still an open problem.
Simplest example: 1D, J1 − J2 model with J1 = 2J2.
Before we study this problem for S = 1/2, let us look at the 1D classical J1 − J2

model:

J(k) = 2J1 cos k + 2J2 cos 2k
∂J

∂k
= −2J1 sin k − 4J2 sin 2k

= −2 sin k (J1 + 4J2 cos k)

1. k = 0 ⇒ J(k) = 2J1 + 2J2

2. k = π ⇒ J(k) = −2J1 + 2J2

3. cos k = −J1
4J2

(si J2 ≥ J1
4 )

⇒ J(k) = −2J2
1

4J2
+ 2J2

(
2 J2

1
16J2

2
− 1

)

= −1
4
J2

1
J2
− 2J2

J
(

arccos −J1

4J2

)
≤ J(π)

⇔ −1
4
J2

1
J2
− 2J2 ≤ −2J1 + 2J2

⇔ −1
4
J2

1
J2

+ 2J1 ≤ 4J2

⇔ 0 ≤ J2
1 − 8J1J2 + 16J2

2

⇔ 0 ≤ (4J2 − J1)2 OK

Let us come back to the quantum case and consider the model:

H = J
∑
i

(
2~Si · ~Si+1 + ~Si · ~Si+2

)
, N sites

with (J1 = 2J2, J2 = J) and (S = 1
2).
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1/4 1/2

J(k=0)

J(k= π)

J(arccos −J1/4J2)

J2/J1

The Hamiltonian can be rewritten as:

H = J
(
2~S1 · ~S2 +

(
~S1 + ~S2

)
· ~S3 + ~S2 ·

(
~S3 + ~S4

)
+ · · ·

)
or

H = J
∑
i odd

[
2~Si · ~Si+1 +

(
~Si + ~Si+1

)
· ~Si+2 + ~Si+1 ·

(
~Si+2 + ~Si+3

)]

i−1 i+1 i+3

i i+2

Let us consider the state |φ >= [1, 2] ⊗ [3, 4] ⊗ · · · where [j, k] = 1√
2(| ↑j↓k>

−| ↓j↑k>) is the singlet built out of the pair of spins (j, k).

What is
(
~S1 · ~S2

)
[1, 2] equal to?

~S1 · ~S2 = 1
2

[(
~S1 + ~S2

)2
− ~S2

1 − ~S2
2

]
= 1

2

[(
~S1 + ~S2

)2
− 2× 3

4

]
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and
(
~S1 + ~S2

)2
[1, 2] = 0 since [1, 2] is the singlet.

One thus has
(
~S1 · ~S2

)
[1, 2] = −3

4 [1, 2].

Calculation of
(
~S1 + ~S2

)
· ~S3[1, 2]:

(
~S1 + ~S2

)
· ~S3 = (Sz1 + Sz2)Sz3 + 1

2
(
S+

1 + S+
2

)
S−3 + 1

2
(
S−1 + S−2

)
S+

3 ,

and the state is given by [1, 2]σ3 = 1√
2 (| ↑↓> −| ↓↑>)⊗ |σ3 >.

Let us then look at the action of each of the three terms:

(Sz1 + Sz2)Sz3 = 1√
2

(
−1

4σ3 + 1
4σ3

)
[1, 2]σ3 = 0

1
2
(
S+

1 + S+
2

)
S−3 =


1√
2 (| ↑↑> −| ↑↑>) | ↓>= 0 si σ3 = 1

2

0 otherwise

1
2
(
S+

1 + S+
2

)
S−3 =

0 if σ3 = 1
2

1√
2 (| ↓↓> −| ↓↓>) | ↑>= 0 si σ3 = −1

2

One is left with
(
~S1 + ~S2

)
· ~S3[1, 2] = 0.

Finally, acting with the Hamiltonian H on the state |φ > gives

H|φ >=
(
N
2 × 2J × −3

4

)
|φ >= −3

4JN |φ >

So, |φ > is an eigenstate of energy −3
4JN .

Let us now try to show that this is the ground state. One can rewrite H as:
H = ∑

i hi with hi = J
(
~Si~Si+1 + ~Si+1~Si+2 + ~Si~Si+2

)
. But

hi = J

2

[(
~Si + ~Si+1 + ~Si+2

)2
− ~S2

i − ~S2
i+1 − ~S2

i+2

]
= J

2

[(
~Si + ~Si+1 + ~Si+2

)2
− 3× 3

4

]
The sum of 3 spins 1

2 is a spin 1
2 or a spin 3

2 .

=⇒
(
~Si + ~Si+1 + ~Si+2

)2
=


1
2

(
1
2 + 1

)
= 3

4

ou3
2

(
3
2 + 1

)
= 15

4
(2.6)

The smallest eigenvalue of hi is −3
4J . Now

H =
∑
i

hi =⇒ Efond(H) ≥
∑
i

Efondhi

=⇒ Efond(H) ≥ N × −3
4 J
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since E(φ) = −3
4NJ .

So, |φ > is indeed the ground state.



Chapter 3

Electrons in a magnetic field

This chapter is devoted to the properties of itinerant electrons in a magnetic field.
This is a very vast subject that one cannot fully cover in a few hours. We will
concentrate on three remarkable effects: the de Haas-van Alphen effect, the integer
Quantum Hall Effect, and the fractional Quantum Hall Effect. All these effects rely
in an essential way on the quantification of the motion of a charged particle in the
presence of a uniform magnetic field ~B = Bẑ.

3.1 Landau levels

3.1.1 Classical problem

In the presence of a magnetic field, a particle of charge q is subject to the Lorentz
force

~F = q

c
(~v ∧ ~B) = q

c
B

 vy
−vx

0

 (3.1)

with vx = ẋ and vy = ẏ, so that

mẍ = qB

c
ẏ

mÿ = −qB
c
ẋ

mz̈ = 0

(3.2)

In the z direction, this is the motion of a free particle.

53
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In the plane perpendicular to the field, one gets:{
ẍ = ωcẏ

ÿ = −ωcẋ
(3.3)

with ωc = qB
mc

. These differential equations can be integrated:
{
ẋ = ωc(y − y0)
ẏ = −ωc(x− x0)

(3.4)

leading to
{
ẍ = −ω2

c (x− x0)
ÿ = −ω2

c (y − y0)
(3.5)

Let us define ηx = x− x0 and ηy = y − y0. We get:
{
η̈x = −ω2

cηx

η̈y = −ω2
cηy
⇒
{
ηx = rx sin(ωct+ ϕx)
ηy = ry cos(ωct+ ϕy)

(3.6)

But η̇x = rxωc cos(ωct+ ϕx) must be equal to ωcηy, so{
rx = ry = r

ϕx = ϕy = ϕ
(3.7)

⇒
{
x = x0 + r sin(ωct+ ϕ)
y = y0 + r cos(ωct+ ϕ)

(3.8)

The motion of the particle projected on the plane corresponds to a uniform motion
along a circle of center (x0, y0) and of radius r at a frequency ωc = qB

mc
.

3.1.2 Lagrangian approach

The equations of motion can be rederived from the Lagrangian

L = Lxy + 1
2mż

2, (3.9)
with

Lxy(x, y; ẋ, ẏ) = 1
2m(ẋ2 + ẏ2) + q

c
[Axẋ+ Ayẏ] , (3.10)

where Ax(x, y) and Ay(x, y) are the components of a vector ~A such that ~B = rot ~A,
or B = ∂xAy − ∂yAx. Indeed the Euler-Lagrange equations

d
dt
∂L
∂q̇i
− ∂L
∂qi

= 0, (3.11)
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lead to:

⇒


d
dt

(
mẋ+ q

c
Ax

)
− q

c
[ẋ∂xAx + ẏ∂xAy] = 0,

d
dt

(
mẏ + q

c
Ay

)
− q

c
[ẋ∂yAx + ẏ∂yAy] = 0.

(3.12)

⇒


mẍ+ q

c
∂tAx + q

c
(ẋ∂xAx + ẏ∂yAx)−

q

c
(ẋ∂xAx + ẏ∂xAy) = 0

mÿ + q

c
∂tAy + q

c
(ẋ∂xAy + ẏ∂yAy)−

q

c
(ẋ∂yAx + ẏ∂yAy) = 0

(3.13)

If the magnetic does not depend on time, ∂tAx = ∂tAy = 0.

⇒


mẍ = q

c
ẏ (∂xAy − ∂yAx)

mÿ = q

c
ẋ (∂yAx − ∂xAy) ,

(3.14)

or

⇒


ẍ = qB

mc
ẏ

ÿ = qB

mc
ẋ.

(3.15)

3.1.3 Hamiltonian formulation

One must express the velocities in terms of the momenta.
px = ∂L

∂ẋ
= mẋ+ q

c
Ax

py = ∂L
∂ẏ

= mẏ + q

c
Ay

⇒


ẋ = 1

m

(
px −

q

c
Ax

)
ẏ = 1

m

(
py −

q

c
Ay

) (3.16)

⇒ Hxy = 1
2m

(
ẋ2 + ẏ2

)
= 1

2m

[(
px −

q

c
Ax

)2
+
(
py −

q

c
Ay

)2
]

(3.17)

Finally,

H = 1
2m

(
~p− q

c
~A
)2
. (3.18)

3.1.4 Quantum treatment

Let us start from the Hamiltonian formulation, and let us suppose that x̂, ŷ, p̂x, p̂y, ...
are operators satisfying the commutation relations

[x̂i, p̂j] = i~δij. (3.19)
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→ H = 1
2m

(
px −

q

c
Ax

)2
+ 1

2m

(
py −

q

c
Ay

)2
+ 1

2mp2
z. (3.20)

Let us define Πx = px− q
c
Ax and Πy = py − q

c
Ay. Since Ax and Ay do not depend

on z,
[pz,Πx] = [pz,Πy] = 0. (3.21)

Let us calculate the commutator [Πx,Πy],

[Πx,Πy] =
[
px −

q

c
Ax, py −

q

c
Ay

]
= −q

c
[px, Ay]−

q

c
[Ax, py] . (3.22)

But

[px, f(x)]ϕ(x) = −i~∂x (f(x)ϕ(x)) + f(x)i~∂xϕ(x) = −i~(∂xf(x))ϕ(x), (3.23)

→ [px, f(x)] = −i~∂xf(x). (3.24)

So
[px, Ay] = −i~∂xAy, [Ax, py] = +i~∂yAx, (3.25)

leading to
[Πx,Πy] = −q

c
(−i~) (∂xAy − ∂yAx) , (3.26)

or
[Πx,Πy] = i~

qB

c
. (3.27)

Let us define P̂ = Π̂x, Q̂ = − c
Bq

Πy. We have [Q̂, P̂ ] = i~ and

H = 1
2mP̂ 2 + 1

2mω
2Q̂2 + 1

2mp2
z, (3.28)

with
1

2mΠ2
y = 1

2mω
2 c2

q2B2 Π2
y, (3.29)

⇒ ω2 = q2B2

m2c2 , soit ω = qB

mc
. (3.30)

With these variables, the Hamiltonian reads:

H = 1
2mP̂ 2 + 1

2mω
2
c Q̂

2 + 1
2mp2

z. (3.31)

The Hamiltonian can thus be written as the sum of a harmonic oscillator of
frequency ωc and of the Hamiltonian of a free particle in the z direction. The eigen
energies are thus of the form:

En,kz = ~ωc(n+ 1
2) + ~2k2

z

2m (3.32)
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Each of these curves corresponds to a Landau level.

Degeneracy

For a given value of kz, how many levels are there per level? To get a first idea, let
us consider the number N of quantum states whose energy is between E et E+~ωc.
To calculate this number, we write that it is given by the volume in ~k space of the
points such that

E ≤ ~2k2

2m ≤ E + ~ωc (3.33)

divided by the elementary volume per ~k point. In 2D, in a box of dimension Lx×Ly,
this elementary volume is given by (2π)2

LxLy
. The volume of ~k points satisfying (3.33)

is a surface in 2D given by:

2π
∫ k2

k1
kdk = 2πk

2
2 − k2

1
2 , (3.34)

with
E = ~2k2

1
2m , E + ~ωc = ~2k2

2
2m , (3.35)

→ 2π × 1
2 ×

2m
~2 ~ωc = 2π

~
ωcm. (3.36)

The number of quantum states we are looking for is thus given by:

N = 2π
~
ωcm

LxLy
2π = LxLy

qB

2π~c. (3.37)

This number is independent of E (the density of states is a constant in 2D). So
this a good candidate for the degeneracy of a Landau level.
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To confirm this result more precisely, one should calculate the exact spectrum of
a system with periodic boundary conditions, a problem which unfortunately does
not have a simple analytical solution.
Nevertheless, one can convince oneself that this result is correct by going back to

the solution of the problem. The motion in the x, y plane is described by 4 operators
x̂, p̂x, ŷ, p̂y. Now, we have shown that the Hamiltonian only involves two operators
Πx = px − q

c
Ax, Πy = py − q

c
Ay. So there must be two degrees of freedom that do

not enter the Hamiltonian. From the classical solution, these degrees of freeedom
are y0 = y − 1

ωc
ẋ and x0 = x+ 1

ωc
ẏ, or, in the Hamiltonian formulation,
Y = y − 1

mωc
Πx

X = x+ 1
mωc

Πy

(3.38)

These operators commute with the Hamiltonian. Besides, since [x,Πx] = [y,Πy] =
i~, one gets:

[X, Y ] = [x+ 1
mωc

Πy, y −
1

mωc
Πx]

= − 1
mωc

[x,Πx] + 1
mωc

[Πy, y]− 1
m2ω2

c

[Πy,Πx]

= − 2
mωc

i~ + 1
m2ω2

c

i~
qB

c

= −i ~c
qB

. (3.39)

The elementary volume in phase space associated to these variables is given by
2π ~c

qB
(for x̂ and p̂, it is given by 2π~, i.e. 2π|[x̂, p̂]|). In a sample of dimension

Lx, Ly, the total volume is LxLy,

→ deg = LxLy
2π~c qB. (3.40)

Density of states

Let us consider the density of states of one band n. It is given by:

n(E)dE = 2n(kz)dkz = 2× deg× dkz
2π/Lz

= 2× LxLy
2π × qB

~c
Lz
2πdkz. (3.41)

But E = ~ωc(n+ 1
2) + ~2k2

z

2m ,

dE = 2~
2kz

2m dkz → dkz = m

~2kz
dE (3.42)
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and
k2
z = 2m

~2

(
E − ~ωc(n+ 1

2)
)
, (3.43)

→ dkz = m

~2
dE√

2m
~2

√
E − ~ωc(n+ 1

2)
, si E ≥ ~ωc(n+ 1

2) (3.44)

so that

→ n(E) = V

4π2
qB

~c

√
2m
~2

Θ
(
E − ~ωc(n+ 1

2)
)

√
E − ~ωc(n+ 1

2)

= V

8π2~ωc
(2m
~2

)3/2 Θ
(
E − ~ωc(n+ 1

2)
)

√
E − ~ωc(n+ 1

2)
(3.45)

Finally, the total density of states, including a factor 2 for the spin, is given by:

n(E) = V

8π2~ωc
(2m
~2

)3/2 ∞∑
n=0

Θ
(
E − ~ωc(n+ 1

2)
)

√
E − ~ωc(n+ 1

2)
. (3.46)

The dashed line represents the density of states for B = 0. It is given by

n(E) = 2 V

4π2

(2m
~2

)3/2√
EdE. (3.47)

The curve in the presence of a magnetic field is very different from a simple square
root. It exhibits singularities at energies given by ~ωc(n+ 1

2).
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This property of the density of states is responsible for a remarkable phenomenon:
many quantities such as the magnetization or the resistance exhibit oscillations as
a function of 1

B
.

Indeed, when B varies, one gets a new singularity when

EF = ~eB
mc

(
n+ 1

2

)
,

or
1
B

= ~e
mcEF

(
n+ 1

2

)
. (3.48)

If one calculates any thermodynamic quantity as a function of 1
B
, it will have

regularly spaced anomalies. For the small values of B, these anomalies lead to a
regular behaviour that shows up as oscillations in 1

B
. These oscillations are called

the de Haas - van Alphen effect for the magnetization and the Shubnikov - de Haas
effect for the resistance.

Landau gauge

In many situations, it is useful to know the eigenfunctions of the problem. For a value
of kz, each Landau level has a degeneracy deg = LxLy

qB
2π~c . This degeneracy leads

to different choices of basis. A convenient way to construct a basis of eigenfunctions
of Hxy consists in choosing a gauge. Two choices are particularly useful:
- Landau gauge

Ax = −By, Ay = 0, Az = 0. (3.49)

In this gauge, the directions x and y are treated differently. It is useful for problems
in rectangular geometry.
- Symmetric gauge

Ax = −By2 , Ay = Bx

2 , Az = 0. (3.50)

This gauge leads to eigenfunctions that turned out to be essential in the construc-
tion of variational wave functions for the fractional Quantum Hall Effect.

Landau gauge

H = 1
2m

(
px −

q

c
Ax

)2
+ 1

2mp2
y + 1

2mp2
z

= 1
2m

(
px + qB

c
y
)2

+ 1
2mp2

y + 1
2mp2

z. (3.51)
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px and pz commute with H. Thus one can look for eigenfunctions of the form
ϕ(x, y, z) = eikxxeikzzϕ(y). (3.52)

→ 1
2m

[(
~kx + qB

c
y
)2]

ϕ(y)− ~2

2m
∂2ϕ

∂y2 + ~2k2
z

2m ϕ(y) = Eϕ(y) (3.53)

Let us define
ykx = −c~kx

qB
et ωc = qB

mc
. (3.54)

We get:
1
2mω

2
c (y − ykx)

2 ϕ(y)− ~2

2m
∂2ϕ

∂y2 + ~2k2
z

2m ϕ(y) = Eϕ(y). (3.55)

This is a shifted harmonic oscillator of frequency ωc,

→ En,kx,kz = ~ωc
(
n+ 1

2

)
+ ~2k2

z

2m . (3.56)

The energy is independent of kx. This leads again to the degeneracy already cal-
culated for the Landau levels. Indeed, kx must be quantized in units of 2π

Lx
, i.e. it

must be of the form kx = p 2π
Lx
, p integer, and the coordinate ykx must lie between 0

et Ly
⇒ 0 ≤ c~p

2π
Lx

1
qB
≤ Ly. (3.57)

⇒ p ≤ LxLyqB

2π~c (3.58)

3.2 The integer Quantum Hall Effect

3.2.1 The classical Hall effect

The Hall effect, discovered by Hall in 1879, consists in the fact that, in the presence
of an applied magnetic field ~B = Bẑ, a current in the x direction ~j = jx̂ induces in
a conductor a voltage in the ŷ direction.
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This effect can be understood in the context of the Drude theory:

d~p
dt = −e

 ~E + ~p

m
∧
~B

c

− ~p

τ
(3.59)

where τ is the relaxation time. The stationary solution is given by

d~p
dt = 0 (3.60)

so that 
− e

(
Ex + py

mc
B
)
− px

τ
= 0

− e
(
Ey −

px
mc

B
)
− py

τ
= 0

(3.61)

Let us rewrite these equations with the help of the cyclotron frequency ωc = eB
mc

and
of the Drude conductivity σ0 = ne2τ

m
. One gets:

σ0Ex = −nepx
m
− nepy

m
ωcτ

σ0Ey = ne
px
m
ωcτ − ne

py
m

(3.62)

The current density ~j is defined by:

~j = −ne ~p
m

(3.63)

This system can be written:
~E = ρ~j (3.64)

with ρ = 1
σ0

(
1 ωcτ
−ωcτ 1

)
, and RH = ρyx = −B

nec
(3.65)

where RH is the Hall resistance. The conductivity tensor is obtained by a matrix
inversion: σ = ρ−1. Now(

1 ωcτ
−ωcτ 1

)(
1 −ωcτ
ωcτ 1

)
=
(

1 0
0 1

)(
1 + ω2

cτ
2
)

(3.66)

so that
σ =

(
σL −σH
σH σL

)
(3.67)

with σL = σ0

1 + ω2
cτ

2 and σH = σ0
ωcτ

1 + ω2
cτ

2 (3.68)

If τ →∞ (no dissipation),

ρ =
(

0 −RH

RH 0

)
and σ =

(
0 R−1

H

−R−1
H 0

)
(3.69)
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In 1980, Von Klitzing has investigated the Hall effect in a 2D electron gas. He
observed plateaus in the function ρx,y(B) for values of RH given by:

|RH | =
(
h

e2

)
1
n
, n integer. (3.70)

Inside these plateaus, ρxx = 0

σH = n
e2

h
(3.71)

This is the Integer Quantum Hall Effect. In 1983, Tsui, Störmer and Gossard
discovered additional plateaus at rational values:

σH = ν
e2

h
, ν = p

q
. (3.72)

This is the Fractional Quantum Hall Effect. The integer Quantum Hall Effect
is a consequence of Landau levels and of disorder. The fractional Quantum Hall
Effect is a consequence of the repulsion between electrons.

3.2.2 Hall effect and Landau levels

To discuss the integer Quantum Hall Effect, let us redo the calculation in the Landau
gauge with an electric field in the y direction. If the field is uniform, the potential
is given by V (y) = −Ey, and the Hamiltonian becomes:

H → H + eEy

= 1
2m

(
px −

eB

c
y
)2

+ 1
2mp2

y + eEy
(3.73)

Let us consider again φ(x, y) = eikxxφ(y). The eigenvalue equation is given by[
1

2m

(
~kx −

eB

c
y
)2

+ 1
2mp2

y + eEy

]
φ(y) = εφ(y) (3.74)

It is again a shifted harmonic oscillator, but this time the center of the harmonic
oscillator depends on the electric field:

1
2m

(
~kx −

eB

c
y
)2

+ eEy = 1
2mω

2
c (y − y(kx))2 + A

⇒ ~2k2
x

2m − eB

mc
~kxy + 1

2m
e2B2

c2 y2 + eEy = 1
2mω

2
cy

2 −mω2
cyy(kx) + 1

2mω
2
cy(kx)2 + A

⇒


− eB

mc
~kx + eE = −mω2

cy(kx)

~2k2
x

2m = 1
2mω

2
cy(kx)2 + A

(3.75)
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⇒ y(kx) = − eE

mω2
c

+ c~kx
eB

A = ~2k2
x

2m − 1
2mω

2
cy(kx)2

= ~2k2
x

2m − 1
2m

e2B2

m2c2

[
e2E2

m2ω4
c

+ c2~2k2
x

e2B2 −
2eE
mω2

c

c~kx
eB

]

= −1
2m

e2E2

m2ω2
c

+ 1
2mω

2
c

2eE
mω2

c

c~kx
eB

= −1
2m

E2c2

B2 + E
c~kx
B

= −1
2mc

2E
2

B2 + c~kx
E

B

(3.76)

But eEy(kx) = − e2E2

me2B2m
2c2 + c~kx

eE

eB

= −mc2E
2

B2 + c~kx
E

B

(3.77)

Finally,

A = eEy(kx) + 1
2mc

2E
2

B2 (3.78)

The eigenenergies are thus given by

εn,kx = ~ωc
(
n+ 1

2

)
+ eEy(kx) + 1

2mc
2E

2

B2 (3.79)

with

y(kx) = c~
eB

kx −
eE

mω2
c

(3.80)

This time, the degeneracy is lifted: the energy depends on kx.
Let us compute the current carried by each eigenstate:

~j = −e~v = −e
~p+ e

c
~A

m

ĵx = − e

m

(
px + e

c
Ax

)
= − e

m

(
px −

eBy

c

) (3.81)

〈
n, kx

∣∣∣ĵx∣∣∣n, kx〉 = − e

m
~kx + e2

mc
Bykx

= − e

m
~kx + e2

mc
B
c~
eB

kx −
e2

mc
B
eE

mω2
c

= − e2

mc
B
eEm2c2

me2B2 = −ecE
B

(3.82)
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or

〈jx〉 = −ecE
B

(3.83)

Besides, 〈jy〉 = 0 because the ground state corresponds to a harmonic oscillator in
the y direction. In this model where the electric field is uniform, the total current is
thus simply proportional to the number of electrons since all eigenstates carry the
same current. This is the classical result when there is no dissipation: σH = R−1

H =
−n ec

B
→ jx = −necE

B
.

Let us now suppose that the potential is not simply linear, but that it confines
the electron gas:

In the center, the potential varies very little, the field practically vanishes, and the
states do not carry current. So the total current is no longer simply a linear function
of the filling. Nevertheless, one can convince oneself that, if a Landau level is full,
the intensity of the current depends only on the voltage difference, regardless of
how the electric field varies inside the sample. Indeed, assuming that the electric
field does not vary too fast, one can use the result above to estimate the current by
simply taking into account the y dependence of the electric field:

〈jx〉(kx) = −ec
B
E(y(kx)) (3.84)

The voltage bias in the y direction is given by:

∆V = −
∫
E(y)dy = −

∑
kx

E[y(kx)]∆y (3.85)

where ∆y is the spacing between values of y due to the quantification of kx. But kx
is quantized in units of 2π/Lx, and y(kx) = c~

eB
kx − eE

mω2
c
, so that

∆y = c~
eB

∆kx = c~
eB

2π
Lx

(3.86)
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The expectation value of the total current is thus given by:

Jtot =
∑
kx

〈jx〉(kx) (3.87)

= −ec
B

1
∆y

∑
kx

E(y(kx))∆y (3.88)

= −ec
B

eB

c~
Lx
2π (−∆V ) (3.89)

= e2

h
∆V Lx (3.90)

The current density is equal to Jtot/LxLy, and its intensity is equal to the density
times the section, here the width Ly. It follows that:

I = e2

h
∆V (3.91)

If n Landau levels are filled, the Hall conductance is thus given by:

Gxy = n
e2

h
(3.92)

Besides, there is no current in the y direction: Gyy = 0. Finally:

G =
(

0 ne2

h

−ne2

h
0

)
and R =

(
0 − h

e2n
h
e2n

0

)
(3.93)

It is very instructive to compare this result to the classical result:

RH = −B
nelec

(3.94)

where nel denotes the number of electrons. Since there are LxLyeB
2π~c states per Landau

level, if n levels are filled, the electronic density is given by:

nel = n deg 1
LxLy

= n
LxLyeB

2π~c
1

LxLy
= n

eB

2π~c = neB

hc
(3.95)

⇒ RH = −Bhc
neBec

= − h

ne2 (3.96)

Thus, for a filling corresponding to filled Landau levels, the Hall resistance just
takes its classical value. What is remarkable is that this value is stabilized over a
field range. This can only be understood as a consequence of disorder.
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3.2.3 Effect of disorder

Until now, we have considered that the potential was periodic in the x direction. In
a real sample, the potential is of course not periodic in any direction. What is the
impact of disorder on the density of states?
In the absence of disorder, the density of states consists of a series of δ peaks of

weight LxLy
2π~c qB. In the presence of disorder, the peaks are broadened:

The presence of plateaus in RH can only be explained if the density of states of
a Landau level consists of "localized" states on one hand, and "extended" states on
the other hand:
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Then, if one starts from a magnetic field such that n Landau levels are filled, to
increase or decrease the magnetic field will change the structure of Landau levels in
such a way that localized levels will be emptied or filled. But these localized states
do not carry any current, and the Hall resistance will not change until extended
levels are reached.
Why does the density of states have this structure? There is a simple hand-

waving argument to understand this. In the classical case, since the Lorentz force is
perpendicular to the velocity, it does not work, and the particles follow equipotential
curves. For a Landau level that corresponds to a given velocity, the lowest-energy
trajectories follow equipotential curves at the bottom of valleys, the highest-energy
ones at the top of the peaks. They are localized and give rise to quantum states
that do not carry any current. In between, there must exist trajectories that go
from one end of the sample to the other. These are the trajectories that contribute
to the Hall resistance.

3.3 The Fractional Quantum Hall Effect

3.3.1 Introduction

Let us consider again the case of a system without disorder and without electric field.
If a Landau level is partially filled, the ground state is massively degenerate. Indeed
to build it one can pick any levels among the LxLy

2π~c eB single particle states of the
single particle ground state manifold since they are degenerate. However electrons
interact via Coulomb repulsion. This perturbation must a priori lift the degeneracy.
This is an extremely difficult problem that does not possess any simple solution,
even approximate. The picture that has imposed itself is based on variational wave
functions proposed by Laughlin in 1983. These variational wave functions rely in an
essential way on the solution of Landau levels in the symmetric gauge. Let us thus
start by reviewing the solution of this problem, using a formulation in which the
position of the particles is represented by a complex variable in the plane, opening
the way to Laughlin’s generalization to the many-body case.

3.3.2 Landau levels and symmetric gauge

Let us consider the gauge

Ax = −By2 , Ay = Bx

2 , Az = 0.

We have shown that, quite generally, the Hamiltonian takes the form

H = 1
2mP̂ 2 + 1

2mω
2
c Q̂

2
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with P̂ = Π̂x, Q̂ = c
eB

Π̂y (e = −q) and
Π̂x = p̂x + e

c
Ax

Π̂y = p̂y + e

c
Ay

[Π̂x, Π̂y] = −i~e
c
B.

Besides, there is an additional degeneracy due to the fact that the operators
X̂ = x̂− 1

mωc
Π̂y

Ŷ = ŷ + 1
mωc

Π̂x

commute with the Hamiltonian. (NB: the sign has changed because ωc = eB
mc

=
− qB
mc

.) Indeed,

[X̂, Π̂x] = [x̂− 1
mωc

Π̂y, Π̂x] = i~ + 1
mωc

[Π̂y, Π̂x] = i~− i~eB
c

1
mωc

= 0.

In the same way, [X̂, Π̂y] = [Ŷ , Π̂x] = [Ŷ , Π̂y] = 0. In addition,

[X̂, Ŷ ] = [x̂− 1
mωc

Π̂y, ŷ + 1
mωc

Π̂x]

= 1
mωc

[x̂, Π̂x] + 1
mωc

[ŷ, Π̂y] + 1
m2ω2

c

[Π̂x, Π̂y]

= 1
mωc

(i~ + i~− i~) = i~
mωc

= i~c
eB

.

It is convenient to formulate the problem in terms of the magnetic length lB
defined by

l2B = ~c
eB
⇒ lB =

√
~c
eB

,

and of the operators η̂x, η̂y defined bymωcη̂x = Π̂y

−mωcη̂y = Π̂x

(these definitions come from the classical treatment: ηx = x − x0, ηy = y − y0 and
ẋ = −ωc(y − y0), ẏ = ωc(x− x0)).
The problem can then be rewritten as:

H = 1
2mω

2
c (η̂2

x + η̂2
y)
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with [η̂x, η̂y] = −il2B and [X̂, Ŷ ] = il2B.
Let us introduce the operators

a = 1√
2lB

(η̂x − iη̂y) a† = 1√
2lB

(η̂x + iη̂y)

⇒ η̂x = lB√
2

(a† + a) η̂y = −i lB√
2

(a† − a)


b = 1√

2lB
(X̂ + iŶ ) b† = 1√

2lB
(X̂ − iŶ )

⇒ X̂ = lB√
2

(b† + b) Ŷ = i
lB√

2
(b† − b)

On can easily check that [a, a†] = [b, b†] = 1, et [a, b] = [a, b†] = 0.
The Hamiltonian can be rewritten:

H = ~ωc
(
a†a+ 1

2

)
+ ~ω′

(
b†b+ 1

2

)
with ω′ = 0.
This allows one to define the basis |n,m〉 by:

|n,m〉 = (a†)n√
n!

(b†)m√
m!
|0, 0〉.

Of course:

a†|n,m〉 =
√
n+ 1|n+ 1,m〉, a|n,m〉 =

√
n|n− 1,m〉,

b†|n,m〉 =
√
m+ 1|n,m+ 1〉, b|n,m〉 =

√
m|n,m− 1〉.

NB1: So far, the argument does not depend on the gauge.
NB2: The operators a† and b† are equal to the operators a†d and a†g seen in the

exercise if ones picks the symmetric gauge.
To find the eigenfunctions in a given gauge, one just needs to write the operators

a†, a, b†, b in terms of x, px, y, py in this gauge, and to determine the ground state
wave function from the condition a|0, 0〉 = b|0, 0〉 = 0.
With the conventional notation for negatively charged particles

z = x− iy, ∂̄ = (∂x − i∂y)/2, z∗ = x+ iy, ∂ = (∂x + i∂y)/2,

one gets:

a =
√

2( z

4lB
+ lB∂̄), a† =

√
2( z

∗

4lB
− lB∂)

b =
√

2( z
∗

4lB
+ lB∂), b† =

√
2( z

4lB
− lB∂̄)

.
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Intermediate steps: in the symmetric gauge,

ηx = 1
2x+ l2B

~
py, ηy = 1

2y −
l2B
~
px,

X = x− ηx = 1
2x−

l2B
~
py, Y = y − ηy = 1

2y + l2B
~
px.

Moreover, mωc = ~
l2B

= eB
c
.

A state of the first Landau level satisfies:

a|n = 0,m〉 = 0⇒ (z + 4l2B∂̄)Φn=0(z, z∗) = 0.

But

∂̄f(z, z∗) = 1
2 [∂xf(z, z∗)− i∂yf(z, z∗)]

= 1
2

[
∂f

∂z
+ ∂f

∂z∗
− i∂f

∂z
(−i)− i ∂f

∂z∗
(i)
]

∂̄f(z, z∗) = ∂f

∂z∗
.

Similarly,

∂f(z, z∗) = 1
2 [∂xf(z, z∗) + i∂yf(z, z∗)]

= 1
2

[
∂f

∂z
+ ∂f

∂z∗
+ i

∂f

∂z
(−i) + i

∂f

∂z∗
(i)
]

∂f(z, z∗) = ∂f

∂z
.

Let us consider the gaussian ϕ(z, z∗) = e−|z|2/4l2B . Its derivative ∂̄ϕ(z, z∗) is given
by:

∂̄ϕ(z, z∗) = ∂

∂z∗

(
e−|z|2/4l2B

)
= −z4l2B

ϕ(z, z∗),

⇒ (z + 4l2B∂̄)ϕ(z, z∗) = 0

ϕ(z, z∗) is thus in the first Landau level.
But for any function that depends only on z, ∂̄f(z) = 0. The general form of a

state of the first Landau level is thus

f(z)e−|z|2/4l2B
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Similarly, the m = 0 states satisfy

(z∗ + 4l2B∂)Φm=0(z, z∗) = 0,

whose general solution is
g(z∗)e−|z|2/4l2B .

The wave function Φn=0,m=0 is thus a gaussian. After normalization, it is given
by:

Φn=0,m=0(z, z∗) = 1√
2πl2B

e−|z|2/4l2B .

The other states can be obtained from this one by successive applications of a†, b†.
In particular,

Φn=0,m(z, z∗) = (
√

2)m√
2πl2Bm!

(
z

4lB
− lB∂̄

)m
e−|z|2/4l2B

= 1√
2πl2Bm!

(
z√
2lB

)m
e−|z|2/4l2B ,

since (
z

4lB
− lB∂̄

)
f(z)e−|z|2/4l2B = z

2lB
f(z)e−|z|2/4l2B .

Similarly,

Φn,m=0(z, z∗) = 1√
2πl2Bn!

(
z∗√
2lB

)n
e−|z|2/4l2B .

The states corresponding to different values of m for n = 0 satisfy

〈R̂〉 ≡ 〈n = 0,m|R̂|n = 0,m〉 = 0

since X̂ and Ŷ are linear combinations of b and b†, and 〈m|b, b†|m〉 = 0, and

〈|R̂|〉 ≡ 〈
√
X2 + Y 2〉 = lB〈

√
2b†b+ 1〉 = lB

√
2m+ 1.

When m increases, the particle gets away from the origin in a symmetric way.

3.3.3 The wave function of the ν = 1 state:

Let us first consider the non-interacting case. A completely filled Landau level
corresponds to a totally polarized spin wavefunction. Indeed, the Zeeman coupling of
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the spin to the magnetic field lifts the degeneracy, and each Landau level corresponds
to two Landau levels separated by gµBH.
Since the spin component of the wave function is totally symmetric, the orbital

component must be totally antisymmetric. Besides, to be a solution of the one-
particle problem, the functions must be of the form

f(z)e−|z|2/4l2B .

So one looks for a function of the form

ψν=1({zi, z∗i }) = fN({zi})e−
∑

j
|zj |2/4l2B

where fN is totally antisymmetric in the exchange of the variables zi.
Besides, a convenient basis of the one particle states is given by

Φn=0,m(z, z∗) = 1√
2πl2Bm!

(
z√
2lB

)m
e−|z|2/4l2B ,

where m can take all the values from 0 to N − 1 (N = degeneracy = number of
electrons when ν = 1).
The function fN({zi}) that can be written simply in this basis and that is totally

antisymmetric is a Slater determinant built out of the polynomials z0
i , z

1
i , ..., z

N
i ,

fN({zi}) =

∣∣∣∣∣∣∣∣∣∣
z0

1 z1
1 . . . zN−1

1
z0

2 z1
2 . . . zN−1

2
... ... . . . ...
z0
N z1

N . . . zN−1
N

∣∣∣∣∣∣∣∣∣∣
.

This is a Vandermonde determinant. It can be written as:

fN({zi}) =
∏
i<j

(zi − zj).

This wave function is unique. It is thus an eigenstate of any interaction Hamilto-
nian that does not mix Landau levels.
It is instructive to calculate the density. Since this is a Slater determinant, it is

the sum of the densities of each function. Indeed,

ρ̂(z) =
∑
i

δ(z − zi),
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and thus,

ρ(z) = 1
N !

∑
P

(sgn(P ))2∑
i

∫
dz1 . . . dzNδ(z − zi)|ϕP (1)(z1)|2 . . . |ϕP (n)(zN)|2

= 1
N !

∑
P

∑
i

|ϕP (i)(z)|2

= 1
N !

∑
P

∑
i

|ϕi(z)|2

=
∑
i

|ϕi(z)|2.

But
ϕm(z) = 1√

2πl2Bm!

(
z√
2lB

)m
e−|z|2/4l2B .

So,

ρ(z) =
(∑

m

1
2πl2B

|z|2m

m!(2l2B)m

)
e−|z|2/2l2B

= 1
2πl2B

e|z|2/2l2B e−|z|2/2l2B

→ ρ(z) = 1
2πl2B

.

The density is uniform, and of course it corresponds to one electron per elementary
area 2πl2B.

3.3.4 ν < 1: Laughlin’s wave functions

When the filling is smaller than 1, Laughlin has proposed to generalize the wave
function of the ν = 1 case in the following way:

ψ(z1, ..., zN) =
∏
i<j

f(zi − zj)e−
∑

i
|zi|2/4l2B .

The prefactor is called a Jastrow factor. The wave function is constrainded by
the following conditions:

• It only involves states of the the first Landau level
→ f does not depend on the z∗i .

• ψ is totally antisymmetric
→ f is odd.
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• ψ is an eigenstate of the angular momentum since, in the symmetric gauge, the
angular momentum commutes with the Hamiltonian. But for an eigenstate of
the first Landau level, the angular momentum is proportional to m (Lz/~ =
a†a − b†b). ∏

i<j f(zi − zj) must thus be a polynomial of fixed degree ⇒
f(zi − zj) = (zi − zj)m.

Finally, f(zi − zj) must be of the form (zi − zj)m, m odd,

⇒ ψm(z1, ..., zN) =
∏
i<j

(zi − zj)me−
∑

i
|zi|2/4l2B .

Let us explore the physics of this wave function.
Density: Since this is not a Slater determinant, there is no simple way to calculate

the density. But there is a simple argument to estimate it. For a given particle, the
highest power is m(N − 1). To build this function, one must thus use states whose
radius is of the order of lB

√
2m(N − 1) + 1. One must thus take a sample of size

πl2B(2m(N − 1) + 1) = πl2B2mN +O(1).

The density is given by
N

2πl2BmN
= 1

2πl2Bm

⇒ ν = 1
m
.

So Laughlin wave functions allow one to describe states of filling ν = 1
m
, m odd.

Energy: These wave functions turn out to be remarkably good. To get an idea
why, let us consider the other states of density 1

m
:

ψ(z1, ..., zN) =
∏
i<j

(zi + zj)m−p(zi − zj)pe−
∑

i
|zi|2/4l2B

with p odd. These states are much less competitive energetically as soon as p < m
because the probability that two particles are close to each other is larger. Since
the Coulomb repulsion is repulsive, large values of p are favoured. In fact, the only
serious contender is the Wigner crystal, a wave function that breaks the transla-
tional symmetry and localizes electrons to form a triangular lattice. Comparing the
Coulomb energy in both states, one can show that the Wigner crystal is stabilized
for ν < 1

7 , while Laughlin states are stabilized for 1
7 ≤ ν ≤ 1.

Excitations: If one adds one electron to the system, this costs a finite energy.
To convince oneself of this property, we start by noting that, in a Laughlin state,
the relative angular momentum of two particles is equal to m. Let us write the
interaction potential energy between two particles as

V (i, j) =
∞∑

m′=0
vm′Pm′(ij),



76 CHAPTER 3. ELECTRONS IN A MAGNETIC FIELD

where Pm′(ij) is the projector on the subspace of angular momentum m′. If one
assumes that vm′ = 0 if m′ ≥ m, then the function ψ1/m is an eigenstate of V̂ =∑
i<j V (i, j) with

V̂ ψ1/m = 0.

If one tries to add one particle, one cannot stay in a state where all pairs have a
relative angular momentum m (this would force one out of the sample). One can
convince oneself that one needs to create pairs of angular momentum < m. Indeed,
this is necessary for the total polynomial to keep a degree in each variable less than
or equal to m(N − 1). This costs a finite energy. There is thus a charge gap.
This property remains true if one includes the terms of V (i, j) with m′ ≥ m in
perturbation.
The presence of a gap is absotutely necessary to understand the presence of a

plateau: it is because it is impossible to add a particle for an infinitesimal cost that
σxx = ρxx = 0, a necessary condition for the appearance of a plateau (like in the
case of completely filled Landau level). This condition is however not sufficient, and
one must again invoke disorder to explain the constant value of RH around ν = 1

m
.

Fractional charge: Let us now think about the excitations that one can induce
without changing the number of particles. Simple electron-hole excitations are very
deep modifications of the wave function. One can implement simpler modifications
as follows:

ψ
(1)
1/m =

∏
j

zjψ1/m.

In this function, the polynomial is of degree ≥ 1 in each variable. Thus the level
m = 0 is not used. Similarly, one can create ψ(j)

1/m for j ≤ m by creatingm excitations
of the same type. For j = m, the wave function can be written:

ψ
(m)
1/m =

∏
j

zmj
∏
i<j

(zi − zj)me−
∑

i
|zi|2/4l2B = ψ1/m(z0 = 0, z1, ..., zN).

This is the ν = 1/m Laughlin wave function with a particle sitting at z0 = 0. The
wave function ψ(m)

1/m(z0 = 0, z1, ..., zN) thus corresponds to a state with one hole of
charge e at the center, and one electron of charge −e at the periphery. But this
excitation is composed of m elementary excitations that each consists in multiplying
the wave function by ∏j zj. Each of these excitations carries a charge e/m. This is
one of the most remarkable predictions of Laughlin. It has been checked in noise
measurements.

Generalizations Laughlin’s wave functions allow one to understand the plateaus
ν = 1/m, m odd. However, other plateaux have been observed, noticeably at 2

5 .
Various approaches have been suggested to generalize Laughlin’s theory. The most
promising is due to Jain. It consists in building Laughlin’s states using higher
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Landau levels, and to project back onto the first level. A detailed discussion of this
contruction would lead us too far. We just note that, within this approach, it is
plausible that there are plateaus for

ν = n

2np± 1 n, p integers ≥ 1.

Appendix

Angular momentum

l2B = ~c
eB

= mc

eb

~
m

= ~
mωc

L̂z = x̂p̂y − ŷp̂x


Π̂x = p̂x −

e

2cBŷ

Π̂y = p̂y + e

2cBx̂


X̂ = x̂− 1

mωc
Π̂y

Ŷ = ŷ + 1
mωc

Π̂x

mωcX̂ = mωcx̂− Π̂y

mωcŶ = mωcŷ + Π̂x
x̂ = X̂ + 1

mωc
Π̂y

ŷ = Ŷ − 1
mωc

Π̂x

px = Πx + eB

2c y = Πx + 1
2mωcy

= Πx + 1
2mωcY −

1
2Πx

= 1
2mωcY + 1

2Πx

py = Πy −
eB

2c x = Πy −
1
2mωcx

= Πy −
1
2mωcX −

1
2Πy

= −1
2mωcX + 1

2Πy
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Lz = xpy − ypx

=
(
X + 1

mωc
Πy

)(
−1

2mωcX + 1
2Πy

)
−
(
Y − 1

mωc
Πx

)(1
2mωcY + 1

2Πx

)
= −1

2mωcX
2 + 1

2mωc
Π2
y −

1
2mωcY

2 + 1
2mωc

Π2
x

= 1
2mωc

[
−(X2 + Y 2) + (η2

x + η2
y)
]

= ~
2l2B

[
− l

2
B

2 (b† + b)2 + l2B
2 (b† − b)2 + l2B

2 (a† + a)2 − l2B
2 (a† − a)2

]

= ~
2
[
−b†b− bb† + a†a+ aa†

]
= ~

[
a†a+ 1

2 − b
†b− 1

2

]
= ~

[
a†a− b†b

]

~RCM = ~r1 + ~r2

2
~PCM = ~p1 + ~p2


~Rrel = ~r1 − ~r2

~Prel = ~p1 − ~p2

2

→ ~l1 +~l2 = ~lCM +~lrel

~lCM = ~RCM ∧ ~PCM , ~lrel = ~Rrel ∧ ~Prel

lzrel = −mωc4
{

(X1 −X2)2 + (Y1 − Y2)2 − (ηx1 − ηx2 )2 − (ηy1 − ηy2)2
}

= ~
2
{
a†1a1 + a†2a2 − a†1a2 − a1a

†
2 − b

†
1b1 − b†2b2 + b†1b2 + b1b

†
2

}

lzCM = −mωc4
{

(X1 +X2)2 + (Y1 + Y2)2 − (ηx1 + ηx2 )2 − (ηy1 + ηy2)2
}

= ~
2
{
a†1a1 + a†2a2 + a†1a2 + a1a

†
2 − b

†
1b1 − b†2b2 − b†1b2 − b1b

†
2

}

lzCM + lzrel = lz1 + lz2

lz1 = ~
(
a†1a1 − b†1b1

)
, lz2 = ~

(
a†2a2 − b†2b2

)
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lzrel = ~
2
[
(a†1 − a†2)(a1 − a2)− (b†1 − b†2)(b1 − b2)

]

lzCM = ~
2
[
(a†1 + a†2)(a1 + a2)− (b†1 + b†2)(b1 + b2)

]

→ lzrel = ~
[
α†−α− − β†−β−

]
lzCM = ~

[
α†+α+ − β†+β+

]

α†− = 1√
2

(a†1 − a†2), β†− = 1√
2

(b†1 − b†2)

α†+ = 1√
2

(a†1 + a†2), β†+ = 1√
2

(b†1 + b†2)

ψ = (z1 + z2)M(z1 − z2)me−
∑

i
|zi|2/4l2B

∝
(
β†+
)M (

β†−
)m
|0〉

If one considers the angular momentum in the −z direction,

l̃zrel|ψ〉 = m (~ = 1)
l̃zCM |ψ〉 = M (~ = 1)
l̃ztot|ψ〉 = M +m (~ = 1)



Chapter 4

Electron-phonon interaction

4.1 Introduction

In band theory, the lattice is assumed to be static. In reality, ions vibrate around
their equilibrium position. These vibrations have direct consequences on the proper-
ties of solids (specific heat, fusion, thermal conductivity) and indirect consequences
due to their influence on electrons. In particular, they contribute to the resistivity,
and they are responsible for the effective attractive interaction between electrons
that lies at the root of superconductivity.

4.2 Phonons - Reminder

Let us denote by ~Rn,α = ~Rn + ~Rα the equilibrium position of an atom, where ~Rn

is the position of the unit cell and ~Rα the position inside the unit cell, and let
us denote by ~sn,α(t) the displacement of this atom with respect to its equilibrium
position. The kinetic energy can be written:

T =
∑
n,α,i

Mα

2 ṡ2
n,α,i , n = 1, . . . , N ; α = 1, . . . , r ; i = x, y, z

where Mα is the mass of the atom α in the unit cell. Furthermore let us denote by
V ({~sn,α}) the potential energy of a system considered as a function of the positions
of the ions. If one is interested in the small displacements with respect to the
equilibrium position, one can expand this function around the equilibrium position.
Up to second order, one gets:

V ({~sn,α})− V ({~o}) = 1
2
∑
n,α,i

∑
n′,α′,i′

φn
′,α′,i′

n,α,i sn,α,isn′,α′,i′

with
φn
′,α′,i
n,α,i = ∂2V

∂sn,α,i∂sn′,α′,i′

∣∣∣∣∣
~sn,α=~o

80
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The vibrations of the solid thus appear as a particular case of the general problem
of small oscillations treated in analytical mechanics. In particular, with the help
of a change of variables, one can map the problem onto that of a collection of
harmonic oscillators. These variables are called the normal coordinates. In the case
of the vibrations of a solid, the periodicity of the problem allows one to simplify
the problem by performing a Fourier transform. The price to pay is to introduce
complex coordinates.
Up to a constant, the Lagrangian of the system is thus given by:

L = T − V =
∑
n,α,i

Mα

2 ṡ2
n,α,i −

1
2
∑
n,α,i

∑
n′,α′,i′

φn
′,α′,i′

n,α,i sn,α,isn′,α′,i′

The Lagrange equations for the variable sn,α,i take the form:

d

dt

(
∂L

∂ṡn,α,i

)
− ∂L

∂sn,α,i
= 0

⇒Mαs̈n,α,i = −
∑

n′,α′,i′
φn
′,α′,i′

n,α,i sn′,α′,i′

We are interested in the eigenmodes of this system, i.e. in solutions of the type

sn,α,i(t) = 1√
Mα

un,α,i e
−iωt

Since this is a linear system, both the real part and the imaginary part are solu-
tions. One gets:

ω2un,α,i =
∑

n′,α′,i′
Dn′,α′,i′

n,α,i un′,α′,i′

with

Dn′,α′,i′

n,α,i =
φn
′,α′,i′

n,α,i√
MαMα′

The squares of the eigenfrequencies are thus the eigenvalues of the matrix D. Now,
this matrix is symmetric since φn

′,α′,i′

n,α,i are second order partial derivatives. Its eigen-
values are thus real. Besides, the condition that the energy is minimal (and not just
extremal) implies that the eigenvalues are positive. Let us denote by ωj > 0 the
square root of ω2

j . We thus have:

3× r ×N eigenfrequencies

where the factor 3 comes from i = x, y, z , r is the number of atoms in the unit cell,
and N is the number of unit cells in the crystal. The eigenvector associated to ω2

j

is denoted by u(j)
n,α,i.
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So far, the calculation is completely general. The translational invariance of the
system implies that φn

′,α′,i′

n,α,i depends only on n− n′. In such a case, one can look for
the solutions as

un,α,i = cα,ie
i~q·~Rn

⇒ ω2cα,i =
∑
α′,i′

∑
n′

1√
MαMα′

φα
′,i′,n′

α,i,n ei~q·(
~Rn′−~Rn)cα′,i′

=
∑
α′,i′

Dα′,i′

α,i (~q)cα′,i′

For each value of ~q, we thus have a system of 3r equations, which leads to 3r
eigenfrequencies:

ωj(~q), j = 1, . . . , 3r

The eigenvector associated to ωj(~q) has 3r components e(j)
α,i(~q). It is often written as

r vectors with three components ~e(j)
α (~q). These vectors are called the polarization

vectors.
The final solution for the displacement is thus a linear combination of the dis-

placements ~e(j)
α (~q)ei(~q·~Rn−ωj(~q)t). It is convenient to include the time dependence into

the coefficient, and write this linear combination as:

⇒ sn,α,i(t) = 1√
NMα

∑
j,~q

Qj(~q, t)e(j)
α,i(~q)ei~q·

~Rn

There are in total 3rN quantities Qj(~q, t) (3r for j, N for ~q). One can consider
them as a new set of variables. In order for the sn,α,i(t) to be real, the Qj(~q, t) must
be complex and satisfy Q∗j(~q, t) = Qj(−~q, t) (one can show that ωj(−~q) = ωj(~q) and
choose ~e(j)

α (~−q) = ~e(j)
α (~q)).

Besides, the eigenvectors of a symmetric matrix are orthogonal:∑
α,i

e
(j)
α,i(~q)e

(j′)
α,i (~q′) = δj,j′δ~q,~q′

With the help of these relations one can show that the Lagrangian can be written:

L = 1
2
∑
j,~q

[
Q̇∗j(~q, t)Q̇j(~q, t)− ω2

j (~q)Q∗j(~q, t)Qj(~q, t)
]

The Hamiltonian can then be obtained with the help of a Legendre transformation:

Pj(~q, t) = ∂L

∂Q̇j(~q, t)
= Q̇∗j(~q, t)

⇒ H = 1
2
∑
j,~q

[
P ∗j (~q, t)Pj(~q, t) + ω2

jQ
∗
j(~q, t)Qj(~q, t)

]
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Quantization :
One postulates, as for the harmonic oscillator, the usual commutation relations

between the positions and the momenta of the ions. This leads to the following
commutation relations for the normal coordinates:

[Qj(~q), Pj′(~q′)] = i~δ~q,~q′δj,j′

If, still by analogy with the harmonic oscillator, one defines creation and annihilation
operators by: 

a+
j (~q) = 1√

2~ωj(~q)
(ωjQ∗j(~q)− iPj(~q))

aj(~q) = 1√
2~ωj(~q)

(ωjQj(~q)− iP ∗j (~q))

the Hamiltonian takes the form:

H =
∑
j,~q

~ωj(~q)
(
a+
j (~q)aj(~q) + 1

2

)

The operators a+
j (~q), aj(~q) satisfy bosonic commutation rules:

[aj(~q), a+
j′(~q′)] = δj,j′δ~q,~q′

The inverse relations giving the positions and momenta in terms of the aj(~q) and
a+
j (~q) are:  Qj(~q) =

√
~

2ωj(~q)(a
+
j (−~q) + aj(~q))

Pj(~q) = i
√

~ωj(~q)
2 (a+

j (~q)− aj(−~q))

The form of the Hamiltonian shows that the system behaves as a gas of bosons.
General discussion:
The curves ωj(~q) are called the dispersion relations. There are 3r of them. When

~q → 0, all the unit cells vibrate in phase. If all atoms inside the unit cells vibrate in
phase, ωj(~q) must go to 0. There are 3 modes that satisfy this condition (global dis-
placement in the three directions of space). These modes are called acoustic modes.
The remaining 3r−3 modes do not go to 0 as ~q → 0. They are called optical modes.
The general form of the dispersion is thus:
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Thermodynamics
The calculation of the specific heat at low temperture is completely equivalent

to that of antiferromagnets since acoustic phonons have a linear dispersion, like
magnons in an antiferromagnet. It leads to

Cv ∼ T 3

A high temperature, the specific heat saturates when the temperature becomes
larger than the largest phonon frequency.
Other properties:
For successful that it is, this harmonic model suffers from a number of failures. In

particular, it is impossible to account for thermal expansion and thermal conduc-
tivity without including anharmonic effects. In second quantization, they take the
form of terms with 3 phonons, 4 phonons, etc. . .

4.3 Electron-phonon interaction

The electron-phonon interaction comes from the Coulomb interaction between the
electrons and the ions, that can be written:

Hel−ion =
∑
l,i

V (~rl − ~Ri)

where ~rl stands for the position of the electron and ~Ri for that of the ion, and from
the fact that ~R is not fixed at its equilibrium position but can make small oscillations
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around it. With the help of the previous notations, one can write:

~Rn,α(t) = ~Rn + ~Rα︸ ︷︷ ︸
~Rn,α

+~sn,α(t)

If ~sn,α(t) is small, one can expand Vα(~rl − ~Ri), where V depends on the site in the
unit cell:

Vα(~rl − ~Rn,α − ~sn,α) = Vα(~rl − ~Rn,α)− ~sn,α · ~∇Vα(~rl − ~Rn,α)

The first term describes the motion of electrons in the periodic potential of the
crystal. It is taken care of by Bloch theorem.
The second term describes the interaction with the lattice vibrations. If one puts

the expression of ~sn,α in terms of the normal coordinates in the expression of the
Hamiltonian, one gets:

Hel−ph = −
∑
α,n,l

1√
NMα

∑
j,~q

Qj(~q)~e(j)
α (~q) · ~∇Vα(~rl − ~Rn,α)ei~q·~Rn

To express this Hamiltonian in second quantization, one proceeds in two steps:

• For the phonon part, one just has to replace Qj(~q) by its expression in terms
of aj and a+

j :

Qj(~q) =

√√√√ ~
2ωj(~q)

(
a+
j (−~q) + aj(~q)

)

• For the electron part, one must use the rules of second quantizaiton, i.e. one
must calculate the matrix element of the part of the interaction that depends
on the electron coordinates, namely ~∇Vα(~rl − ~Rn,α). For this, it is useful to
expand vα in Fourier series :

Vα(~r) = ∑
~K e

i ~K·~rVα, ~K
~K arbitrary because Vα(~r) is not periodic

⇒ ~∇Vα(~rl − ~Rn,α) =
∑
~K

ei
~K(~rl−~Rn,α)Vα, ~Ki

~K

The matrix elements of this potential between Bloch waves are given by:

< ~k′, σ′|~∇Vα|~k, σ >=
∑
~K

e−i
~K ~Rn,αVα, ~Ki

~K < ~k′, σ′|ei ~K~r|~k, σ >

with
< ~k′, σ′|ei ~K~r|~k, σ >=

∫
d~ru∗~k′(~r)u~k(~r)e

i(−~k′+ ~K+~k)~rδσ,σ′
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This integral vanishes unless
~k′ = ~K + ~k + ~G

where ~G is a vector of the reciprocal lattice. Indeed, u∗~k′(~r)u~k(~r) is a periodic func-
tion. It can thus be expanded in Fourier series:

u∗~k′(~r)u~k(~r) =
∑
~G

f(~G)ei ~G.~r

where the vectors ~G are vectors of the reciprocal lattice, which leads to

< ~k′, σ′|ei ~K~r|~k, σ >= δσ,σ′
∑
~G

f(~G)
∫
d~rei(−

~k′+ ~K+~k+ ~G)~r

Now, the integral
∫
d~rei(−

~k′+ ~K+~k+ ~G).~r vanishes unless −~k′ + ~K + ~k + ~G = ~0.
Moreover, the sum over ~Rn can be written:∑

~Rn

ei~q.
~Rne−i

~K.~Rn =
∑
~Rn

ei(~q−
~K). ~Rn

This sum vanishes unless ~K = ~q + ~G where ~G is a vector of the reciprocal lattice.
As a consequence, ~k and ~k′ must be related by

~k′ = ~q + ~k + ~G

But ~k and ~k′ must both belong to the first Brillouin zone. So, for a given pair of
vectors ~k and ~q, there is one and only one vector ~G that brings ~k + ~q back into the
first Brillouin zone.
One thus distinguishes two types of processes:

• The "normal" processes such that ~k + ~q ∈ BZ (~G = ~0).

• The "Umklapp" processes such that ~k + ~q /∈ BZ⇒ ~G 6= ~0 and ~k′ 6= ~k + ~q.

Finally, the interaction can be written

H = −
∑

α,σ,~k,~q,j

√√√√ N~
2Mαωj(~q)

×
∑
~G′

[
~e

(j)
α,~q · i(~q + ~G′)

] ∫
Vα(~r′)ei(~q+ ~G′)·(~r′−~Rα)d~r′

×
∫
u∗~k+~q+ ~G

(~r)u~k(~r)d~r

×
[
a+
−~q(j) + a~q(j)

]
c+
~k+~q+ ~G,σ

c~k,σ
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where ~G is such that ~k+~q+ ~G ∈ 1st Brillouin zone. This Hamiltonian can be written
in a more compact way as:

H = −
∑

~k,~k′,~q,j,σ

M(~k,~k′, ~q, j)
[
a+
−~q(j) + a~q(j)

]
c+
~k′,σ

c~k,σ

with ~q = ~k′ − ~k + ~G

{
~G = ~0 for normal processes
~G 6= ~0 for Umklapp processes

4.4 The effective electron-electron interaction

One of the consequences of the electron-phonon interaction is its important contribu-
tion to resistivity. This assumes that the electrons can be describes by a Fermi-Dirac
distribution, or equivalently that one essentially deals with free electrons.
But the ions are charged particles, and the electron-electron interaction must

be modified by their vibrations. The calculation of the effective electron-electron
interaction in the presence of phonons can be done from two points of view:

• The phonons contribute to the dielectric function, which induces a modification
of the electron-electron interaction.

• The electrons interact via the exchange of virtual phonons.

We will adopt the second point of view to do the calculation.
The starting point is the Hamiltonian describing the electron-phonon interaction:

Hel−ph =
∑
~k,~q,σ

M~q

[
a+
−~q + a~q

]
c+
~k+~q,σc~k,σ

where for simplicity we only consider one branch of phonons, and where we limit
ourselves to normal processes (can be justified a posteriori). Furthermore, we assume
that the electrons are described by a Hamiltonian of the type :

Hel =
∑
~k,σ

ε~kc
+
~k,σ
c~k,σ

and that phonons are described by the Hamiltonian

Hph =
∑
~q

~ω~q(a+
~q a~q + 1

2)

If the matrix elementsM~q are small, we can expect the electron gas to be described
by H0 = Hel plus a small correction. But if |ψ〉 is an eigenstate of Hel + Hph, then
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〈ψ|Hel−ph|ψ〉 = 0. So if we want to treat Hel−ph as a perturbation, we must go to
second order. This is reminiscent of the calculation done for Mott insulators, where
degenerate perturbation theory has been used to obtain an effective Hamiltonian,
the Heisenberg model with a coupling constant J = 4t2

U
of order 2 in the kinetic

term. In the present case however, the starting point is not degenerate, and one
must resort to another technique to derive an effective Hamiltonian for the electron
gas that takes into account the electron-phonon interaction.
By definition, an effective Hamiltonian is a Hamiltonian that must have the same

spectrum of eigenvalues as the original one. Now there is a systematic method to
generate Hamiltonians having the same eigenvalues as a given Hamiltonian known
as canonical transformation.

Canonical transformation
A canonical transformation is a unitary transformation of the Hamiltonian and of

the vectors of the Hilbert space that does not modify the spectrum:

Ĥ → UĤU−1

|Ψ > → U |Ψ >

with U+ = U−1.
The following properties are then satisfied:

1. The new Hamiltonian is hermitian. Indeed,
(UĤU−1)+ = (U−1)+ĤU+ = UĤU−1 QED

2. If |Ψ > is an eigenstate of Ĥ with eigenvalue E, then U |Ψ > is an eigenstate
of UĤU−1 with the same eigenvalue. Indeed,
UĤU−1U |Ψ >= UĤ|Ψ >= UE|Ψ >= EU |Ψ >.

The property U+ = U−1 is satisfied by operators of the form:

U = eiS

provided S is hermitian. Indeed,

U+ = (eiS)+ = e−iS
+ = e−iS = (eiS)−1

The transformed Hamiltonian can be written as an expansion in terms of com-
mutators:

eiSĤe−iS = Ĥ + i[S, Ĥ] + i2

2! [S, [S, Ĥ]] + . . .

= Ĥ +
∞∑
n=1

in

n! [S, [S, . . . [S, Ĥ]]]
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Proof :
Let us define the operator Ĥ(λ) by :

Ĥ(λ) ≡ eiλSĤe−iλS

Then

dĤ(λ)
dλ

= iSeiλSĤe−iλS + eiλSĤ(−iS)e−iλS

= i[S, Ĥ(λ)]
d2Ĥ(λ)
dλ2 = i[S, dĤ(λ)

dλ
] = i2[S, [S, Ĥ(λ)]]

If Ĥ(λ) has an expansion in λ, it can thus be written :

Ĥ(λ) = Ĥ + iλ[S, Ĥ(0)] + i2

2!λ
2[S, [S, Ĥ(0)]] + . . .

For λ = 1, this leads to the expansion we are looking for since Ĥ(0) = Ĥ.
Let us come back to the original problem. One looks for a description of the

electron gas interacting with phonons that does not contain terms of order 1 in M~q

any more, and that contains purely electronic terms of order 2.
Looking at the expansion up to order 2,

H̃ = H + i[S,H]− 1
2! [S, [S,H]]

S must satisfy two conditions:

• It is or order 1 in M~q

• It is such that [S,H] cancels Hel−ph to first order.

To find the solution of

i[S,Hel +Hph] = −Hel−ph

let us start by calculating the commutator of a term of Hel−ph with Hel +Hph.

[a+
−~qc

+
~k+~qc~k, c

+
l cl] = a+

−~q[c+
~k+~qc~k, c

+
l cl]

= a+
−~q

{
δ~k,l

(
c+
~k+~qc~kc

+
~k
c~k − c

+
~k
c~kc

+
~k+~qc~k

)
+ δ~k+~q,l

(
c+
~k+~qc~kc

+
~k+~qc~k+~q − c

+
~k+~qc~k+~qc

+
~k+~qc~k

)}
= a+

−~q

{
δ~k,lc

+
~k+~qc~k − δ~k+~q,lc

+
~k+~qc~k

}
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⇒ [a+
−~qc

+
~k+~qc~k, Hel] = a+

−~q(ε~k − ε~k+~q)c
+
~k+~qc~k

Similarly
[a~qc+

~k+~qc~k, Hel] = a~q(ε~k − ε~k+~q)c
+
~k+~qc~k

Moreover,

[a+
−~q, a

+
~k
a~k] = −δ~k,−~qa

+
−~q

⇒ [a+
−~q, Hph] = −~ω−~qa+

−~q

Similarly,

[a~q, a+
~k
a~k] = δ~k,~qa~q

⇒ [a~q, Hph] = ~ω~qa~q

Finally,
[a+
−~qc

+
~k+~qc~k, Hel +Hph] = (ε~k − ε~k+~q − ~ω~q)a+

−~qc
+
~k+~qc~k

[a~qc+
~k+~qc~k, Hel +Hph] = (ε~k − ε~k+~q + ~ω~q)a~qc+

~k+~qc~k

The solution of the equation

[S,Hel +Hph] = iHel−ph

can thus be written

S = i
∑
~k,~q,σ

M~q

ε~k − ε~k+~q − ~ω~q
a+
−~qc

+
~k+~q,σc~k,σ

+ i
∑
~k,~q,σ

M~q

ε~k − ε~k+~q + ~ω~q
a~qc

+
~k+~q,σc~k,σ

(the spin has been added at the end of the calculation).
The operator S satisfies the two conditions. The first terms in powers of M~q are

thus of order 2. They are given by :

i [S,Hel−ph]−
1
2[S, [S,Hel +Hph]︸ ︷︷ ︸

iHel−ph

]

= i

2[S,Hel−ph] = 1
2[Hel−ph,

S

i
]

The only thing that remains to be done is to calculate the commutator [S,Hel−ph].
From the expression of S and of Hel−ph, it is clear that the generic term of this
commutator is of the form:

a
(+)
±~q a

(+)
±~q′c

+
~k′+~q′,σ′c~k′,σ′c

+
~k+~q,σc~k,σ
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Since our goal is to derive an effective interaction between electrons, we will only
keep terms that only involve fermionic operators. The other terms have a vanishing
expectation value in the vacuum and do not contribute in the limit T → 0.
Let us write:

Hel−ph =
∑

~k1,~q1,σ1

M~q1a
+
−~q1
c+
~k1+~q1,σ1

c~k1,σ1

+
∑

~k1,~q1,σ1

M~q1a~q1c
+
~k1+~q1,σ1

c~k1,σ1

S

i
=

∑
~k2,~q2,σ2

M~q2

ε~k2
− ε~k2+~q2

− ~ω~q2

a+
−~q2
c+
~k2+~q2,σ2

c~k2,σ2

+
∑

~k2,~q2,σ2

M~q2

ε~k2
− ε~k2+~q2

+ ~ω~q2

a~q2c
+
~k2+~q2,σ2

c~k2,σ2

Two terms lead to an expression that does not depend on (a+, a) :

[a+
−~q1
c+
~k1+~q1,σ1

c~k1,σ1
, a−~q1c

+
~k2−~q1,σ2

c~k2,σ2
]

= a+
−~q1
a−~q1c

+
~k1+~q1,σ1

c~k1,σ1
c+
~k2−~q1,σ2

c~k2,σ2

− a−~q1a
+
−~q1︸ ︷︷ ︸

1+a+
−~q1

a−~q1

c+
~k2−~q1,σ2

c~k2,σ2
c+
~k1+~q1,σ1

c~k1,σ1

= a+
−~q1
a−~q1 [c+

~k1+~q1,σ1
c~k1,σ1

, c+
~k2−~q1,σ2

c~k2,σ2
]− c+

~k2−~q1,σ2
c~k2,σ2

c+
~k1+~q1,σ1

c~k1,σ1

The first term can be neglected at zero temperature, and the second one is purely
electronic. Similarly,

[a~q1c
+
~k1+~q1,σ1

c~k1,σ1
, a+

~q1
c+
~k2−~q1,σ2

c~k2,σ2
]

= a+
~q1
a~q1 [c+

~k1+~q1,σ1
c~k1,σ1

, c+
~k2−~q1,σ2

c~k2,σ2
] + c+

~k1+~q1,σ1
c~k1,σ1

c+
~k2−~q1,σ2

c~k2,σ2

⇒ H
(2)
eff = 1

2
∑

~k1,~k2,~q,σ1,σ2

 M2
~q

ε~k2
− ε~k2−~q + ~ω~q

(−c+
~k2−~q,σ2

c~k2,σ2
c+
~k1+~q,σ1

c~k1,σ1
)

+
M2

~q

ε~k2
− ε~k2−~q − ~ω~q

(c+
~k1+~q,σ1

c~k1,σ1
c+
~k2−~q,σ2

c~k2,σ2
)


If one rearranges the creation and annihilation operators to put them in the same
order (the bilinear terms generated on the way can be included in ε~k), one gets:

H
(2)
eff = 1

2
∑

~k1,~k2,~q,σ1,σ2

V~k2,~q
c+
~k1+~q,σ1

c~k1,σ1
c+
~k2−~q,σ2

c~k2,σ2
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with

V~k2,~q
= M2

~q

(
1

ε~k2
− ε~k2−~q − ~ω~q

− 1
ε~k2
− ε~k2−~q + ~ω~q

)

= M2
~q

2~ω~q
(ε~k2
− ε~k2−~q)2 − (~ω~q)2

Finally, the effective Hamiltonian takes the form:

H
(2)
eff = 1

2
∑

~k,~k′,~q,σ,σ′

V~k,~qc
+
~k+~q,σc

+
~k′−~q,σ′c~k′,σ′c~k,σ

with
V~k,~q = M2

~q

2~ω~q
(ε~k − ε~k+~q)2 − (~ω~q)2

With this ordering of the fermionic operators, the interaction is repulsive if the
coefficient if positive, and it is attractive if the coefficient is negative (see the case of
the Coulomb repulsion in Chapter 6 - Appendix). But V~k,~q < 0 if |ε~k− ε~k+~q| < ~ω~q !
So the electron-phonon interaction induces an effective attraction between electrons
with similar energies, thus leading to a qualitative modification of the electron-
electron interaction. This attraction becomes significant as soon as the energies are
close, not the momenta. As a consequence, it is larger than the Coulomb interaction
as soon as q is not too small since the Coulomb interaction decays as 1/q2 and is
only important for small momentum transfer.
The simple physical picture of this attraction is the following: When an electron

travels through the lattice, it attracts the ions. After its passage, there is an excess
of positive charge that acts as an attractive potential for the other electrons.



Chapter 5

Superconductivity

5.1 Introduction

Superconductivity is probably the most remarkable phenomenon ever observed in
solids. The most spectacular aspect is the rigorous absence of resistance below a
certain temperature. In view of the effect of phonons on transport, the absence of
T 5 contribution to resistivity implies that one of the hypotheses is no longer fulfilled
below a certain temperature. The idea that has finally imposed itself is that the
electron gas undergoes a phase transition into another state no longer described by
a Fermi sea, but by a Bose-Einstein condensate of electron pairs that form because
of the effective attraction between electrons due to the electron-phonon interaction.
The starting point is thus the effective Hamiltonian derived in the previous chap-

ter. For simplicity, one writes it:

H
(2)
eff = − V

2N
∑

~k,~k′,~q,σ,σ′

c+
~k+~q,σc

+
~k′−~q,σ′c~k′,σ′c~k,σ , V > 0

if |ε~k+~q − εF |, |ε~k − εF |, |ε~k′−~q − εF |, |ε~k′ − εF | < ~ωD
H

(2)
eff = 0 otherwise

In other words, one assumes that there is an attraction between all electrons that
are close to the Fermi surface, and that there is no electron-electron interaction
otherwise.
If one considers the case of two electrons in the presence of a Fermi sea (see

exercises), one can show that attraction induces a bound state that corresponds
to a pair of electrons. But a pair of electrons behaves more or less as a boson. In
particular, the antisymmetrization of the wave function, which imposes to work with
wave functions that are all different if one wants to build anN electron wave function
out of one electron wave functions, does not prevent one from using N/2 times the
same pair wave-function: the antisymmetrization does not make the resulting wave
function vanish.
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The analogy between the superconducting transition and the Bose-Einstein con-
densation is clear: the new ground state must correspond to a condensate of pairs
(called Cooper pairs). Once this idea has been accepted, the difficulty is technical:
How to work with a wave function that is not a Slater determinant or a simple com-
bination of Slater determinants? By analogy with the Bose-Einstein condensation,
the only simple method is based on wave functions with a number of particles that is
not fixed. In their original paper, Bardeen, Cooper, and Schrieffer have used a vari-
ational approach based on a wave function that mixes states with different number
of pairs. This wave function, known as the BCS wave function, can also be found
as the ground state of a mean-field theory. This approach relies on a Bogoliubov
transformation analogous to that introduced for antiferromagnets. So this is the
presentation we have adopted in these lectures. The variational calculation will be
done in the exercises.

5.2 The mean-field approach

Since the idea is to describe the ground state in terms of pairs, it is natural to
use expectation values of pair creation operators < c+

~k,↑c
+
−~k,↓ > (and their hermitian

conjugate, pair annihilation operators) to decouple the Hamiltonian. Now, one can
show that, in the absence of current, the energy is minimal if only pairs of zero
momentum and zero total spin are used. In other words, one only needs to keep
the terms k′ = −k, σ′ = −σ in the sum. This means that one can work with the
reduced Hamiltonian (also called BCS Hamiltonian) :

Hred =
∑
~k,σ

ε~kc
+
~k,σ
c~k,σ −

V

N

∑
~k,~k′

c+
~k,↑c

+
−~k,↓c−~k′,↓c~k′,↑

where one has replaced the sum over σ by a factor 2.
The mean field decoupling can be written:

c+
~k,↑c

+
−~k,↓c−~k′,↓c~k′,↑ ' < c+

~k,↑c
+
−~k,↓ > c−~k′,↓c~k′,↑ + c+

~k,↑c
+
−~k,↓ < c−~k′,↓c~k′,↑ >

− < c+
~k,↑c

+
−~k,↓ >< c−~k′,↓c~k′,↑ > (5.1)

Introducing an order parameter ∆ assumed to be real by

∆
V

= 1
N

∑
~k

< c+
~k,↑c

+
−~k,↓ >= 1

N

∑
~k

< c−~k′,↓c~k′,↑ >

leads to the mean-field Hamiltonian

HMF =
∑
~k,σ

ε~kc
+
~k,σ
c~k,σ −∆

∑
~k

(c+
~k,↑c

+
−~k,↓ + c−~k,↓c~k,↑) + N∆2

V
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This Hamiltonian is quadratic, but it contains products of creation operators and
products of annihilation operators. So, to diagonalize it, one must use a Bogoliubov
transformation. The full mean-field solution of the problem thus relies on three
steps:
a) Bogolioubov transformation to diagonalize the Hamiltonian;
b) Calculation of the ground state of this Hamiltonian;
c) Calculation of the expectation values 〈c+

k,σc
+
−k,−σ〉 ⇒ self-consistent equations

for the parameters ∆.
a) Bogolioubov transformation :
We look for fermionic operators defined byα

+
~k,↑ = u~kc

+
~k
− v~kc−~k,↓

α−~k,↓ = u~kc−~k,↓ + v~kc
+
~k,↑

(5.2)

If the Hamiltonian is quadratic in these operators with energy E~k, then the commu-
tators of H with these operators must be given by[H,α+

~k,↑] = E~kα
+
~k,↑

[H,α−~k,↓] = −E~kα−~k,↓
(5.3)

These equations can be rewritten in terms of the original fermionic operators. A
straightforward calculation of the commutators then leads to−ε~ku~k −∆v~k = −E~ku~k

∆u~k − ε~kv~k = E~kv~k
(5.4)

or (E~k − ε~k)u~k −∆v~k = 0
∆u~k − (E~k + ε~k)v~k = 0

(5.5)

⇒ −(E2
~k

+ ε2~k) + ∆2 = 0
⇒ E~k =

√
ε2~k + ∆2

We have chosen the positive solution because the negative one would just correspond
to a different ordering of the creation and annihilation operators in the Hamiltonian.
For the operators α+

~k,↑ and α−~k,↓ to be fermionic, the coefficients u~k and v~k must
satisfy the normalization condition

u2
~k

+ v2
~k

= 1

But from the above system of equations they are also related by

v~k = ∆
E~k + ε~k

u~k
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⇒ u2
~k

(
1 + ∆2

(E~k + ε~k)2

)
= 1

⇒ u2
~k

= 1
1 + ∆2

(E~k+ε~k)2

= (E~k + ε~k)2

(E~k + ε~k)2 + ∆2

= (E~k + ε~k)2

2E2
~k

+ 2E~kε~k

= 1
2

(
1 + ε~k

E~k

)

Similarly
v2
~k

= 1− u2
~k

= 1
2

(
1− ε~k

E~k

)
Finally, the Hamiltonian takes the form

H =
∑
~k

E~k(α
+
~k,↑α~k,↑ + α+

−~k,↓α−~k,↓) + Cst

In the following, unless there is an ambiguity, we will always associate ~k with a spin
↑ and −~k with a spin ↓, and we will adopt the compact notations :

α+
~k
≡ α+

~k,↑
α~k ≡ α~k,↑

α+
−~k ≡ α+

−~k,↓
α−~k ≡ α−~k,↓

and similarly for the c+ and c operators.
b) Ground state
With these notations, the effective Hamiltonian after decoupling reads:

H =
∑
~k

E~k(α
+
~k
α~k + α+

−~kα−~k) + Cst

Since E~k > 0, the ground state corresponds to the vacuum of the α+
~k

particles, i.e.
it must satisfy:

α~k|φ0 > = 0
α−~k|φ0 > = 0

for all ~k.
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If one denotes by |0 > the vacuum of the c+
~k,σ

particles, the state

∏
~k

α~kα−~k|0 >

satisfies these conditions since the α~k operators are fermions.
But

∏
~k

α~kα−~k|0 >

=
∏
~k

(u~kc~k − v~kc
+
−~k)(u~kc−~k + v~kc

+
~k

)|0 >

=
∏
~k

(u2
~k
c~kc−~k + u~kv~kc~kc

+
~k
− v~ku~kc

+
−~kc−~k − v

2
~k
c+
−~kc

+
~k

)|0 >

=
∏
~k

(u~kv~k + v2
~k
c+
~k
c+
−~k)|0 >

=
∏
~k

v~k(u~k + v~kc
+
~k
c+
−~k)|0 >

Besides, this wave fucntion must be normalized :

⇒ < 0|
∏
~k

α+
−~kα

+
~k
α~kα−~k|0 >

= < 0|
∏
~k

v2
~k
(u~k + v~kc−~kc~k)(u~k + v~kc

+
~k
c+
−~k)|0 >

= < 0|
∏
~k

v2
~k
(u2
~k

+ v2
~k
c−~kc~kc

+
~k
c+
−~k)|0 >

=
∏
~k

v2
~k
(u2
~k

+ v2
~k
) = v2

~k

because c−~kc~kc
+
~k
c+
−~k)|0 >= |0 >. Finally, the normalized ground state is given by:

|φ0 >= ∏
~k(u~k + v~kc

+
~k
c+
−~k)|0 >

c) Self-consistent equations
It is clear that this ground state is very different from a Fermi sea. In particular,

it mixes states with different numbers of particles. That’s why expectation values
such as < c+

~k
c+
−~k > can be non vanishing.

Let us now calculate
∆ = V

N

∑
~k

< c−~kc~k >
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< c−~kc~k > = < 0|
∏
l

(ul + vlc−lcl)c−~kc~k
∏
l′

(ul′ + vl′c
+
l′ c

+
−l′)|0 >

= < 0|ukc−~kc~k
∏
l 6=k

(ul + vlc−lcl)
∏
l′

(ul′ + vl′c
+
l′ c

+
−l′)|0 >

= < 0|ukc−~kc~k(uk + vkc
+
k c

+
−k)

∏
l 6=k

(ul + vlc−lcl)
∏
l′ 6=k

(ul′ + vl′c
+
l′ c

+
−l′)|0 >

= < 0|(u~kc−~kc~kv~kc
+
~k
c+
−~k)|0 >

= u~kv~k

⇒ ∆ = V

N

∑
~k

u~kv~k

But

u~kv~k = 1
2

√√√√1−
ε2~k
E2
~k

= 1
2

∆√
ε2~k + ∆2

⇒ ∆ = V

2N∆
∑
~k

1√
ε2~k + ∆2

There is of course the solution ∆ = 0 that corresponds to the normal state. But
this equation possesses another non-zero solution:

1 = V

2N
∑
~k

1√
ε2~k + ∆2

1 = V

2

∫
g(ε) 1√

ε2 + ∆2
dε

This integral is limited to energies close to εF (within the Debye frequency ωD) for
which g(ε) ' g(εF )

1 ' V

2 g(εF )
∫ +ωD

−ωD

1√
ε2 + ∆2

dε

1 ' V

2 g(εF )
[

ln(ε+
√
ε2 + ∆2)

]+ωD

−ωD

1 ' V

2 g(εF ) ln
 ωD +

√
ω2
D + ∆2

−ωD +
√
ω2
D + ∆2


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Let us suppose that ∆ is small as compared to ωD (to be checked a posteriori)

1 ' V

2 g(εF ) ln
ωD + ωD(1 + ∆2

2ω2
D

)
∆2

2ωD


1 ' V

2 g(εF ) ln
4ω2

D

∆2


1 ' V

2 g(εF )2 ln
2ωD

∆


1

V g(εF ) = ln
2ωD

∆


⇒ ∆ = 2ωDe

−1
V g(εF )

Note: The parameter ∆ does not have an expansion in powers of V . So perturba-
tive approaches cannot be used.
The original method of BCS consists in assuming that the ground state is of the

form ∏
~k(u~k + v~kc

+
~k
c+
−~k)|0 >, and to minimiuze the energy with respect to u~k and v~k.

This variational method leads to the same results.

5.3 Interpretation of the results

To understand the physical implications of the existence of the solution with ∆ 6= 0,
we must:

a) Compare its energy to the solution with ∆ = 0.

b) Come up with a physical interpretation of the wave function.

c) Extract from the solution the elementary excitations and the behaviour at
finite temperature.

Condensation energy :
To calculate the energy of both solutions, let us go back to the mean-field Hamil-

tonian
⇒ HMF =

∑
~k,σ

ε~kc
+
~k,σ
c~k,σ −∆

∑
~k

(c+
~k,↑c

+
−~k,↓ + c−~k,↓c~k,↑) + N∆2

V

and let us invert the Bogolioubov transform to express HMF in terms of α+
~k,σ

:

 α+
~k,↑ = u~kc

+
~k,↑ − v~kc−~k,↓

α−~k,↓ = u~kc−~k,↓ + v~kc
+
~k,↑
⇒



c+
~k,↑ = u~kα

+
~k,↑ + v~kα−~k,↓

c~k,↑ = u~kα~k,↑ + v~kα
+
−~k,↓

c+
−~k,↓ = u~kα

+
−~k,↓ − v~kα~k,↑

c−~k,↓ = u~kα−~k,↓ − v~kα
+
~k,↑
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taking into account the fact that v~k changes sign between ~k, ↑ and −~k, ↓.
c+
~k,↑c~k,↑ = (u~kα

+
~k,↑ + v~kα−~k,↓)(u~kα~k,↑ + v~kα

+
−~k,↓)

= u2
~k
α+
~k,↑α~k,↑ + v2

~k
(1− α+

−~k,↓α−~k,↓)
+ u~kv~k(α

+
~k,↑α

+
−~k,↓ + α−~k,↓α~k,↑)

c+
~k,↓c~k,↓ = (u~kα

+
~k,↓ − v~kα−~k,↑)(u~kα~k,↓ − v~kα

+
−~k,↑)

= u2
~k
α+
~k,↓α~k,↓ + v2

~k
(1− α+

−~k,↑α−~k,↑)
− u~kv~k(α−~k,↑α~k,↓ + α+

~k,↓α
+
−~k,↑)

c+
~k,↑c

+
−~k,↓ = (u~kα

+
~k,↑ + v~kα−~k,↓)(u~kα

+
−~k,↓ − v~kα~k,↑)

= u2
~k
α+
~k,↑α

+
−~k,↓ − v

2
~k
α−~k,↓α~k,↑

− u~kv~kα
+
~k,↑α~k,↑ + u~kv~k(1− α

+
−~k,↓α−~k,↓)

c−~k,↓c~k,↑ = (u~kα−~k,↓ − v~kα
+
~k,↑)(u~kα~k,↑ + v~kα

+
−~k,↓)

= u2
~k
α−~k,↓α~k,↑ − v

2
~k
α+
~k,↑α

+
−~k,↓

+ u~kv~k(1− α
+
−~k,↓α−~k,↓)− u~kv~kα

+
~k,↑α~k,↑

Coefficient of α+
~k,↑α~k,↑:

ε~ku
2
~k
− ε~kv

2
~k

+ ∆u~kv~k + ∆u~kv~k

= ε~k
ε~k
E~k

+ 2∆

√√√√1
4

(
1−

ε2~k
E2
~k

)

=
ε2~k
E~k

+ ∆
√√√√∆2

E2
~k

= E~k

Coefficient of α+
~k,↑α

+
−~k,↓:

ε~ku~kv~k + ε~ku~kv~k −∆u2
~k

+ ∆v2
~k

= 2ε~ku~kv~k + ∆(v2
~k
− u2

~k
)

= ε~k
∆
E~k

+ ∆(− ε~k
E~k

) = 0

Constant term :∑
~k

(ε~kv
2
~k

+ ε~kv
2
~k
−∆u~kv~k −∆u~kv~k) + N∆2

V

=
∑
~k

(ε~k −
ε2~k
E~k
− ∆2

E~k
) + N∆2

V
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But from the gap equation: ∑
~k

1
E~k

= 2N
V

⇒
∑
~k

(ε~k −
ε2~k
E~k

)− N∆2

V

Altogether, the Hamiltonian can be written :

HCM =
∑
~k

E~k(α
+
~k,↑α~k,↑ + α+

−~k,↓α−~k,↓)

+
∑
~k

(ε~k −
ε2~k
E~k

)− N∆2

V

In the ground state, since E~k > 0, there is no particle α+
~k
. Let us compare this

energy with that of the non-superconducting case (∆ = 0).
∆ = 0

E~k =
√
ε2~k = ε~k si ε~k > 0 (~k empty)

= −ε~k si ε~k < 0 (~k occ.)

⇒ EGS =
∑
~kocc

2ε~k

∆ 6= 0

EGS(∆ 6= 0)− EGS(∆ = 0)

=
∑
~kocc

(−ε~k −
ε2~k
E~k

) +
∑

~kempty

(ε~k −
ε2~k
E~k

)− N∆2

V

= 2
∑

~kempty

(ε~k −
ε2~k
E~k

)− N∆2

V

∆E
N
' 2g(εF )

∫ ωD

0
dε(ε− ε2√

ε2 + ∆2
)− ∆2

V

Let us calculate
2g(εF )

∫ ωD

0
εdε(1− ε√

ε2 + ∆2
)

To this end, it is useful to perform the change of variables ε = ∆ sinh u, dε =
cosh u du

⇒ 2g(εF )
∫ uD

0

(
1− ∆ sinh u

∆ cosh u

)
∆2 sinh u cosh u du

= 2g(εF )∆2
∫ uD

0
(1− tanh u) sinh u cosh u du
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But

(1− tanh u) sinh u cosh u = (cosh u− sinh u) sinh u = e−u sinh u = 1− e−2u

2
so that

= ∆2g(εF )
∫ uD

0
(1− e−2u) du

= ∆2g(εF )(uD + e−2uD − 1
2 )

Proposition: uD = 1
V g(εF ) .

Indeed, sinh uD = ωD
∆ .

But the gap is given by :

1 = V g(εF )
∫ uD

0

dε√
ε2 + ∆2

= V g(εF )Argsh
(
ωD
∆

)

⇒ ωD
∆ = sinh 1

V g(εF ) ⇒ uD = 1
V g(εF )

So, uD � 1. One can thus neglect e−2uD in the previous result. Finally, the
condensation energy is given by:

∆2g(εF )
(

1
V g(εF ) −

1
2

)
− ∆2

V

leading to
Econd = −1

2g(εF )∆2

As soon as there is a solution ∆ 6= 0, its energy is lower. Bus as soon as V is
positive, i.e. as soon as the interaction is attractive, there is a solution ∆ 6= 0.
Finally,

Attraction ⇒ superconductivity

b) Interpretation of the wave function :
So there is a mean-field solution whose energy is lower than that of the Fermi sea

as soon as V > 0. Let us try to understand the physics of this solution.
The ground state wave function reads:

|φ0 >=
∏
~k

(u~k + v~kc
+
~k,↑c

+
−~k,↓)|0 >
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The probability for the pair c+
~k,↑c

+
−~k,↓ to be occupied is equal to v2

~k
, the probability

for it not to be occupied is equal to u2
~k
. It is clear that this wave function contains

states with different particle numbers. This is not a problem as long as, in the limit
of very large systems, the distribution of particles is "peaked" around a well defined
mean value.
Let us thus calculate N̄ =< N > and δN = (< (N − N̄)2 >) 1

2

< N >=< φ0|
∑
~k,σ

c+
~k,σ
c~k,σ|φ0 >

Let us consider a term c+
~k0,↑

c~k0,↑. All the operators u~k + v~kc
+
~k,↑c

+
−~k,↓ commute with

it except u~k0
+ v~k0

c+
~k0,↑

c+
−~k0,↓

.

< N >= 2︸︷︷︸
spin

∑
~k

< 0|(u~k + v~kc−~k,↓c~k,↑)c
+
~k,↑c~k,↑(u~k + v~kc

+
~k,↑c

+
−~k,↓)|0 >

c+
~k,↑c~k,↑(u~k + v~kc

+
~k,↑c

+
−~k,↓)|0 >

= v~kc
+
~k,↑(1− c

+
~k,↑c~k,↑)c

+
−~k,↓|0 >

= v~kc
+
~k,↑c

+
−~k,↓|0 >

⇒< N >= 2
∑
~k

v2
~k

δN2 = < N2 − 2N̄N + N̄2 > = < N2 > −N̄2

< N2 > = < φ0|
∑

~k,~k′,σ,σ′

c+
~k,σ
c~k,σc

+
~k′,σ′

c~k′,σ′ |φ0 >

If (~k′, σ′) 6= (~k, σ) and 6= (−~k,−σ), the terms commute → v2
~k
v2
~k′

If (~k′, σ′) = (~k, σ)⇒ c+
~k,σ

c~k,σc
+
~k,σ︸ ︷︷ ︸

1−c+
~k,σ

c~k,σ

c~k,σ → v2
~k

If (~k′, σ′) = (−~k,−σ)⇒ c+
~k,↑c~k,↑c

+
−~k,↓c−~k,↓(u~k + v~kc

+
~k,↑c

+
−~k,↓)→ v2

~k

⇒ < N2 > =

∑
~k,σ

v2
~k


2

−
∑
~k,σ

(
v4
~k
− v2

~k

)
︸ ︷︷ ︸

(~k′,σ′)=(~k,σ)

−
∑
~k,σ

(
v4
~k
− v2

~k

)
︸ ︷︷ ︸
(~k′,σ′)=(−~k,−σ)

=
∑

~k

2v2
~k

2

− 2
∑
~k

2v4
~k

+ 2
∑
~k

2v2
~k

= N̄2 + 4
∑
~k

v2
~k
(1− v2

~k
)
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⇒ δN2 = 4
∑
~k

u2
~k
v2
~k

Conclusion :
N̄ grows as N , but δN only grows as

√
N . So, if one writes φ0 = ∑

N λNφN , where
< φN |N̂ |φN >= N , the λN are distributed according to

So the expectation value of any observable calculated in |φ0 > is the same as that
calculated in |φN̄ > in the limit N → +∞. But this wave function is much easier
to manipulate.
It is in fact easy to understand the close relationship between this wave function

and wave functions with a fixed number of particles. Let us consider the case where
2N electrons are concerned by the instability (i.e. 2N electrons whose energy ε~k
lies between εF − ωD and εF ). There are thus 2N values of ~k such that εF − ωD <
ε~k < εF + ωD, and the Fermi sea consists in filling up the N values such that
εF − ωD < ε~k < εF with an ↑ spin or a ↓ spin.
If one tries to construct a wave function only built out of pairs to gain the potential

energy of Hred, and having a well defined number of particles, a natural choice would
be:

|φN >= 1
N !

∑
~k

g~kc
+
~k,↑c

+
−~k,↓

N |0 >
If

g~k

{
1 when ε~k < εF
0 otherwise

one gets back the Fermi sea, and since there are N ! terms, one must divide by N !.
Starting from this wave function, one could look for the g~k that minimize the

energy. But this wave function is very complicated. It contains of the order of
(2N)N terms!
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Now, if we add various |φN > to build

|φ > =
∑
N

|φN >

=
∑
N

1
N !

∑
~k

g~kc
+
~k,↑c

+
−~k,↓

N |0 >
this function can be rewritten:

|φ >= e
∑

~k
g~kc

+
~k,↑
c+
−~k,↓|0 >

But for fermions this coherent state takes a simple form: in the expansion of the
exponential, the only terms that survive are those of order 0 or 1 beacuse of the
Pauli principle

⇒ |φ > =
∏
~k

(1 + g~kc
+
~k,↑c

+
−~k,↓)|0 >

If one writes g~k = v~k
u~k
, one gets back the BCS wave function. This wave function

is much easier to manipulate. It is thanks to it that Bardeen, Cooper and Schrieffer
got the Nobel prize!
c) Elementary excitations :
It is clear from the form of HCM that an elementary excitation consists in adding

one particle α+
~k,σ

. This costs an energy

E~k =
√
ε2~k + ∆2

This energy is greater than or equal to ∆.
There is thus an energy gap ∆ in the single particle density of states of the system.

The very basis of the theory of transport, with diffusion processes of quasi particles
at the Fermi level, is thus not appropriate any more. One needs to investigate the
properties of the electron gas in this state.

5.4 Finite temperatures

At finite temperature, one can still use mean-field theory, but now the gap involves
the thermal mean value of < c+

~k,↑c
+
−~k,↓ >.

Now,

c+
~k,↑c

+
−~k,↓ = (u~kα

+
~k,↑ + v~kα−~k,↓)(u~kα

+
−~k,↓ − v~kα~k,↑)

= −u~kv~kα
+
~k,↑α~k,↑ + u~kv~kα−~k,↓α

+
−~k,↓ + u2

~k
α+
~k,↑α

+
−~k,↓ − v

2
~k
α−~k,↓α~k,↑

= u~kv~k(1− α
+
~k,↑α~k,↑ − α

+
−~k,↓α−~k,↓) + u2

~k
α+
~k,↑α

+
−~k,↓ − v

2
~k
α−~k,↓α~k,↑
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⇒< c+
~k,↑c

+
−~k,↓ > = u~kv~k(1− 2f(E~k))

since < α+
~k,↑α~k,↑ >=< α+

−~k,↓α−~k,↓ >= 1
e
βE~k+1

et < α+
~k,↑α

+
−~k,↓ >=< α−~k,↓α~k,↑ >= 0

So the gap equation is given by :

∆ = V

N

∑
~k

∆
2E~k

(1− 2f(E~k))

1− 2f(E~k) = eβE~k + 1− 2
eβE~k + 1

= eβ
E~k
2 − e−β

E~k
2

eβ
E~k
2 + e−β

E~k
2

= tanh βE~k2

The non-vanishing solution thus satisfies:

1 = V

N

∑
~k

1
2E~k

tanh βE~k2

When T increases, β → 0 and this equation is satisfied for smaller and smaller values
of ∆. In particular, there is a temperature Tc where ∆(Tc) = 0 defined by

1 = V

N

∑
~k

1
2|ε~k|

tanh βε~k2 (β = 1
Tc

)

1 = V g(εF )
∫ ωD

0
tanh βε2

dε

ε

1
V g(εF ) =

∫ ωD
2Tc

0

tanh u
u

du (u = βε

2 )

Let us suppose that Tc � ωD (this is reasonable since one expects that Tc ' ∆(0)�
ωD because thermal fluctuations destroy the gap if T � ∆(0)).

∫ ωD
2Tc

0

tanh u
u

du =
∫ η

0

tanh u
u

du+
∫ ωD

2Tc

η

tanh u
u

du

'
∫ η

0

tanh u
u

du+
∫ ωD

2Tc

η

du

u
(η � 1⇒ tanh u ' 1)

= ln ωD
Tc

+
∫ η

0

tanh u
u

du− ln η − ln 2︸ ︷︷ ︸
depends very little on η,→ln 2γ

π
=ln 1.13

where γ is the Euler constant.

⇒ Tc ' 1.13 ωDe
−1

V g(εF )

This fomula cannot be used directly to predict Tc since ωD, V and g(εF ) are
adjustable parameters.
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However, if we compare it to the formula for ∆, we get

∆
kBTc

= 2
1.13 = 1.76

∆ and Tc can be measured independently, and this relation is well verified in many
superconductors. This is one of the confirmations of BCS theory.
Besides, this theory predicts that ∆(T ) behaves as:

∆(T ) ' 3.2 Tc
√

1− T

Tc

The exponent 1
2 is typical of mean field theory.

5.5 Electrodynamics of superconductors

The London equation
Before we embark on the calculation of the response of a superconductor to an

external field, it is useful to start with some remarks on the constitutive equations
which, together with Maxwell’s equations, could describe the basic properties of
superconductors.
There are two such properties:

1) Vanishing resistivity (1911)
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2) Meissner(-Ochsenfeld) effect (1933) : the magnetic field vanishes inside a su-
perconductor. It goes from the external value to 0 over a characteristic length
λ called the "penetration length".

Let us look in more detail at the consequences of these properties on the consti-
tutive equations:
1) Vanishing resistivity:
In a metal, one generally assumes that the motion of an electron is governed by

the equation:
m
d~v

dt
+m

~v

τ
= e ~E

where τ is a phenomenological relaxation time that one can for instance calculate
in the context of the electron-phonon interaction. The general solution is the sum
of a particular solution, for example ~v = eτ

m
~E, and of the general solution of the

equation without the right hand side:

~v = ~v0 e
− t
τ

⇒ ~v = ~v0 e
− t
τ + eτ

m
~E

After a time t� τ , one thus gets:

~v = eτ

m
~E.

But ~j = ne~v

⇒ ~j = ne2τ

m
~E

or ~j = σ ~E, with σ = ne2τ
m

.
This is the constitutive relation of metals.
In superconductors, σ =∞ (R = 0)⇒ τ = +∞

⇒ m
d~v

dt
= e ~E

But ~j = nse~v, where ns is the superfluid density, i.e. the density of electrons that
take part into superconductivity, so that

m
( 1
nse

)
d~j

dt
= e ~E

or
~E = m

nse2
d~j

dt

This relation only fixes the current up to a constant. It is thus not sufficient to
describe the response of superconductors.
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2) Meissner effect:
If one combines this equation with Maxwell equation

~E = −1
c

∂ ~A

∂t

one finds:

m

nse2
d

dt
~j = −1

c

∂ ~A

∂t

⇒ m

nse2
~j + 1

c
~A = ~c

where ~c is a constant of integration independent of the time. The Meissner effect is
a consequence of this equation if ~rot ~c = ~0. Indeed, Maxwell’s equations imply

~rot ~B = 4π
c
~j

⇒ ~rot ~rot ~B = 4π
c
~rot~j

But ~rot ~rot ~B = −∆ ~B + ~grad div ~B︸ ︷︷ ︸
=0

and ~rot~j = −nse2

mc
~rot ~A︸ ︷︷ ︸
~B

. So the equation relating

~j to ~A implies
∆ ~B = 4πnse2

mc2
~B + ~rot ~c

If ~rot ~c = ~0, we get
⇒ ∆ ~B = nse

24π
mc2

~B

Let us define
1
λ2 = nse

24π
mc2

We thus have:
∆ ~B = 1

λ2
~B

Let us adopt a geometry where ~B = ~B(z). Integrating this equation leads to:

⇒ ~B = ~B(0)e− zλ

The magnetic field ~B decreases exponentially over a characteristic length given by
λ.
Since ρ = 0 in a metal, div~j = 0. Thus, 1

c
div ~A = div ~c. If one chooses a gauge

in which div ~A = 0 and ~A → ~0 in the bulk, one can choose ~c = ~0. Under these
conditions, ~j and ~A are related by:

~j = −nse
2

mc
~A = − c

λ24π
~A
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This equation is known as London equation (F. et H. London, 1935). This equation
is valid in the London gauge:

• div ~A = 0.

• ~A→ ~0 in the bulk.

Note : the Meissner effect "implies" in a certain sense the absence of resistivity.
Indeed, the field vanishes inside a superconductor because the external field is com-
pensated by a field created at the surface of the sample. But a magnetic field does
not produce work (~F = e~v ∧ ~B ⊥ ~v). For the current to be able to stay, it has to
be able to circulate without dissipation. We will thus, without loss of generality,
concentrate on the response to a static magnetic field.
Response to a static magnetic field:
Let us consider a static field in the gauge div ~A = 0.

~p = m~v + e

c
~A

⇒ Hcin =
∑
i

(1
2mv

2
i

)
= 1

2m
∑
i

(
~pi −

e

c
~Ai

)2

= 1
2m

∑
i

(
−i~~∇i −

e

c
~A(~ri)

)2

= H0
cin︸ ︷︷ ︸

1
2m
∑

i
~p2
i

+ ie~
2mc

∑
i

(
~∇i · ~A(~ri) + ~A(~ri) · ~∇i

)
︸ ︷︷ ︸

H1

+O(A2)

The term O(A2) can be ignored for the calculation of ~j to first order.
Let us introduce the Fourier transform of the vector potential ~A(~r) = ∑

~q ~a(~q)ei~q·~r,
and let us determine the form of H1 in second quantization. For the term ~∇i · ~A(~ri),
we have :

∑
~q

∫ e−i
~k′·~r
√
V

~∇ · ~a(~q)ei~q·~r e
i~k·~r
√
V
d~r

= ∑
~q

1
V

∫
e−i

~k′·~ri(~k + ~q) · ~a(~q)ei(~k+~q)·~rd~r

Since the field is assumed to be transverse (div ~A = 0), we have ~q ·~a(~q) = 0, and we
get : ∑

~q

i~k · ~a(~q)δ~k′,~k+~q

The contribution to H1 is thus given by :

− e~
2mc

∑
~k,~q,σ

~k · ~a(~q)c+
~k+~q,σc~k,σ
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For the term ~A(~ri) · ~∇i, we have :∑
~q

∫
e−i

~k′·~r~a(~q)
∫
ei~q·~r · ~∇ei~k·~rd~r

= ∑
~q

∫
e−i

~k′·~ri~k · ~a(~q)ei(~k+~q)·~rd~r

It gives the same contribution, and one finally gets:

H1 = −e~
mc

∑
~k,~q,σ

~k · ~a(~q) c+
~k+~q,σc~k,σ

The current operator can be written :

~j(~r) = e

2m
∑
σ

{
Ψ+(~r, σ)

(
−i~~∇− e

c
~A
)

Ψ(~r, σ) +
[(
i~~∇− e

c
~A
)

Ψ+(~r, σ)
]

Ψ(~r, σ)
}

where Ψ(~r, σ), Ψ+(~r, σ) are field operators (see Appendix on second quantization
and exercises). They can be exanded in Fourier series:

Ψ+(~r, σ) =
∑
~k1

e−i
~k1·~rc+

~k1,σ
; Ψ(~r, σ) =

∑
~k2

ei
~k2·~rc~k2,σ

as well as their gradient:

∇Ψ+(~r, σ) =
∑
~k1

(−i~k1)e−i~k1·~rc+
~k1,σ

; ∇Ψ(~r, σ) =
∑
~k2

i~k2e
i~k2·~rc~k2,σ

It is convenient to decompose the current into two contributions:
~j(~r) = ~J1(~r) + ~J2(~r)

with
~J1(~r) = −ie~2m

∑
σ

{
Ψ+(~r, σ)~∇Ψ(~r, σ)− (~∇Ψ+(~r, σ))Ψ(~r, σ)

}
and

~J2(~r) = −e
2

mc
~A
∑
σ

Ψ+(~r, σ)Ψ(~r, σ)

The Fourier transform of ~J1(~r) is given by:

~J1(~q) =
∫
d~r e−i~q·~rJ1(~r)

= −ie~
2m

∑
σ

∫ d~re−i~q·~r
∑
~k1,~k2

[
e−i

~k1·~r+i~k2·~r(i~k2) c+
~k1,σ

c~k2,σ
− e−i~k1·~r+i~k2·~r(−i~k1) c+

~k1,σ
c~k2,σ

]
= −ie~

2m
∑
~k,σ

[
i(~k + ~q) c+

~k,σ
c~k+~q,σ + i~k c+

~k,σ
c~k+~q,σ

]

= e~
m

∑
~k,σ

(~k + 1
2~q) c

+
~k,σ
c~k+~q,σ
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Besides,

~J2(~r) = −e2

mc
~A
∑
σ

Ψ+(~r, σ)Ψ(~r, σ)︸ ︷︷ ︸
density

= −e
2n(~r)
mc

~A

~J2 is proportional to ~A, and this relation is similar to the London equation, but it
involves the total density and not the superconducting density. The term ~J1 must
significantly reduce this contribution and even cancel it altogether in a normal metal!
If one wishes to determine the full response, one can express H1 with the help of

~J1 and calculate the response in the context of linear response theory. This calcula-
tion is complicated (although not difficult), and here we will limit ourselves to the
calculation of the expectation value of ~J1(~q) in the limit ~q → 0 (large wavelength).
In this case, a simpler calculation is possible.
Let us start be writing the operators H1 and ~J1(~q) in terms of the Bogolioubov

operators:

H1 = −e~
mc

∑
~k,~q

~k · ~a(~q)
[
(u~k+~qα

+
~k+~q,↑ + v~k+~qα−~k−~q,↓)

× (u~kα~k,↑ + v~kα
+
−~k,↓) −︸︷︷︸

~k→−~k−~q

(u~kα
+
−~k,↓ − v~kα~k,↑)

× (u~k+~qα−~k−~q,↓ + v~k+~qα
+
~k+~k,↑)

]
= −e~

mc

∑
~k,~q

~k · ~a(~q)
[
(u~ku~k+~q + v~kv~k+~q)

× (α+
~k+~q,↑α~k,↑ − α

+
−~k,↓α−~k−~q,↓)

+ (v~ku~k+~q − u~kv~k+~q)

× (α+
~k+~q,↑α

+
−~k,↓ − α−~k−~q,↓α~k,↑)

]
In the limit ~q → ~0, the second term disappears, and the first term gives:

H1 = −e~
mc

∑
~k

~k · ~a(~0)(α+
~k,↑α~k,↑ − α

+
−~k,↓α−~k,↓)

⇒

 E~k,↑ = E~k −
e~
mc
~k · ~a(~0)

E~k,↓ = E~k + e~
mc
~k · ~a(~0)

Similarly, in the limit ~q → ~0, we have:

~J1(~q → ~0) = e~
m

∑
~k

~k(α+
~k,↑α~k,↑ − α

+
−~k,↓α−~k,↓)
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But < α+
~k,σ
α~k,σ >= f(E~k,σ)

⇒< ~J1 >= e~
m

∑
~k

~k
[
f(E~k,↑)− f(E~k,↓)

]
Besides,

f(E~k,↑)− f(E~k,↓) '
2e~
mc

~k · ~a(~0)
(
− ∂f

∂E~k

)

⇒< ~J1(~q → ~0) > = 2e2~2

m2c

∑
~k

(~k · ~a(~0))~k
(
− ∂f

∂E~k

)

Let us suppose that ~J1 ‖ ~a(~0), and that k ' kF

⇒< ~J1(~q → ~0) >' 2e2~2

m2c

k2
F

3
∑
~k

(
− ∂f

∂E~k

)
~a(~0)

where the factor 1
3 comes from the average of the cosines. Indeed, let us assume that

~N = ∑
~k(~k · ~a(~0))~kh(k), where h is an arbitrary function:

~N · ~a(~0) =
∑
~k

(~a(~0) · ~k)2h(k)

=
∫
dk
∫

2π sin θ(~a(~0)k cos θ)2dθk2h(k)

=
∫

2π sin θ cos2 θdθ
∫
dka2(0)k2k2h(k)

= 2π2
3

∫
dka2(0)k4h(k)

= 1
32π

∫ π

0
sin θdθ

∫
dka2(0)k4h(k)

= 1
3

∫
d~ka2(0)k2h(k)

Inserting ~2k2
F

2m = εF , g(εF ) = 3n
2εF and ∑~k = 1

2g(εF )
∫
dε, one gets:

< ~J1(~q → ~0) > ' 2e2

3mcεFg(εF )
∫ +∞

−∞
dε

(
− ∂f

∂E~k

)
~a(~0)

' e2

mc
n
∫ +∞

−∞
dε

(
− ∂f

∂E~k

)
~a(~0)

The total current can thus be written:

<~j > = < ~J1 + ~J2 >

= −e
2n

mc
~a(~0)

[
1−

∫ +∞

−∞
dε

(
− ∂f

∂E~k

)]
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with E =
√
ε2 + ∆2.

If ∆ = 0 ∫ +∞

−∞
dε

(
∂f

∂E~k

)
=

∫ +∞

−∞
dE

(
∂f

∂E

)
= −1

⇒ < ~J >= ~0

But if ∆ 6= 0,

−
∫ +∞

−∞
dε

(
∂f

∂E~k

)
= 2

∫ +∞

∆
dE

(
− ∂f
∂E

E√
E2 −∆2

)
< 1

If one defines the density of normal fluid by

nn = n
∫ +∞

−∞
dε

(
∂f

∂E~k

)

and the superfluid density by
ns = n− nn

one recovers London equation

~j = −e
2ns
mc

~a(~0)

N.B.:
f(E) = 1

eβE + 1
At T = 0, −∂f

∂E
= δ(E), and if there is a gap, nn = 0 and ns(T = 0) = n. This is

true, but in this case it is important to distinguish between the wavevectors that
participate to superconductivity and those who don’t. The term ~J1 cancels anyway
the contribution of ~J2 coming from the electrons that do not participate to super-
conductivity. n is thus the density of electrons which are at ωD of εF .

Critical field and field penetration :
Let us now discuss in more detail the way a magnetic field is expelled from a su-

perconducting sample. As we shall see, this is in general a very rich phenomenology
that goes far beyond the mere decay of the field over the penetration depth.
Let us start by showing that superconductivity must be destroyed over a charac-

teristic length ξ0 that is not related to the penetration depth λ. According to the
Heisenberg uncertainty relation,

∆p∆x ≥ ~
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But to build a wave-packet for a superconducting electron, we must have

εF −∆ <
p2

2m < εF + ∆ with εF = p2
F

2m

Let us define

p2
2

2m = εF + ∆

and

p2
1

2m = εF −∆

1
2m(p2

2 − p2
1) = 1

2m (p2 − p1)︸ ︷︷ ︸
∆p

(p2 + p1)︸ ︷︷ ︸
2pF

= 2∆

⇒ ∆p = 2∆m
pF

= 2∆
vF

⇒ ∆x ≥ ~vF
2∆ ' ξ0

It is thus impossible to localize the particle over a distance smaller than ξ0, and the
superconducting state must be affected over lengths of order ξ0.
There is another, maybe more intuitive way to derive this length. Indeed, it can

also be seen as the size of a Cooper pair (see exercises).
The existence of two characteristic lengths is responsible for the very rich phe-

nomenology of superconductors in a magnetic field. Let us first note that expelling
the magnetic field is only possible as long as the external field is not too strong. To
be concrete, let us consider a cylinder of metal inside a coil that creates a uniform
field ~H.
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If one cools down the metal below its critical temperature, say for simplicity at
T = 0, it can become superconducting. Let’s look at the energy balance. If it
becomes superconducting, its energy with respect to the normal state is equal to
Econd/volume unit. For this to be possible however, one has to expel the magnetic
field, i.e. to create a surface current that opposes the external field. This costs
an energy

∫ ~j · ~Aextdτ whose density is H2

8π . So the energy per volume unit in the
superconducting state is

H2

8π − |Econd|

It is advantageous to transit into the superconducting state as long as H < Hc, with

H2
c = 8π|Econd|

However, the penetration of the magnetic field inside the sample is in general
neither uniform nor progressive. This depends on the shape of the sample, but more
importantly on the characteristics of the metal. In particular, the relative value of
ξ0 and λL is crucial. It turns out that this varies considerably from one compound to
the next. The description of this phenomenology is more compact in the context of
the Landau-Ginsburg theory. But the basic idea can be explained in simple terms.
To create an interface between a normal region and a superconducting one allows
one to gain magnetic energy but has a cost in superconducting energy. If ξ0 � λ,
the cost of the interface is large, and the system will try to avoid creating them as
much as possible. If, by contrast, ξ0 � λ, an interface allows one to gain energy
and, if the normal domain is small, the magnetic field can penetrate for values of
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the field much smaller than Hc. To increase the surface while keeping a volume as
small as possible, the magnetic field penetrates as small cylinders known as vortices.
Estimation of the interface energy:
Let us now perform a rough estimation of the energy of an interface.
ξ0 � λ

E

S
= H2

8π ξ0 − |Econd|
ξ0

2 > 0 for H = Hc

ξ0 � λ

E

S
= H2

8π
λ

2 − |Econd|λ < 0 for H = Hc

The field can then penetrate as vortices for fields H much smaller than Hc.
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5.6 The Landau-Ginsburg theory

The most efficient description of the macroscopic properties of superconductors has
been developed before the BCS theory. It is due to Landau and Ginsburg who
postulated in 1951 the form of the free energy as a function of a complex order
parameter that describes:

• The superconducting density |Ψ|2;

• The coupling to the electromagnetic field through its phase

~A′ = ~A+ ~∇χ⇒ Ψ′ = Ψeie∗
χ
hc

under a gauge transformation.

The free-energy density can thus be written :

f = fn + α|Ψ|2 + β

2 |Ψ|
4 + 1

2m

∣∣∣∣∣∣
−i~~∇− e∗ ~A

c

Ψ

∣∣∣∣∣∣
2

+ B2

8π

The first two terms are the usual ones in a Landau expansion, the third one is the
form of the gradient that is invariant under a gauge transformation for a complex
order parameter.
Since this functional was introduced by Landau and Ginsburg, one has shown

using Green functions (Gorkov, 1959) that this form of the free energy was a con-
sequence of BCS, with e∗ = 2e. This proof goes beyond the scope of these lec-
tures, but the identification of Ψ with ∆ naturally leads to this form. Indeed, we
∆ = V

N

∑
~k〈c

+
~k,↑c

+
−~k,↓〉 could a priori take complex values. For a homogeneous system

without a magnetic field, the phase does not play any role. It drops from all phys-
ical properties, and it is constant. That is why we have chosen the real solution.
However, when there is a magnetic field, the phase of the wave function is related
to the choice of gauge. Indeed, the Schrödinger equation of a free particle in a field
is given by.:

HΨ = 1
2m(~p− e

c
~A)2Ψ = EΨ

Let us perform the gauge transformation

~A′ = ~A+ ~∇χ(~r)

The Schrödinger equation

1
2m(~p− e

c
~A′)2Φ = EΦ

is satisfied by Φ(~r) = e
ie
~cχ(~r)Ψ(~r).
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Proof:

(−i~~∇− e

c
~A′)Φ(~r) = (−i~~∇− e

c
~A′)e ie~cχ(~r)Ψ(~r)

= −e
c
~A′Φ(~r)− i~~∇(e ie~cχ(~r)Ψ(~r))

= −e
c
~A′Φ(~r)− (i~ ie

~c
~∇χ(~r))Φ(~r) + e

ie
~cχ(~r)(−i~~∇)Ψ(~r)

= −e
c
~AΦ(~r) + e

ie
~cχ(~r)(−i~~∇)Ψ(~r)

= e
ie
~cχ(~r)(~p− e

c
~A)Ψ(~r)

To get the Hamiltonian, on must again apply (−i~~∇− e
c
~A′), performing the scalar

product. Let us suppose that we have a vector, and not a scalar:

(−i~~∇− e

c
~A′)e ie~cχ(~r) ~F (~r) = −e

c
~A′e

ie
~cχ(~r) ~F (~r)− i~~∇(e ie~cχ(~r) ~F (~r))

But ~∇ · (p ~A) = p~∇ · ~A+ ~A · ~∇p

⇒ ~∇
(
e
ie
~cχ(~r) ~F (~r)

)
= e

ie
~cχ(~r)~∇ · ~F (~r) + ~F (~r) · ~∇e ie~cχ(~r)

= e
ie
~cχ(~r)~∇ · ~F (~r) + e

ie
~cχ(~r) ie

~c
~∇χ(~r) · ~F (~r)

⇒ (−i~~∇− e

c
~A′)e ie~cχ(~r) ~F (~r) = e

ie
~c (~p− e

c
~A) · ~F (~r)

⇒ H ′Φ = e
ie
~cχ(~r)HΨ = e

ie
~cχ(~r)EΨ = EΦ CQFD

This property implies that the kinetic energy∫
Ψ∗(~r) 1

2m(~p− e

c
~A)2Ψ(~r)d~r

is invariant under a gauge transformation. Besides, since ~p − e
c
~A is hermitian, one

can also write

Ecin = 1
2m

∫
Ψ∗(~r)(~p− e

c
~A)2Ψ(~r)d~r

= 1
2m〈Ψ|(~p−

e

c
~A)2|Ψ〉

= 1
2m〈Ψ|(~p−

e

c
~A)+(~p− e

c
~A)|Ψ〉

= 1
2m ||(~p−

e

c
~A)|Ψ〉||2

= 1
2m

∫ ∣∣∣∣∣∣(~p− e ~A

c
)Ψ(~r)

∣∣∣∣∣∣
2

d~r
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Similarly, one can show that, for the gap ∆, the form of the energy that is invariant
under a gauge transformation is given in term of the gradient by :

1
2m

∣∣∣∣∣∣(−i~~∇− 2e ~A
c

)∆

∣∣∣∣∣∣
2

The Landau-Ginsburg free energy is thus a functional of the fields ~A(~r) and Ψ(~r)
given by :

F [ ~A,Ψ] =
∫
d~r

α|Ψ|2 + β

2 |Ψ|
4 + 1

2m

∣∣∣∣∣∣
−i~~∇− 2e ~A

c

Ψ

∣∣∣∣∣∣
2

+ B2

8π


Since the vector potential and the order parameter can both vary in a supercon-

ductor, it is natural to minimize the free energy with respect to both fields. To get
the equations that they must satisty, one just needs to extend the method used to
derive the Lagrange equations from the principle of least action.
Let us start with a variation δ ~A of the vector potential :

F [ ~A+ δ ~A] =
∫ (

~rot( ~A+ δ ~A)
)2

8π d~r +
∫
d~r

(
α|Ψ|2 + β

2 |Ψ|
4
)

+
∫ d~r

2m

−i~~∇Ψ− 2e
~A+ δ ~A

c
Ψ
i~~∇Ψ∗ − 2e

~A+ δ ~A

c
Ψ∗


' F [ ~A] +
∫ δ ~A

2m

− 2e
c

Ψ
i~~∇Ψ∗ − 2e

~A

c
Ψ∗


− 2e
c

Ψ∗
−i~~∇Ψ− 2e

~A

c
Ψ
d~r

+
∫ ( ~rot ~A) · ~rotδ ~A

4π
But

div( ~A× ~B) = ~B · ~rot ~A− ~A · ~rot ~B
⇒ ~B · ~rotδ ~A = ~rot ~B · δ ~A+ div(δ ~A× ~B)

and ∫
div(δ ~A× ~B) =

∫ ∫
S
~n · (δ ~A× ~B)dσ

One can limit oneself to variations such that δ ~A = ~0 at the surface of the supercon-
ductor. Then, ∫ 1

2m
~B · ~rotδ ~A

4π =
∫ 1

2m
~rot ~B · δ ~A

4π
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In order for F [ ~A+ δ ~A]− F [ ~A] to vanish for all δ ~A, one must have ~rot ~B = 4π
c
~j with

~j = −ei~
m

(
Ψ∗~∇Ψ−Ψ~∇Ψ∗

)
− 4e2 ~A

mc
Ψ∗Ψ

Let us now make a variation around Ψ. For a function of a complex variable
f(z, z̄), the statement that the variations vanish is equivalent to saying that if z =
reiθ, {

∂f
∂r

= 0
∂f
∂θ

= 0 ⇒
{

∂f
∂z
eiθ + ∂f

∂z̄
e−iθ = 0

∂f
∂z
ireiθ + ∂f

∂z̄
(−ir)e−iθ = 0 ⇒

{
∂f
∂z

= 0
∂f
∂z̄

= 0
if r 6= 0.
Let us thus express F as a function of (Ψ,Ψ∗), and let us write ∂F

∂Ψ∗ = 0

F =
∫
d~r

(
αΨΨ∗ + β

2 Ψ2Ψ∗2 + 1
2m(−i~~∇− 2e

c
~A)Ψ(i~~∇− 2e

c
~A)Ψ∗ + B2

8π

)

F (Ψ,Ψ∗ + δΨ∗) − F (Ψ,Ψ∗)

=
∫
d~r
[
αΨ + β|Ψ|2Ψ + 1

2m(−i~~∇Ψ− 2e
c
~AΨ)

× (i~~∇− 2e
c
~A)
]
δΨ∗ = 0

An integration by part of the last term leads to

~∇Ψ · ~∇δΨ∗ = div(δΨ∗~∇Ψ)− δΨ∗ div~∇Ψ︸ ︷︷ ︸
∆Ψ

since ~∇(p ~A) = p~∇ · ~A+ ~A · ~∇p. So,∫
~∇Ψ · ~∇δΨ∗ =

∫
div(δΨ∗~∇Ψ)−

∫
δΨ∗∆Ψ

=
∫
S
δΨ∗~n · ~∇Ψ−

∫
δΨ∗∆Ψ

But
∫
S δΨ∗~n~∇Ψ = 0 if one limits oneself to δΨ∗ that vanish at the surface. So,∫

−i~~∇Ψ · i~~∇δΨ∗ =
∫ [

(−i~)2~∇2Ψ
]
δΨ∗

Besides, ∫
Ψ~∇δΨ∗ = −

∫
δΨ∗~∇Ψ +

∫
~∇(ΨδΨ∗)

= −
∫
δΨ∗~∇Ψ +

∫
S
~n(ΨδΨ∗)dσ



122 CHAPTER 5. SUPERCONDUCTIVITY

But
∫
S ~n(ΨδΨ∗)dσ = 0 if δΨ∗ = 0 at the surface. Thus,

∫
d~r

−i~~∇Ψ− 2e ~A
c

Ψ
i~~∇− 2e ~A

c

 δΨ∗

=
∫
d~r

(−i~~∇)2Ψ +
−2e ~A

c

2

Ψ− i~
−2e ~A

c

 ~∇Ψ− 2e ~A
c

(−i~)~∇Ψ

 δΨ∗

=
∫
d~rδΨ∗

−i~~∇− 2e ~A
c

2

Ψ

In order to ensure that F (Ψ,Ψ∗ + δΨ∗) − F (Ψ,Ψ∗) = 0 at first order in δΨ∗, one
must have

αΨ + β|Ψ|2Ψ + 1
2m

(
−i~~∇− 2e

c
~A
)2

Ψ = 0

Finally, the minimization of the functional with respect to the order parameter Ψ
and to the vector potential ~A leads to the following pair of equations, known as the
Landau-Ginsburg equations:

~j = − ei~
m

(
Ψ∗~∇Ψ−Ψ~∇Ψ∗

)
− 4e2 ~A

mc
Ψ∗Ψ

αΨ + β|Ψ|2Ψ + 1
2m

(
−i~~∇− 2e

c
~A
)2

Ψ = 0

These equations constitute the basis of the description of the macroscopic prop-
erties of superconductors. They contain two characteristic lengths that depend on
α and β. To see this, let us consider two limiting cases :
1) Let us assume that the external magnetic field vanishes. In the bulk of the

material, Ψ satisfies the equation

αΨ + β|Ψ|2Ψ− ~2

2m∆Ψ = 0

According to Landau’s theory of phase transitions, α = α0(T − Tc), and so α < 0
if T < Tc and α > 0 if T > Tc.
The equation above has in general two obvious solutions :

• Ψ = 0 (∀T )

• Ψ2 = −α
β
if α < 0, i.e. if T < Tc (one has assumed that Ψ is real for simplicity).

In the superconducting phase, there is thus a solution Ψ0 =
√
−α
β
6= 0.
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Let us now consider an interface z = 0 between a normal region (z < 0) and
a superconducting region (z > 0), and let us still assume that Ψ is real. The
differential equation takes the form :

− ~2

2mΨ′′ + αΨ + βΨ3 = 0

where Ψ′′ = ∂2Ψ
∂z2 = d2Ψ

dz2 since Ψ only depends on z. If one multiplies by Ψ′ and
integrates, one gets

− ~2

2mΨ′′Ψ′ + αΨΨ′ + βΨ3Ψ′ = 0

⇒ − ~2

4mΨ′2 + α

2 Ψ2 + β

4 Ψ4 = cst

For this equation to have a solution Ψ2 = −α
β

for z →∞, one must have :

−α2

2β + β

4
α2

β2 = cst

or cst = −α2

4β

⇒ ~2

4mΨ′2 = β

4 Ψ4 + α

2 Ψ2 + α2

4β

= β

4

(
Ψ4 + 2α

β
Ψ2 + α2

β2

)

= β

4

(
Ψ2 + α

β

)2

⇒ Ψ′ = −
√
βm

~

(
Ψ2 + α

β

)

Ψ =
√
−α
β

tanh z√
2ξ

with ξ2 = ~2

2m|α| or ξ = ~√
2m(−α)

(the factor
√

2 is conventional). Indeed,

Ψ′ =
√
−α
β

1√
2ξ

(
1− tanh2 z√

2ξ

)

=
√
−α
β

√
m(−α)
~

(
1 + β

α
Ψ2
)

= −
√
βm

~

(
Ψ2 + α

β

)
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This length is the analog of the coherence length. In the Landau-Ginsburg theory,
its critical behaviour is given by ξ(T ) ∼ 1√

Tc−T
. This agrees with the microscopic

expression ξ = ~vF
∆ with ∆(T ) ∼

√
Tc − T .

2) Let us assume that the external magnetic field is very small, hence that the
vector potential varies very slowly with distance. Ψ is nearly constant, and ~j is
approximately given by

~j = −4e2

mc
|Ψ0|2 ~A

To see this, one writes locally
~A(~r) = ~A0︸︷︷︸

uniform

+δ ~A(~r)

and one expands in δ ~A(~r). To zeroth order, Ψ is uniform according to the second
Landau-Ginsburg equation, and the first equation then leads to the result.
Now this equation is nothing but London equation, with

− c

4πλ2 = −4e2

mc

−α
β

⇒ 1
λ2 = 16πe2

mc2
−α
β

Like ξ, λ ∼ 1√
Tc−T

when T → Tc.
This description thus agrees qualitatively with the discussion of the electrody-

namics of superconductors of the previous section.
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Critical field
As before, the critical field is obtained by equating the energy density of the field

that one has to create to oppose the external field with the condensation energy:

H2
c

8π = −
(
α|Ψ|2 + β

2 |Ψ|
4
)

= −
(
α
−α
β

+ β

2
α2

β2

)
= α2

β

⇒ H2
c = 4πα2

β

Type I and type II superconductors:
We are now going to show that the ratio κ = λ

ξ
plays a crucial role in the properties

of a superconductor. Let us assume that one decreases the magnetic field starting
from a very strong magnetic field where the solution is given by Ψ = 0, and let us
study at which field there exists a solution of the Landau-Ginsburg equations with
Ψ 6= 0. More precisely, let us investigate the stability of the solution Ψ = 0 by
studying if there are other solutions with Ψ very small.
To first order in Ψ, the equation reads

1
2m

(
−i~~∇− 2e

c
~A
)2

Ψ = −αΨ

This equation is similar to the Schrödinger equation of a particle of charge 2e in a
magnetic field H described by ~A. The energies are well known. They are given by(

n+ 1
2

)
~ωc + p2

z

2m
where ωc is the cyclotron frequency

ωc = 2eH
mc

When H is very large, ~ωc
2 > −α, and the only solution is given by Ψ = 0. By when

H decreases, there is a solution as soon as ~ωc
2 = −α. There is thus another solution

than Ψ = 0 as soon as H < Hc2 with

1
2~

2eHc2

mc
= −α

⇒ Hc2 = −αmc
~e

This field is not directly related to Hc, and one must distinguish between two cases:
Hc2 > Hc : For Hc < H < Hc2, it is not advantageous for the system to be

everywhere in the normal state. It is better to take advantage of the non-zero
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solutions. However, the solution cannot correspond to a global expulsion of the
magnetic field since H > Hc. Only part of the sample becomes superconducting.
To determine the actual form of the global solution requires to go beyond the linear
approximation. Indeed the Landau levels are degenerate, and the actual form of the
lowest energy solution is governed by the next order terms that lift the degeneracy.
One can show including such terms that these solutions build a lattice perpendicular
to the surface of the sample (H ⊥ surface) that encloses cylinders of normal metal.
These cylinders are called vortices, and in general they form a triangular lattice.
The condition Hc2 > Hc can also be written

−αmc
~e

>

√
4π
β

(−α)

or √
β >

√
4π~e
mc

But

κ = λ

ξ
=

√
mc
√
β

4
√
πe
√
−α

√
2m(−α)

~

= mc
√
β

~e2
√

2
√
π

=
√
β

mc√
4π~e

1√
2

This inequality can thus be written

κ >
1√
2

In other words, Hc2
Hc

=
√

2κ.
So, if ξ <

√
2λ, the system remains partially superconducting between Hc and

Hc2. Such superconductors are called type II superconductors.
Hc2 < Hc : The system undergoes a direct transition into a global superconductor.

Such superconductors are called type I superconductors.

5.7 Flux quantization

Let us first show that the current only depends on the variation of the phase of the
order parameter, and not on the variation of its amplitude. Indeed, if one writes

Ψ = |Ψ|eiϕ

one gets:
~∇Ψ = (~∇|Ψ|)eiϕ + |Ψ|i(~∇ϕ)eiϕ = (~∇|Ψ|)eiϕ + Ψi~∇ϕ
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so that

Ψ∗~∇Ψ−Ψ~∇Ψ∗ = Ψ∗(~∇|Ψ|)eiϕ + |Ψ|2i~∇ϕ− [Ψ(~∇|Ψ|)e−iϕ + Ψ|Ψ|(−i)(~∇ϕ)e−iϕ]
= ~∇|Ψ|(Ψ∗eiϕ −Ψe−iϕ) + |Ψ|22i~∇ϕ
= |Ψ|22i~∇ϕ

⇒ ~j = 2e~
m
|Ψ|2

(
~∇ϕ− 2e

~c
~A
)

But deep inside a superconductor, ~j = ~0. Indeed, ~B = ~0⇒ ~rot ~B = ~0⇒ ~j = ~0. So

⇒
∮
~j · d~l = 0

⇒
∮
~∇ϕ · d~l︸ ︷︷ ︸
2nπ

= 2e
~c

∮
~A · d~l︸ ︷︷ ︸∫
~rot ~A·d~S

The first term must be equal to 2πn to ensure that the order parameter is well
defined. Besides,

∫
~rot ~A · d~S = Φ, where Φ is the flux of the magnetic field though

the contour since ~rot ~A = ~B. This leads to :

Φ = n
π~c
e

= nφ0

with φ0 = π~c
e

= hc
2e .

Consequences :

• Penetration of the field in type II superconductors : below Hc2, the sample is
pierced by tubes of normal state. According to this argument, the flux of the
magnetic field through such a tube must be a multiple of φ0. Now, we know
that it is advantageous for the system to maximize its ratio surface/normal
volume. So to get a flux 2φ0 through the sample, it is better to create two
vortices of flux φ0 than one of flux 2φ0. So the magnetic flux penetrates as
vortices of flux φ0 = hc

2e .

• If the charge of the effective charge carriers was e, as first assumed by Landau
and Ginsburg, and not 2e, the flux would be quantized in units of hc

e
and not

hc
2e . The periodicity of various quantities as a function of the flux has been
measured, and these results have clearly shown that the elementary flux is
equal to hc

2e . In particular, if a superconducting ring is put into a field parallel
to its axis, currents appear at the surface of the sample to adjust the field to
a multiple of φ0.
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• Persistent currents : if one induces a current in a superconducting ring, this
current must create a magnetic field whose flux is of the form nφ0. To decay,
this current must overcome a potential barrier to reach the states (n − 1)φ0,
(n− 2)φ0, . . . Now, this barrier is very high because the system must be in an
intermediate state which is not globally superconducting. The probability is
thus very weak, and the current can persist without decaying in any significant
way for several years.

5.8 Josephson effect:

Let us consider two superconductors connected by a normal region

and let us try to let a current flow across the junction. Since the current goes
through a normal region, the most natural thing to do is to assume that the current
consists of single electrons. But to get an unpaired electron, one must break a pair
and create two Bogoliubov particles. This costs at least 2∆ in total (∆ for each
particle).
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To make an excitation in the system, one must thus apply a voltage V = 2∆
e

to
excite an electron. One thus expects the current-voltage characteristic to look like:

In other words, if one induces a current through the junction, even a very small one,
one expects to induce a voltage drop at least equal to 2∆.
In 1962, Josephson has produced a small revolution in the superconductivity com-

munity when he suggested that another type of current could flow through the junc-
tion, namely a pair current, and that this current could flow without inducing a
voltage drop.
Josephson’s original calculation has been done in the context of the BCS theory,

looking at the effect of second order terms of the tunneling Hamiltonian through an
insulating junction. But this effect can be understood more easily in the context of
the Landau-Ginsburg theory.
The basic idea is very simple. Let us come back to the expression of the super-

conducting current as a function of the order parameter. The calculation of the
previous section shows that, if ~A is equal to ~0, and without any voltage, a current
can flow if the phase of the order parameter is not uniform:

~j = 2e~
m
|Ψ|2~∇φ
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At thermal equilibrium, and in a singly-connected superconductor, this phase mod-
ulation is much too costly, and the current vanishes.
But if one considers a junction, the phase can take a different value on each side

of the junction without having to pay this energy. If the order parameter does
not vanish completely inside the junction, as will be the case if the junction is not
too wide so that the electrons can tunnel through the junction, a superconducting
current can a priori go through.
To find the expression of this current, it is of course impossible to ignore the

variation of the amplitude of Ψ. The simplest calculation consists in going back to
the Landau-Ginsburg equation for Ψ:

− ~2

2m∆Ψ + αΨ + β|Ψ|2Ψ = 0

Inside the junction, Ψ changes very fast, and the term ∆Ψ dominates

⇒ ∆Ψ = 0

Let us suppose that the phase is equal to φ1 in the left superconductor, and to φ2 in
the right superconductor, and that these two superconductors are the same so that
the amplitude is the same in the bulk far from the junction, so that Ψ(~r) = eiφ1|Ψ0|
far on the left and Ψ(~r) = eiφ2|Ψ0| far on the right.
Let us look for Ψ as

Ψ(~r) = |Ψ0|[f(~r)eiφ1 + (1− f(~r))eiφ2 ]

where f(~r) is a real function equal to 1 in the left superconductor and 0 in the right
one. This leads to

|Ψ0|(eiφ1 − eiφ2)∆f = 0

Now, ∆Ψ = 0⇒ ∆f = 0 if φ1 6= φ2.
In that case, the current is given by

~j = −ei~
m

(
Ψ∗~∇Ψ−Ψ~∇Ψ∗

)
Ψ∗ = |Ψ0|

(
f(~r)e−iφ1 + (1− f(~r))e−iφ2

)
~∇Ψ = |Ψ0|~∇f(~r)(eiφ1 − eiφ2)

Ψ∗~∇Ψ = |Ψ0|2~∇f(~r)[f(~r)e−iφ1 + (1− f(~r))e−iφ2 ](eiφ1 − eiφ2)
= |Ψ0|2~∇f(~r)[f − fe−iφ1+iφ2 − (1− f) + (1− f)e−iφ2+iφ1 ]

Ψ~∇Ψ∗ = (Ψ∗~∇Ψ)∗
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⇒ Ψ∗~∇Ψ−Ψ~∇Ψ∗ = |Ψ0|2~∇f(~r)[−f(e−iφ1+iφ2 − eiφ1−iφ2)
+ (1− f)(e−iφ2+iφ1 − eiφ2−iφ1)]
= |Ψ0|2~∇f(~r)(e−iφ2+iφ1 − eiφ2−iφ1)
= 2i sin(φ1 − φ2)|Ψ0|2~∇f(~r)

⇒ ~j = 2e~
m
|Ψ0|2~∇f sin(φ1 − φ2)

The maximum current is reached when φ1 − φ2 = π
2 , and it is of the order of

jc = 2e~
m
|Ψ0|2

1
L

where L is the width of the junction (~∇f is of the order of 1/L since f changes
mostly inside the junction).
If one drives a current through an SNS’ junction and measures the voltage drop,

one expects to find:

The Josephson effect has considerable applications. In particular, the current also
depends on the magnetic field. Then, if one builds two Josephon junctions according
to the following geometry,

one can show that the maximal current is a periodic function of the flux φ through
the ring, of periodicity φ0. But φ0 = 10−10G/cm2. One can thus detect field changes
of the order of 10−9 Gauss. This is by far the most sensitive magnetometer.



Chapter 6

Appendix - Second quantization

6.1 Introduction

When dealing with systems of interacting particles, one has to work with many-
particle wave functions. According to the principle of indistinguishability of iden-
tical particles, one must work with wave function which are symmetric (bosons)
or antisymmetric (fermions) under the exchange of the coordinates of two particles.
Indeed, let us consider a system of two particles. Since they cannot be distinguished,
exchanging their coordinate cannot lead to different physical properties. The two
wave functions must thus differ at most by a phase factor :

ψ(x1, x2) = eiαψ(x2, x1)

But if one carries out this operation twice, one recovers the same wave function

⇒ e2iα = 1
⇒ eiα = ±1 → +1 bosons

→ −1 fermions

So, if one denotes by {ψi(x)} a basis of one-particle wave functions, one cannot
simply use the set of functions

Ψ(x1, . . . , xN) = ψi1(x1) . . . ψiN (xN)

as a basis of the N -particle Hilbert space. One must build N particle wave functions
that are totally symmetric or totally antisymmetric when exchanging the coordinates
of particles.

Remark :
One can construct other statistics than that of fermions and bosons. For instance,

in 2D, exchanging the coordinates of two particles can be done in two topologically
inequivalent ways (see Fig. 6.1). One comes back to the initial state only if one

132
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(1) ou   (2)

Figure 6.1:

successively applies (1) and (2).

⇒ ei(α1+α2) = 1⇒ α2 = −α1

But one can have α1 6= 0, π ⇒ anyons. This statistics approximately describes the
excitations of a 2D electron gas in the presence of a strong magnetic field (Fractional
Quantum Hall Effect).

6.2 Bosons

6.2.1 Fock space

One considers a basis of the one-particle Hilbert space {ψi(x)}, and one tries to
construct N -particle wave functions that are totally symmetric under the exchange
of the coordinates of any pair of particles. Let us start with the case of two particles.
The wave function

Ψ(x1, x2) = ψi(x1)ψi(x2)

is symmetric and is thus acceptable. For two different states i and j, one must build
the wave function

Ψ(x1, x2) = 1√
2

[ψi(x1)ψj(x2) + ψj(x1)ψi(x2)]

to get a symmetric wave function. More generally, an N -particle wave function is
defined by the number of times a given one-particle wave function i appears. The
wave function can then be written

Ψ(x1, . . . , xN) = 1√
Norm

∑
P

ψiP (1)(x1) . . . ψiP (N)(xN) (6.1)

where the sum over P runs over all the permutations of the integers i1 . . . iN that lead
to a different term. In other words, if two permutations only differ by permutations
inside families of equal indices, they only lead to a single term in the definition of



134 CHAPTER 6. APPENDIX - SECOND QUANTIZATION

the wave function. The number of such permutations (= number of terms in 6.1) is
equal to :

N !
N1!N2! . . .

with the convention Ni! = 1 if Ni = 0, and of course ∑
i
Ni = N . Besides, since the

ψi are mutually orthogonal, each term gives 1 with itself and 0 with the other terms
when calculating 〈Ψ|Ψ〉. Thus,

1√
Norm

=
(
N1!N2! . . .

N !

) 1
2

Example :
3 particles using ψ1 twice and ψ2 once.

ψ1(x1)ψ1(x2)ψ2(x3) + ψ1(x1)ψ1(x3)ψ2(x2) + ψ1(x2)ψ1(x3)ψ2(x1)

⇒ Norm = 3. General formula : 3!
2!1! = 3

Since the wave function is entirely defined by the integers Ni, one can represent
it by the ket :

|N1, N2, . . .〉 (Fock space)

6.2.2 Harmonic oscillator

The operators that allow one to conveniently travel inside a bosonic Fock space can
be seen as a generalization of the creation and annihilation operators of the algebraic
solution of the one-dimensional harmonic oscillator. Let us briefly recall how they
are defined, and how they act on eigenstates.

H = p2

2m + 1
2mω

2x2 [x, p] = i~

1. Change of variables :

 X =
√

mω
~ x

P = 1√
m~ωp

⇒ H = ~ω
2 (X2 + P 2) [X,P ] = i

2. {
a = 1√

2(X + iP )
a+ = 1√

2(X − iP ) ⇒
{
X = 1√

2(a+ + a)
P = i√

2(a+ − a)
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3.
[a, a+] = 1

a+a = 1
2(X2 + P 2 − 1)⇒ H =

(
a+a+ 1

2

)
~ω

4. Let us define N = a+a, and let |ϕν〉 be a function such that N |ϕν〉 = ν|ϕν〉.
Let us derive some properties of these operators :

• If ν is an eigenvalue of N , then ν > 0.
Indeed, 〈ϕ|a+a|ϕ〉 = ‖a|ϕ〉‖2 > 0

• If ν = 0, then a|ϕν〉 = 0
Indeed, ν = 0⇒ ‖a|ϕν〉‖2 = 0⇒ a|ϕν〉 = 0

• If ν > 0, then a|ϕν〉 is an eigenvector of N with eigenvalue ν − 1.
Indeed,

a+aa|ϕν〉 = (aa+ − 1)a|ϕν〉 = a a+a|ϕν〉︸ ︷︷ ︸
ν|ϕν〉

−a|ϕν〉

= (ν − 1)a|ϕν〉

Since the eigenvalues are positive or equal
to zero, they must be integer. Otherwise,
applying several times the operator a would
lead to states with negative eigenvalues.

• a+|ϕν〉 is never equal to zero.
Indeed, ‖a+|ϕν〉‖2 = 〈ϕν |aa+|ϕν〉 = (ν + 1)〈ϕν |ϕν〉.
Now ν > 0⇒ ν + 1 > 0.

• a+|ϕν〉 is an eigenvector of N with eigenvalue ν + 1.
Indeed, a+aa+|ϕν〉 = a+(a+a+ 1)|ϕν〉 = (ν + 1)a+|ϕν〉

Finallly, ν can take all positive integer values, including 0.

5. The ground state is non degenerate. This is a property of the differential
equation, whose lowest-energy solution is a gaussian. Thus, all eigenstates are
non degenerate. The usual notation consists in replacing |ϕn〉 by |n〉.

6. Let |n〉 and |n+ 1〉 be two normalized states. One knows from the above that
a+|n〉 ∝ |n+ 1〉. To find the proportionality coefficient, let us write :

a+|n〉 = cn+1|n+ 1〉

Let us take the norm of each member :

|cn+1|2 〈n+ 1|n+ 1〉︸ ︷︷ ︸
1

= 〈n|aa+|n〉 = 〈n|1 + a+a|n〉 = n+ 1
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⇒ cn+1 =
√
n+ 1

Similarly, writing a|n〉 = cn−1|n− 1〉, one finds :

|cn−1|2 = 〈n|a+a|n〉 = n ⇒ cn−1 =
√
n

Thus, {
a+|n〉 =

√
n+ 1 |n+ 1〉

a|n〉 =
√
n |n− 1〉

6.2.3 Relationship between bosons and harmonic oscillators

Creation and annihilation operators

By analogy with the harmonic oscillator, it is convenient to introduce the elementary
operators ai and a+

i defined by :

ai|N1 . . . Ni . . .〉 =
{ √

Ni |N1 . . . Ni − 1 . . .〉 if Ni > 1
0 otherwise

a+
i |N1 . . . Ni . . .〉 =

√
Ni + 1 |N1 . . . Ni + 1 . . .〉

Let us investigate the properties of these operators :

a+
i ai|N1 . . . Ni . . .〉 =

√
Ni a

+
i |N1 . . . Ni − 1 . . .〉

= Ni |N1 . . . Ni . . .〉

⇒ a+
i ai = Ni diagonal

aia
+
i |N1 . . . Ni . . .〉 =

√
Ni + 1 ai |N1 . . . Ni + 1 . . .〉

= (Ni + 1) |N1 . . . Ni . . .〉

⇒ aia
+
i = Ni + 1

This implies that :
aia

+
i − a+

i ai = 1

aiaj = ajai
a+
i aj = aja

+
i

a+
i a

+
j = a+

j a
+
i

 if i 6= j

or finally
{

[ai, a+
j ] = δij

[ai, aj] = [a+
i , a

+
j ] = 0
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One-body operators

Let us consider a symmetrized one-body operator :

F̂ (1) =
∑
a

f̂ (1)
a

where f̂ (1)
a only acts on the variable xa. The matrix elements of the operator f̂ (1)

are given by :
f

(1)
ij =

∫
ψ∗i (x)f̂ (1)ψj(x)dx

Let us calculate the expectation value of F̂ (1) between two states. Since f̂ (1)
i only

acts on one variable at a time, two states are connected by F̂ (1) only if they at
most differ by the function acting on one variable. We thus have two types of non
vanishing matrix elements :{

〈N1 . . . Ni . . . |F̂ (1)|N1 . . . Ni . . .〉 = ∑
i f

(1)
ii Ni

〈. . . Ni . . . Nk − 1 . . . |F̂ (1)| . . . Ni − 1 . . . Nk . . .〉 = f
(1)
ik

√
NiNk

Proof

〈N1N2 . . . |F̂ (1)|N1N2 . . .〉 =
∑

i

f
(1)
ii Ni

|N1N2 . . .〉 contains N !
N1!N2!... terms. For each term, 〈f̂ (1)

a 〉 = f
(1)
iaia

, where ia if the index of the
function φi of the variable xa. Since the variables xa enter all the functions φi of |N1 . . .〉, we get :

〈
∑

a

f̂ (1)
a 〉 =

∑
i

f
(1)
ii Ni

where the left hand site is the expectation value for one term. Since this expectation value does
not depend on the term in the sum, we get the result we wanted to prove:

〈. . . Ni . . . Nk − 1 . . . |F̂ (1)| . . . Ni − 1 . . . Nk . . .〉 = f
(1)
ik

√
NiNk

The ket | . . . Ni − 1 . . . Nk . . .〉 contains N !
...Nk!(Ni−1)! terms. For each term, there are Nk terms

in the sum
∑

a f̂
(1)
a that contribute to a given matrix element f (1)

ik . Besides, the normalization
coefficients of the bras and the kets are given by :

| . . . Ni − 1 . . . Nk . . .〉 →
√
Nk!(Ni − 1)!

N !

〈. . . Ni . . . Nk − 1 . . . | →
√
Ni!(Nk − 1)!

N !

So the coefficient of f (1)
ik is given by :

N !
. . . Nk!(Ni − 1)! . . .︸ ︷︷ ︸

number of terms in the ket

Nk︸︷︷︸
number of operators in
F̂ (1)that give f (1)

ik

√
. . . Nk!(Ni − 1)! . . .

N !

√
. . . (Nk − 1)!Ni! . . .

N !︸ ︷︷ ︸
normalization coefficients
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which finally leads to
√
NiNk.

The operator F̂ (1) can thus be written :

F̂ (1) =
∑
ik

f
(1)
ik a

+
i ak

Proof
• Diagonal elements

〈N1N2 . . . |a+
i ak|N1N2 . . .〉 = 0 if i 6= k

⇒ 〈N1N2 . . . |F̂ (1)|N1N2 . . .〉 =
∑

i

f
(1)
ii 〈N1 . . . |a+

i ai|N1 . . .〉

=
∑

i

f
(1)
ii Ni Q.E.D.

• Off-diagonal elements

〈. . . NiNk − 1 . . . |a+
j al| . . . Ni − 1Nk . . .〉 = 0 except if l = k and i = j

〈. . . NiNk − 1 . . . |a+
i ak| . . . Ni − 1Nk . . .〉 =

√
NiNk Q.E.D.

Two-body operators

Similarly, a symmetrized operator acting on the coordinates of two particles can be
written :

F̂ (2) =
∑
a<b

f̂
(2)
ab

and, in second quantization :

F̂ (2) = 1
2
∑
iklm

(
f̂ (2)

)ik
lm
a+
i a

+
k alam

with
(
f̂ (2)

)ik
lm

=
∫ ∫

ψ∗i (x1)ψ∗k(x2)f̂ (2)ψl(x2)ψm(x1)dx1dx2

Finally, the Fock space itself can be described simply in terms of creation and
annihilation operators. Indeed, using repeatedly the identity :

|N1 . . . Ni + 1 . . .〉 = a+
i√

Ni + 1
|N1 . . . Ni〉

one can write :

|N1 . . . Ni . . .〉 =
∏
i

(
a+
i

)Ni
√
Ni!
|0〉
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where |0〉 is the vacuum, the state without any particle.
This leads to a very compact formulation of the many-body problem in which

the operators have the same form independent of the number of particles, and in
which everything can be formulated in terms of operators satisfying very simple
commutation rules.

6.3 Fermions

In the case of fermions, the wave function must be antisymmetric. Such a wave
function can only be built out of different one-paerticle wave functions as Slater
determinants :

Ψ(x1, . . . , xN) = 1√
N !

ψp1(x1) ψp1(x2) . . . ψp1(xN)
ψp2(x1) ψp2(x2) . . . ψp2(xN)

... ... ...
ψpN (x1) ψpN (x2) . . . ψpN (xN)

In the Fock space, each state is defined by an occupation number equal to 0 or 1 :

|N1 . . . Ni . . .〉

There is a subtlety with respect to bosons. Indeed, the order of the lines controls
the final sign of the determinant. One must thus order the wave functions once for
all and keep this ordering. The determinant can then be calculated according to the
convention :

p1 < p2 < . . . < pN

If one calculates the matrix elements of a one-body operator, one can follow the
calculation made for bosons with Ni = 0 or 1, up to the fact that when calculating
off-diagonal term, a sign appears because of the determinant :

〈1i0k|F (1)|0i1k〉 = f
(1)
ik (−1)

∑
(i+1,k−1)

with
∑

(k, l) =
l∑

n=k
Nn

So, if one wants to represent this operator with creation and annihilation operators,
by analogy to bosons, they must be defined by :{

c+
i |N1, . . . , Ni, . . .〉 = (−1)

∑
(1,i−1) (1−Ni) |N1, . . . , Ni + 1, . . .〉

ci |N1, . . . , Ni, . . .〉 = (−1)
∑

(1,i−1) Ni |N1, . . . , Ni − 1, . . .〉
This leads to the following anticommutation relations :{

{c+
i , ck} ≡ c+

i ck + ckc
+
i = δik

{c+
i , c

+
k } = {ci, ck} = 0

Proof
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i = k

c+
i ci|0i〉 = 0

cic
+
i |0i〉 = ci(−1)

∑
(1,i−1)|1i〉 = |0i〉

c+
i ci|1i〉 = c+

i (−1)
∑

(1,i−1)|0i〉 = |1i〉
cic

+
i |1i〉 = 0

⇒ c+
i ci + cic

+
i = 1

i < k

c+
i c

+
k |N1 . . .〉 = (−1)N1+...+Nk−1c+

i (1−Nk)|N1 . . . Nk + 1 . . .〉
= (−1)N1+...+Nk−1(−1)N1+...+Ni−1(1−Ni)(1−Nk)| . . . Ni + 1 . . . Nk + 1 . . .〉

c+
k c

+
i |N1 . . .〉 = (−1)N1+...+Ni−1c+

k (1−Ni)|N1 . . . Ni + 1 . . . Nk〉
= (−1)N1+...+Ni−1(−1)N1+...+Ni+1+Ni+1+...+Nk−1

(1−Ni)(1−Nk)| . . . Ni + 1 . . . Nk + 1 . . .〉

⇒ c+
i c

+
k = −c+

k c
+
i ⇒ c+

i c
+
k + c+

k c
+
i = 0

or {c+
i , c

+
k } = 0

Similarly for {ci, c
+
k } or {ci, ck}

Some remarks on anticommutation relations :

• c+
i c

+
i = cici = 0. This is Pauli’s principle : two fermions cannot occupy the

same quantum state.

• Besides, one indeed has :

c+
i ck|0i1k〉 = (−1)N1+...+Ni−1+Ni+1+...+Nk−1c+

i |0i0k〉 (Ni = 0)
= (−1)N1+...+Ni−1+Ni+1+...+Nk−1(−1)N1+...+Ni−1 |1i0k〉
= (−1)

∑
(i+1,k−1)|1i0k〉

• Finally, N = ∑
i c

+
i ci satisfies :

N |N1 . . .〉 =
∑
i

Ni|N1 . . .〉 ⇒ N = number of particles

With these definitions, the expressions that we have derived for bosons still apply:

⇒ F̂ (1) =
∑
ik

f
(1)
ik c

+
i ck

with
f

(1)
ij =

∫
ψ∗i (x)f̂ (1)ψj(x)dx
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and
F̂ (2) = 1

2
∑
iklm

(
f̂ (2)

)ik
lm
a+
i a

+
k alam

with
(
f̂ (2)

)ik
lm

=
∫ ∫

ψ∗i (x1)ψ∗k(x2)f̂ (2)ψl(x2)ψm(x1)dx1dx2

For the two-body term, the order of the indices now matters since the operators
anticommute.

6.4 Field operator

It is very useful to use linear combinations of creation and annihilation operators
called field operators and defined by :

Ψ(x) = ∑
i
ϕi(x)ai

Ψ+(x) = ∑
i
ϕ∗i (x)a+

i

Since the operator a+
i creates one particle in the state of wave function ϕi(x), the

operator Ψ+(x0) creates a particle in the state of wave function δ(x− x0). In other
words, if x0 denotes the position in space, the field operator creates a particle at
point x0. This definition can be easily extended to other degrees of freedom, for
instance the spin.
Proof

〈x|a+
i |0〉 = ϕi(x)

⇒ 〈x|Ψ+(x0)|0〉 =
∑
i

ϕ∗i (x0)〈x|a+
i |0〉∑

i

ϕ∗i (x0)ϕi(x) =
∑
i

ϕ∗i (x0)ϕi(x)

= δ(x− x0)

Indeed, according to the definition of the "function" δ(x− x0), one must have for
any trial wave function ϕ∗j(x)∫

δ(x− x0)ϕ∗j(x)dx = ϕ∗j(x0)

But, ∫ ∑
i

ϕ∗i (x0)ϕi(x)ϕ∗j(x)dx =
∑
i

ϕ∗i (x0)δij = ϕ∗j(x0)

The formulae that allow one to write the one- and two-body operators take a very
simple form :

F̂ (1) =
∫

Ψ+(x)f̂ (1)Ψ(x)dx

F̂ (2) = 1
2

∫ ∫
Ψ+(x)Ψ+(x′)f̂ (2)Ψ(x′)Ψ(x)dxdx′
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where f̂ (1) and f̂ (2) act on the functions of x and x′. Indeed,

F̂ (1) =
∑
ij

a+
i aj

∫
ϕ∗i (x)f̂ (1)ϕj(x)dx

or
F̂ (1) =

∑
ij

f
(1)
ij a

+
i aj

The same applies to F̂ (2).
The commutation relations of the field operators can be deduced from those of

the operators a+
i and ai. They are of course different for fermions and bosons :

• Bosons : [
Ψ(x),Ψ+(x′)

]
= δ(x− x′)

Indeed : [
Ψ(x),Ψ+(x′)

]
=

∑
ij

ϕi(x)ϕ∗j(x′) [ai, a+
j ]︸ ︷︷ ︸

δij

=
∑
i

ϕi(x)ϕ∗i (x′)

= δ(x− x′)

[Ψ(x),Ψ(x′)] =
[
Ψ+(x),Ψ+(x′)

]
= 0

• Fermions :
{Ψ(x),Ψ+(x′)} = δ(x− x′)

{Ψ(x),Ψ(x′)} = {Ψ+(x),Ψ+(x′)} = 0

6.5 Application : interacting electrons

Let us consider the problem of an electron gas in a potential U(r) interacting through
the Coulomb interaction V (r1, r2) = e2

|r1−r2| . Let us try to determine the form of the
Hamiltonian in second quantization.

6.5.1 Reference eigenfunctions

When we built our totally symmetric or totally antisymmetric states, we built wave
functions for the variable x without specifying what it stands for. For electrons, the
variable x = (r, σ) is a composite variable that stands for the position r and for a
spin variable σ that can take the values +1

2 and −1
2 .
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For the spatial part, the most convenient choice is to use plane waves :

ϕk(r) = 1√
Ω
eik.r

where one considers a box of volume Ω. The momentum k takes discrete values,
and one has : ∫

Ω
ϕ∗k1(r)ϕk2(r)dr = δk1,k2

For the spin, one must also use wave functions. Since this is not the standard way
to proceed, let us write down explicitly the form of the wave functions for a spin 1

2 .

Standard description

Two states | ↑〉 and | ↓〉

Sz| ↑〉 = ~
2 | ↑〉 S+| ↑〉 = 0 S−| ↑〉 = | ↓〉

Sz| ↓〉 = −~
2 | ↓〉 S+| ↓〉 = | ↑〉 S−| ↓〉 = 0

Sx = S+ + S−

2 Sy = S+ − S−

2i

Description with vectors and matrices

| ↑〉 →
(

1
0

)
| ↓〉 →

(
0
1

)

Sz = ~
2

(
1 0
0 −1

)
︸ ︷︷ ︸

σz

Sx = ~
2

(
0 1
1 0

)
︸ ︷︷ ︸

σx

Sy = ~
2

(
0 −i
i 0

)
︸ ︷︷ ︸

σy

σx, σy, σz : Pauli matrices.

Description in terms of wave functions

One can also represent the kets by wave functions. For a spin 1
2 , the variable σ can

take two values, say 1
2 et −1

2 . One can then define two wave functions by :{
η+ 1

2
(1

2) = 1 η+ 1
2
(−1

2) = 0
η− 1

2
(1

2) = 0 η− 1
2
(−1

2) = 1

or, more compactly,
ησ1(σ) = δσσ1

These functions build an orthonormal basis :∑
σ

η∗σ1(σ)ησ2(σ) = δσ1σ2 (to be checked)
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In this basis, the operators Sx, Sy et Sz act according to :

Szησ = ~σησ
Sxησ = ~

2η−σ
Syησ = i~ση−σ

The eigenfuntions are thus labeled by two indices :

ϕkσ(r, σ′) = 1√
Ω
eik.rησ(σ′)

The creation and annihilation operators are thus given by :

c+
kσ and ckσ

Similarly, the field operators are defined by :

Ψ(r, σ) =
∑
k,σ′

ϕkσ′(r, σ)ckσ′

=
∑
k,σ′

1√
Ω
eik.rδσσ′ckσ′

=
∑

k

1√
Ω
eik.rckσ

=
∑

k
ϕk(r)ckσ

and
Ψ+(r, σ) =

∑
k
ϕ∗k(r)c+

kσ

6.5.2 Operators

There are two one-body operators :

Kinetic energy

Hkin =
∑
i

−~2∇2
i

2m ≡
∑
i

−~2∆i

2m

∆iϕ = ∂2ϕ

∂x2
i

+ ∂2ϕ

∂y2
i

+ ∂2ϕ

∂z2
i
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Potential energy

Hpot =
∑
i

U(ri)

U(ri)ϕ is just the product by the function U(r) evaluated at the point ri.
The Coulomb repulsion leads to a two-body term :

HCoulomb = 1
2
∑
ij

V (ri − rj)

The factor 1
2 has been introduced to count each pair only once.

6.5.3 Hamiltonian in second quantization

Hkin =
∑

k1k2σ1σ2

c+
k1σ1

ck2σ2

∫
dr
∑
σ

ϕ∗k1σ1(r, σ)
(
−~2∆

2m

)
ϕk2σ2(r, σ)

or
ϕ∗k1σ1(r, σ) = 1√

Ωe
−ik1.rδσσ1

ϕk2σ2(r, σ) = 1√
Ωe

ik2.rδσσ2

⇒ Hkin =
∑

k1k2σ

c+
k1σ
ck2σ

∫ dr
Ω e−ik1.r~

2k2
2

2m eik2.r

=
∑

k1k2σ

c+
k1σ
ck2σ

~2k2
2

2m δk1k2

Hkin =
∑
kσ

~2k2

2m c+
kσckσ

Hpot =
∑

k1k2σ1σ2

c+
k1σ1

ck2σ2

∫ dr
Ω
∑
σ

e−ik1.rU(r)eik2.rδσσ1δσσ2

=
∑

k1k2σ

c+
k1σ
ck2σ

∫ dr
Ω e−ik1.rU(r)eik2.r

Let us define the Fourier transform of the potential by :

Ũ(k) =
∫ dr

Ω e−ik.rU(r)

This leads to :
Hpot =

∑
k1k2σ

c+
k1σ
ck2σŨ(k1 − k2)

or :
Hpot =

∑
kqσ

Ũ(q)c+
k+qσckσ
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The operator :
ρ−q =

∑
kσ
c+

k+qσckσ

is the Fourier transform of the density operator. Indeed,{
ρq =

∫
drρ(r)e−iq.r

ρ(r) = ∑
σ Ψ+(r, σ)Ψ(r, σ)

⇒ ρq =
∫ dr

Ω e−iq.r
∑

k1k2σ

e−ik1.reik2.rc+
k1σ
ck2σ

=
∑
kσ
c+
kσck+qσ

One can thus write :
Hpot =

∑
q
Ũ(q)ρ−q

HCoul = 1
2

∑
k1k2k3k4
σ1σ2σ3σ4

c+
k1σ1

c+
k2σ2

ck3σ3ck4σ4

×
∫
drdr′

∑
σσ′

ϕ∗k1σ1(r, σ)ϕ∗k2σ2(r′, σ′)V (r− r′)ϕk3σ3(r′, σ′)ϕk4σ4(r, σ)

The integral is given by :∫ drdr′

Ω2 V (r− r′)e−ik1.re−ik2.r′eik3.r′eik4.r
∑
σσ′

δσ1σδσ2σ′δσ3σ′δσ4σ︸ ︷︷ ︸
δσ1σ4δσ2σ3

or, defining R = r− r′ :∫ dRdr′

Ω2 V (R)e−ik1.(R+r′)e−ik2.r′eik3.r′eik4.(R+r′)

=
∫ dR

Ω V (R)e−i(k1−k4).R︸ ︷︷ ︸
Ṽ (k1−k4)

∫ dr′

Ω e−i(k1+k2−k3−k4).r′︸ ︷︷ ︸
δk1+k2,k3+k4

HCoul = 1
2

∑
kk′qσσ′

Ṽ (q)c+
k+qσc

+
k′−qσ′ck′σ′ckσ

With the help of the density operators, this can also be written :

HCoul = 1
2
∑

q
Ṽ (q) (ρqρ−q −N)
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Nota Bene : This expression is valid with the definition Ṽ (q) =
∫ dr

Ω e
−iq.rV (r).

If one defines :
V (q) =

∫
dre−iq.rV (r)

which, for Coulomb potential, leads to V (q) = 4πe2

q2 , then the Hamiltonian in second
quantization takes the form :

H1 = 1
2Ω

∑
kk′qσσ′

V (q)c+
k+qσc

+
k′−qσ′ck′σ′ckσ

This the form that is generally used. The inverse Fourier transform is then given
by :

V (r) = 1
Ω
∑

q
V (q)eiq.r

or, for Coulomb potential :

e2

r
= 1

Ω
∑

q

4πe2

q2 eiq.r.


