
17 The Higgs boson

The Higgs mechanism and the associated Higgs boson are essential parts of
the Standard Model. The Higgs mechanism is the way that the W and Z bosons
acquire mass without breaking the local gauge symmetry of the Standard
Model. It also gives mass to the fundamental fermions. This chapter describes
the Higgs mechanism and the discovery of the Higgs boson at the LHC. The
Higgs mechanism is subtle and to gain a full understanding requires the addi-
tional theoretical background material covered in the sections on Lagrangians
and local gauge invariance in quantum field theory.

17.1 The need for the Higgs boson

The apparent violation of unitarity in the e+e−→W+W− cross section was resolved
by the introduction of the Z boson. A similar issue arises in the W+W−→W+W−

scattering process, where the cross section calculated from the Feynman diagrams
shown in Figure 17.1 violates unitarity at a centre-of-mass energy of about 1 TeV.
The unitarity violating amplitudes originate from WLWL → WLWL scattering,
where the W bosons are longitudinally polarised. Consequently, unitary violation
in WW scattering can be associated with the W bosons being massive, since longi-
tudinal polarisation states do not exist for massless particles. The unitarity violation
of the WLWL → WLWL cross section can be cancelled by the diagrams involving
the exchange of a scalar particle, shown in Figure 17.2. In the Standard Model this
scalar is the Higgs boson. This cancellation can work only if the couplings of the
scalar particle are related to the electroweak couplings, which naturally occurs in
the Higgs mechanism.

The Higgs mechanism is an integral part of the Standard Model. Without it, the
Standard Model is not a consistent theory; the underlying gauge symmetry of the
electroweak interaction is broken by the masses of the associated gauge bosons. As
shown by ‘t Hooft, only theories with local gauge invariance are renormalisable,
such that the cancellation of all infinities takes place among only a finite number
of interaction terms. Consequently, the breaking of the local gauge invariance of
the electroweak theory by the gauge boson masses can not simply be dismissed.

460



461 17.2 Lagrangians in Quantum Field Theory

W+ W+ W+ W+

W- W- W- W- W-

W+

W-

W+

γ /Z
γ /Z!Fig. 17.1 The lowest-order Feynman diagrams for W+W− → W+W−. The 'nal diagram, corresponds to the quartic

coupling of four W bosons.

H
H

W+ W+ W+W+

W- W- W- W-!Fig. 17.2 Higgs boson exchange diagrams for W+W− → W+W−.

The Higgs mechanism generates the masses of the electroweak gauge bosons in a
manner that preserves the local gauge invariance of the Standard Model.

17.2 Lagrangians in Quantum Field Theory

The Higgs mechanism is described in terms of the Lagrangian of the Standard
Model. In quantum mechanics, single particles are described by wavefunctions
that satisfy the appropriate wave equation. In Quantum Field Theory (QFT), par-
ticles are described by excitations of a quantum field that satisfies the appropriate
quantum mechanical field equations. The dynamics of a quantum field theory can
be expressed in terms of the Lagrangian density. Whilst the development of QFT
is outside the scope of this book, an understanding of the Lagrangian formalism is
necessary for the discussion of the Higgs mechanism. The purpose of this section
is to provide a pedagogical introduction to the Lagrangian of the Standard Model,
which ultimately contains all of the fundamental particle physics.

17.2.1 Classical $elds

In classical dynamics, the motion of a system can be described in terms of forces
and the resulting accelerations using Newton’s second law, F = mẍ. The same
equations of motion can be obtained from the Lagrangian L defined as

L = T − V, (17.1)



462 The Higgs boson

where T and V are respectively the kinetic and potential energies of the system.
The Lagrangian L(qi, q̇i) is a function of a set of generalised coordinates qi and
their time derivatives q̇i (the possible explicit time dependence of the Lagrangian
is not considered here). Once the Lagrangian is specified, the equations of motion
are determined by the Euler–Lagrange equations,

d
dt

(
∂L
∂q̇i

)
− ∂L
∂qi
= 0. (17.2)

For example, consider a particle moving in one dimension where the Lagrangian
is a function of the coordinate x and its time derivative ẋ, with

L = T − V = 1
2 mẋ2 − V(x).

The derivatives of the Lagrangian with respect to x and ẋ are

∂L
∂ẋ
= mẋ and

∂L
∂x
= −∂V

∂x
,

and the Euler–Lagrange equation (17.2) for the coordinate qi = x is simply

mẍ = −∂V(x)
∂x
.

Since the derivative of the potential gives the force, this is equivalent to F = mẍ
and Newton’s second law of motion is recovered.

The Lagrangian treatment of a discrete system of particles, described by n gen-
eralised coordinates qi, can be extended to a continuous system by replacing the
Lagrangian of (17.1) with the Lagrangian density L,

L
(
qi,

dqi

dt

)
→ L

(
φi, ∂µφi

)
.

In the Lagrangian density, the generalised coordinates qi are replaced by the fields
φi(t, x, y, z), and the time derivatives of the generalised coordinates q̇i are replaced
by the derivatives of the fields with respect to each of the four space-time coordi-
nates,

∂µφi ≡
∂φi

∂x µ
.

The fields are continuous functions of the space-time coordinates x µ and the
Lagrangian L itself is given by

L =
∫
L d3x.
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Using the principle of least action,1 the equivalent of the Euler–Lagrange equation
for the fields φi can be shown to be

∂µ

(
∂L

∂(∂µφi)

)
− ∂L
∂φi
= 0. (17.3)

The field φi(x µ) represents a continuous quantity with a value at each point in
space-time. It can be a scalar such as temperature T (x, t), a vector such as the
electric field strength E(x, t), or a tensor.

To illustrate the application of classical field theory, consider the relatively sim-
ple example of a string of mass per unit length ρ under tension τ, as indicated in
Figure 17.3. Here the scalar field φ(x, t) represents the transverse displacement of
the string as a function of x and t. The kinetic and potential energies of the string,
written in terms of the derivatives of the field, are

T =
∫

1
2ρ

(
∂φ

∂t

)2

dx and V =
∫

1
2τ

(
∂φ

∂x

)2

dx.

Hence the Lagrangian density is

L = 1
2ρ




(
∂φ

∂t

)2

− v2
(
∂φ

∂x

)2 ≡ 1
2ρ

[
(∂0φ)2 − v2(∂1φ)2

]
, (17.4)

where v =
√
τ/ρ. Once the Lagrangian density has been specified, the equations

of motion follow from the Euler–Lagrange equation of (17.3). For the Lagrangian
density of (17.4), the relevant partial derivatives are

∂L
∂(∂0φ)

= ρ ∂0φ ≡ ρ
∂φ

∂t
,

∂L
∂(∂1φ)

= −ρv2 ∂1φ ≡ −ρv2
∂φ

∂x
and

∂L
∂φ
= 0,

and the Euler–Lagrange equation gives

ρ∂0(∂0φ) − ρv2∂1(∂1φ) = 0 or equivalently ρ
∂

∂t

(
∂φ

∂t

)
− ρv2 ∂

∂x

(
∂φ

∂x

)
= 0.

1 The derivation can be found in any standard text on classical or Quantum Field Theory.



464 The Higgs boson

Therefore the field φ(x), describing the displacement of the string, satisfies the
equation of motion

∂2φ

∂t2 − v
2 ∂

2φ

∂x2 = 0,

which is the usual one-dimensional wave equation with phase velocity given by
v =

√
τ/ρ. Hence, it can be seen that Lagrangian density determines the wave

equation for the field.

17.2.2 Relativistic $elds

In Quantum Field Theory, the single particle wavefunctions of quantum mechanics
are replaced by (multi-particle) excitations of a quantum field, which itself satisfies
the appropriate field equation. The field equation is determined by the form of the
Lagrangian density, which henceforth will be referred to simply as the Lagrangian.
In the above example of a string under tension, it was shown that the Lagrangian,

L = 1
2ρ

[
(∂0φ)2 − v2(∂1φ)2

]
,

gives the usual wave equation for the displacement of the string. Similarly the
dynamics of the quantum mechanical fields describing spin-0, spin-half and spin-1
particles are determined by the appropriate Lagrangian densities.

Relativistic scalar $elds
In QFT, spin-0 scalar particles are described by excitations of the scalar field
φ(x) satisfying the Klein–Gordon equation, first encountered in Section 4.1. The
Lagrangian for a free non-interacting scalar field can be identified as

LS =
1
2 (∂µφ)(∂ µφ) − 1

2 m2φ2. (17.5)

To see that this Lagrangian corresponds to the Klein–Gordon equation, it is helpful
to write (17.5) in full,

LS =
1
2
[
(∂0φ) (∂0φ) − (∂1φ) (∂1φ) − (∂2φ) (∂2φ) − (∂3φ) (∂3φ)

] − 1
2 m2φ2,

from which the partial derivatives appearing in the Euler–Lagrange equation are

∂L
∂φ
= −m2φ,

∂L
∂(∂0φ)

= ∂0φ ≡ ∂0φ and
∂L

∂(∂kφ)
= −∂kφ ≡ ∂ kφ,

where k = 1, 2, 3. Substituting these partial derivatives into the Euler–Lagrange
equation of (17.3) gives

∂µ∂
µφ + m2φ = 0,

which is the Klein–Gordon equation for a free scalar field φ(x).
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Relativistic spin-half $elds
The Lagrangian for the spinor field ψ(x) satisfying the free-particle Dirac
equation is

LD = iψγ µ∂µψ − mψψ. (17.6)

Here the field ψ(x) is a four-component complex spinor, which can be expressed in
terms of eight independent real fields,

ψ(x) =




ψ1

ψ2

ψ3

ψ4



=




Ψ1 + iΦ1

Ψ2 + iΦ2

Ψ3 + iΦ3

Ψ4 + iΦ4



.

In principle, the Euler–Lagrange equation can be solved in terms of these eight
fields. However, the eight independent components of the complex Dirac spinor ψ
also can be expressed as linear combinations of ψ and the adjoint spinor ψ. Hence,
the independent fields can be taken to be the four components the spinor and the
four components of the adjoint spinor. The partial derivatives with respect to one
of the components of the adjoint spinor are

∂L
∂(∂µψi)

= 0 and
∂L
∂ψi

= iγ µ∂µψ − mψ,

which when substituted into the Euler–Lagrange equation give

− ∂L
∂ψi

= 0,

and consequently, the spinor field ψ satisfies the Dirac equation,

iγ µ(∂µψ) − mψ = 0.

Relativistic vector $elds
Maxwell’s equations for the electromagnetic field Aµ = (φ,A) can be expressed in
a covariant form (see Appendix D.1) as

∂µFµν = jν,

where Fµν is the field-strength tensor,

Fµν = ∂ µAν − ∂νAµ =




0 −Ex −Ey −Ez

Ex 0 −Bz By
Ey Bz 0 −Bx

Ez −By Bx 0



, (17.7)
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and j= (ρ, J) is the four-vector current associated with the charge and current
densities ρ and J. The corresponding Lagrangian (see Problem 17.4) is

LEM = − 1
4 FµνFµν − j µAµ.

In the absence of sources j µ = 0, and the Lagrangian for the free photon field is

LEM = − 1
4 FµνFµν. (17.8)

Using the form of the field strength tensor of (17.7), this is equivalent to LEM =
1
2 (E2−B2), from which the corresponding Hamiltonian densityHEM =

1
2 (E2+B2)

gives the normal expression for the energy density of an electromagnetic field (in
Heaviside–Lorentz units with ε0 = µ0 = 1). If the photon had mass, the free-
particle Lagrangian of (17.8) would be modified to

LProca = − 1
4 FµνFµν + 1

2 m2
γAµAµ, (17.9)

which is known as the Proca Lagrangian, from which the field equations for a
massive spin-1 particle can be obtained.

17.2.3 Noether’s theorem

In the following section, the ideas of local gauge invariance are considered in the
context of the symmetries of the Lagrangian. Here a simple example is used to
illustrate the connection between a symmetry of the Lagrangian and a conservation
law. The Lagrangian for a mass m orbiting in the gravitational potential of a fixed
body of mass M is

L = T − V = 1
2 mv2 +

GMm
r

= 1
2 mṙ2 + 1

2 mr2φ̇2 +
GMm

r
,

where r and φ are the polar coordinates of the mass m in the plane of the orbit. The
Lagrangian does not depend on the polar angle φ and therefore is invariant under
the infinitesimal transformation, φ → φ′ = φ + δφ. Since the Lagrangian does not
depend on φ, the corresponding Euler–Lagrange equation implies

d
dt

(
∂L
∂φ̇

)
= 0,

and consequently

J =
∂L
∂φ̇
= mr2φ̇,

is a constant of the motion. The rotational symmetry of the Lagrangian therefore
implies the existence of a conserved quantity, which in this example is the angular
momentum of the orbiting body m.
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In field theory, Noether’s theorem relates a symmetry of the Lagrangian to a
conserved current. For example, the Lagrangian for the free Dirac field

L = iψγ µ∂µψ − mψψ, (17.10)

is unchanged by the global U(1) phase transformation,

ψ→ ψ′ = eiθψ.

In Appendix E it is shown that the corresponding conserved current is the usual
four-vector current

j µ = ψγ µψ,

which automatically satisfies the continuity equation ∂µ j µ = 0.

17.3 Local gauge invariance

In Section 10.1, the electromagnetic interaction was introduced by requiring
the Dirac equation to be invariant under a U(1) local phase transformation. The
required local gauge symmetry is expressed naturally as the invariance of the
Lagrangian under a local phase transformation of the fields,

ψ(x)→ ψ′(x) = eiqχ(x)ψ(x). (17.11)

The local nature of the gauge transformation means that the derivatives acting on
the field also act on the local phase χ(x). With this transformation, the Lagrangian
for a free spin-half particle of (17.6),

L = iψγ µ∂µψ − mψψ, (17.12)

becomes

L→ L′ = ie−iqχψγ µ
[
eiqχ∂µψ + iq

(
∂µχ

)
eiqχψ

]
− me−iqχψeiqχψ

= L − qψγ µ
(
∂µχ

)
ψ. (17.13)

Hence, as it stands, the free-particle Lagrangian for a Dirac field is not invari-
ant under U(1) local phase trasformations. The required gauge invariance can be
restored by replacing the derivative ∂µ in (17.12) with the covariant derivative Dµ,

∂µ → Dµ = ∂µ + iqAµ,

where Aµ is a new field. The desired cancellation of the unwanted qψγ µ(∂µχ)ψ
term in (17.13) is achieved provided the new field transforms as

Aµ → A′µ = Aµ − ∂µχ. (17.14)
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The required U(1) local gauge invariance of the Lagrangian corresponding to the
Dirac equation can be achieved only by the introduction of the field Aµ with well-
defined gauge transformation properties. Hence the gauge-invariant Lagrangian for
a spin-half fermion

L = ψ(iγ µ∂µ − m)ψ − qψγ µAµψ,

now contains a term describing the interaction of the fermion with the new field Aµ,
which can be identified as the photon. Hence the Lagrangian of QED, describing
the fields for the electron (with q = −e), the massless photon and the interactions
between them can be written as

LQED = ψ(iγ µ∂µ − me)ψ + eψγ µψAµ − 1
4 FµνFµν. (17.15)

The kinetic term for the massless spin-1 field FµνFµν is already invariant under
U(1) local phase transformations (see Problem 17.3).

The connection to Maxwell’s equations can be made apparent by writing the
QED Lagrangian of (17.15) in terms of the four-vector current, j µ = −eψγ µψ,

L = ψ(iγ µ∂µ − me)ψ − j µAµ − 1
4 FµνFµν.

The Euler–Lagrange equation for the derivatives with respect to the photon field
Aµ gives (see Problem 17.4)

∂µFµν = jν,

which is the covariant form of Maxwell’s equations. Hence the whole of elec-
tromagnetism can be derived by requiring a local U(1) gauge symmetry of the
Lagrangian for a particle satisfying the Dirac equation.

The weak interaction and QCD are respectively obtained by extending the local
gauge principle to require that the Lagrangian is invariant under SU(2)L and SU(3)
local phase transformations. The prescription for achieving the required gauge
invariance is to replace the four-derivative ∂µ with the covariant derivative Dµ
defined in terms of the generators of the group. For example, for the SU(2)L sym-
metry of the weak interaction

∂µ → Dµ = ∂µ + igWT ·Wµ(x),

where the T = 1
2σ are the three generators of SU(2) and W(x) are the three new

gauge fields. The generators of the SU(2) and SU(3) symmetry groups do not com-
mute and the corresponding local gauge theories are termed non-Abelian. In a non-
Abelian gauge theory, the transformation properties of the gauge fields are not
independent and additional gauge boson self-interaction terms have to be added to
the field-strength tensor for it to be gauge invariant. The focus of this chapter is
the Higgs mechanism and therefore the more detailed discussion of non-Abelian
gauge theories is deferred to Appendix F.
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17.4 Particle masses

The local gauge principle provides an elegant description of the interactions in
the Standard Model. The success of the Standard Model in describing the exper-
imental data, including the high-precision electroweak measurements, places the
local gauge principle on a solid experimental basis. However, the required local
gauge invariance of the Standard Model is broken by the terms in the Lagrangian
corresponding to particle masses. For example, if the photon were massive, the
Lagrangian of QED would contain an additional term 1

2 m2
γ AµAµ,

LQED → ψ(iγ µ∂µ − me)ψ + eψγ µAµψ − 1
4 FµνFµν + 1

2 m2
γ AµAµ.

For the U(1) local gauge transformation of (17.11), the photon field transforms as

Aµ → A′µ = Aµ − ∂µχ,

and the new mass term becomes

1
2 m2

γAµAµ → 1
2 m2

γ

(
Aµ − ∂µχ

) (
Aµ − ∂ µχ) ! 1

2 m2
γAµAµ,

from which it is clear that the photon mass term is not gauge invariant. Hence the
required U(1) local gauge symmetry can only be satisfied if the gauge boson of
an interaction is massless. This restriction is not limited to the U(1) local gauge
symmetry of QED, it also applies to the SU(2)L and SU(3) gauge symmetries of
the weak interaction and QCD. Whilst the local gauge principle provides an ele-
gant route to describing the nature of the observed interactions, it works only for
massless gauge bosons. This is not a problem for QED and QCD where the gauge
bosons are massless, but it is in apparent contradiction with the observation of the
large masses of W and Z bosons.

The problem with particle masses is not restricted to the gauge bosons. Writing
the electron spinor field as ψ = e, the electron mass term in QED Lagrangian can
be written in terms of the chiral particle states as

−meee = −mee
[

1
2 (1 − γ5) + 1

2 (1 + γ5)
]

e

= −mee
[

1
2 (1 − γ5)eL +

1
2 (1 + γ5)eR

]

= −me(eReL + eLeR). (17.16)

In the SU(2)L gauge transformation of the weak interaction, left-handed parti-
cles transform as weak isospin doublets and right-handed particles as singlets, and
therefore the mass term of (17.16) breaks the required gauge invariance.
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17.5 The Higgs mechanism

In the Standard Model, particles acquire masses through their interactions with the
Higgs field. In this section, the Higgs mechanism is developed in three distinct
stages. First it is shown how mass terms for a scalar field can arise from a broken
symmetry. This mechanism is then extended to show how the mass of a gauge
boson can be generated from a broken U(1) local gauge symmetry. Finally, the
full Higgs mechanism is developed by breaking the SU(2)L × U(1)Y local gauge
symmetry of the electroweak sector of the Standard Model.

17.5.1 Interacting scalar $elds

A Lagrangian consists of two parts, a kinetic term involving the derivatives of the
fields and a potential term expressed in terms of the fields themselves. For example,
in the Lagrangian of QED (17.15), the kinetic terms for the electron and photon are

iψγ µ∂µψ and − 1
4 FµνF µν.

The potential term, which represents the interactions between the electron and pho-
ton fields, is

eψγ µψAµ.

This can be associated with the normal three-point interaction vertex of QED,
shown on the left of Figure 17.4. In general, the nature of the interactions between
the fields and the strength of the coupling is determined by the terms in the
Lagrangian involving the combinations of the fields, here ψψA.

Now, consider a scalar field φ with the potential

V(φ) = 1
2µ

2φ2 + 1
4λφ

4. (17.17)

The corresponding Lagrangian is given by

L = 1
2 (∂µφ)(∂ µφ) − V(φ)

= 1
2 (∂µφ)(∂ µφ) − 1

2µ
2φ2 − 1

4λφ
4. (17.18)

A e

ψ

ψ

f f

f f

l−1
4

!Fig. 17.4 The three-point interaction of QED and the four-point interaction for a scalar 'eld with the potentialλφ4/4.
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!Fig. 17.5 The one-dimensional potential V(φ) = µ2φ2/2 + λφ4/4 for λ > 0 and the cases where (a)µ2 > 0 and
(b)µ2 < 0.

The term proportional to (∂µφ)(∂ µφ) can be associated with the kinetic energy of
the scalar particle and 1

2µ
2φ2 can represent the mass of the particle. The φ4 term can

be identified as self-interactions of the scalar field, corresponding to the four-point
interaction vertex shown in the right-hand plot of Figure 17.4.

The vacuum state is the lowest energy state of the field φ and corresponds to the
minimum of the potential of (17.17). For the potential to have a finite minimum, λ
must be positive. If µ2 is also chosen to be positive, the resulting potential, shown
in Figure 17.5a, has a minimum at φ = 0. In this case, the vacuum state corresponds
to the field φ being zero and the Lagrangian of (17.18) represents a scalar particle
with mass µ and a four-point self-interaction term proportional to φ4. However,
whilst λ must be greater than zero for there to be a finite minimum, there is no such
restriction for µ2. If µ2 < 0, the associated term in the Lagrangian can no longer be
interpreted as a mass and the potential of (17.17) has minima at

φ = ±v = ±
∣∣∣∣∣∣∣

√
−µ2

λ

∣∣∣∣∣∣∣
,

as shown in Figure 17.5b. For µ2 < 0, the lowest energy state does not occur at
φ = 0 and the field is said to have a non-zero vacuum expectation value v. Since the
potential is symmetric, there are two degenerate possible vacuum states. The actual
vacuum state of the field either will be φ = +v or φ = −v. The choice of the vacuum
state breaks the symmetry of the Lagrangian, a process known as spontaneous
symmetry breaking. A familiar example of spontaneous symmetry breaking is a
ferromagnet with magnetisation M. The Lagrangian (or Hamiltonian) depends on
M2 and has no preferred direction. However, below the Curie temperature, the spins
will be aligned in a particular direction, spontaneously breaking the underlying
rotational symmetry of the Lagrangian.
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!Fig. 17.6 The self-interactions of the 'eldη that lead to Feynman diagrams for the processesη→ ηηandηη→ ηη.

If the vacuum state of the scalar field is chosen to be at φ = +v, the excitations
of the field, which describe the particle states, can be obtained by considering per-
turbations of the field φ around the vacuum state by writing φ(x) = v + η(x). Since
the vacuum expectation value v is a constant, ∂µφ = ∂µη and the Lagrangian of
(17.18), expressed in terms of the field η, is

L(η) = 1
2 (∂µη)(∂ µη) − V(η)

= 1
2 (∂µη)(∂ µη) − 1

2µ
2(v + η)2 − 1

4λ(v + η)4.

Since the minimum of the potential is given by µ2 = −λv2, this expression can be
written as

L(η) = 1
2 (∂µη)(∂ µη) − λv2η2 − λvη3 − 1

4λη
4 + 1

4λv
4. (17.19)

From the comparison with the Lagrangian for a free scalar field of (17.5), it can be
seen that the term proportional to η2 can be interpreted as a mass

mη =
√

2λv2 =
√
−2µ2,

and therefore the Lagrangian of (17.19) describes a massive scalar field. The terms
proportional to η3 and η4 can be identified as triple and quartic interaction terms,
as indicated in Figure 17.6. Finally, the term λv4/4 is just a constant, and has no
physical consequences. Hence after spontaneous symmetry breaking, and having
expanded the field about the vacuum state, the Lagrangian can be written as

L(η) = 1
2 (∂µη)(∂ µη) − 1

2 m2
ηη

2 − V(η), with V(η) = λvη3 + 1
4λη

4. (17.20)

It is important to realise that the Lagrangian of (17.20) is the same as the original
Lagrangian of (17.18), but is now expressed as excitations about the minimum at
φ = +v. In principle, the same physical predictions can be obtained by using either
form. However, in order to use perturbation theory, it is necessary to express the
fields as small perturbations about the vacuum state.
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17.5.2 Symmetry breaking for a complex scalar $eld

The idea of spontaneous symmetry breaking, introduced above in the context of a
real scalar field, can be applied to the complex scalar field,

φ = 1√
2
(φ1 + iφ2),

for which the corresponding Lagrangian is

L = (∂µφ)∗(∂ µφ) − V(φ) with V(φ) = µ2(φ∗φ) + λ(φ∗φ)2. (17.21)

When expressed in terms of the two (real) scalar fields φ1 and φ2 this is just

L = 1
2 (∂µφ1)(∂ µφ1) + 1

2 (∂µφ2)(∂ µφ2) − 1
2µ

2(φ2
1 + φ

2
2) − 1

4λ(φ2
1 + φ

2
2)2. (17.22)

As before, for the potential to have a finite minimum, λ > 0. The Lagrangian of
(17.21) is invariant under the transformation φ → φ′ = eiαφ, because φ′∗φ′ =
φ∗φ, and therefore possesses a global U(1) symmetry. The shape of the potential
depends on the sign of µ2, as shown in Figure 17.7. When µ2 > 0, the minimum
of the potential occurs when both fields are zero. If µ2 < 0, the potential has an
infinite set of minima defined by

φ2
1 + φ

2
2 =
−µ2

λ
= v2,

as indicated by the dashed circle in Figure 17.7. The physical vacuum state will
correspond to a particular point on this circle, breaking the global U(1) symmetry
of the Lagrangian. Without loss of generality, the vacuum state can be chosen to

(a) (b)
V(f ) V(f )

f 2

f 1

f 2

f 1

!Fig. 17.7 The V(φ) = µ2(φ∗φ) + λ(φ∗φ)2 potential for a complex scalar 'eld for (a)µ2 > 0 and (b)µ2 < 0.
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2!Fig. 17.8 The scalar interactions obtained by breaking the symmetry for a complex scalar 'eld.

be in the real direction, (φ1, φ2) = (v, 0), and the complex scaler field φ can be
expanded about the vacuum state by writing φ1(x) = η(x) + v and φ2(x) = ξ(x),

φ = 1√
2
(η + v + iξ).

The Lagrangian of (17.22), written in terms of the fields η and ξ, is

L = 1
2 (∂µη)(∂ µη) + 1

2 (∂µξ)(∂ µξ) − V(η, ξ),

where the potential V(η, ξ) is given by

V(η, ξ) = µ2φ2 + λφ4 with φ2 = φφ∗ = 1
2

[
(v + η)2 + ξ2

]
.

The potential can be written in terms of the fields η and ξ using µ2 = −λv2,

V(η, ξ) = µ2φ2 + λφ4

= − 1
2λv

2
{
(v + η)2 + ξ2

}
+ 1

4λ
{
(v + η)2 + ξ2

}2

= − 1
4λv

4 + λv2η2 + λvη3 + 1
4λη

4 + 1
4λξ

4 + λvηξ2 + 1
2λη

2ξ2.

The term which is quadratic in the field η can be identified as a mass, and the terms
with either three or four powers of the fields can be identified as interaction terms.
Thus the Lagrangian can be written as

L = 1
2 (∂µη)(∂ µη) − 1

2 m2
ηη

2 + 1
2 (∂µξ)(∂ µξ) − Vint(η, ξ), (17.23)

with mη =
√

2λv2 and interactions given by

Vint(η, ξ) = λvη3 + 1
4λη

4 + 1
4λξ

4 + λvηξ2 + 1
2λη

2ξ2. (17.24)

These interaction terms correspond to triple and quartic couplings of the fields η
and ξ, as shown in Figure 17.8.

The Lagrangian of (17.23) represents a scalar field η with mass mη =
√

2λv2 and
a massless scalar field ξ. The excitations of the massive field η are in the direction
where the potential is (to first order) quadratic. In contrast, the particles described
by the massless scalar field ξ correspond to excitations in the direction where the
potential does not change, as indicated in Figure 17.9. This massless scalar particle
is known as a Goldstone boson.
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v h(x)

x (x)

!Fig. 17.9 The 'elds η(x) and ξ(x) in terms of the vacuum expectation value atφ = (v, 0).

17.5.3 The Higgs mechanism

In the Higgs mechanism, the spontaneous symmetry breaking of a complex scalar
field with a potential,

V(φ) = µ2φ2 + λφ4, (17.25)

is embedded in a theory with a local gauge symmetry. In this section, the example
of a U(1) local gauge symmetry is used to introduce the main ideas.

Because of the presence of the derivatives in (17.21), the Lagrangian for a com-
plex scalar field φ is not invariant under the U(1) local gauge transformation

φ(x)→ φ′(x) = eigχ(x)φ(x). (17.26)

The required U(1) local gauge invariance can be achieved by replacing the deriva-
tives in the Lagrangian with the corresponding covariant derivatives

∂µ → Dµ = ∂µ + igBµ.

The resulting Lagrangian,

L = (Dµφ)∗(D µφ) − V(φ2),

is gauge invariant (see Problem 17.7) provided the new gauge field Bµ, which
appears in the covariant derivative, transforms as

Bµ → B′µ = Bµ − ∂µχ(x). (17.27)

Just as was the case for Dirac Lagrangian (see Section 17.3), the required local
gauge invariance implies the existence a new gauge field with well-defined gauge
transformation properties. The combined Lagrangian for the complex scalar field
φ and the gauge field B is

L = − 1
4 FµνFµν + (Dµφ)∗(D µφ) − µ2φ2 − λφ4, (17.28)
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where FµνFµν is the kinetic term for the new field with

Fµν = ∂ µBν − ∂νBµ.

The gauge field B is required to be massless, since the mass term 1
2 mBBµBµ would

break the gauge invariance. The term involving the covariant derivatives, when
written out in full, is

(Dµφ)∗(D µφ) = (∂µ − igBµ)φ∗(∂ µ + igBµ)φ

= (∂µφ)∗(∂ µφ) − igBµφ∗(∂ µφ) + ig(∂µφ∗)Bµφ + g2BµBµφ∗φ

and the full expression for the Lagrangian is

L = − 1
4 FµνFµν + (∂µφ)∗(∂ µφ) − µ2φ2 − λφ4

− igBµφ∗(∂ µφ) + ig(∂µφ∗)Bµφ + g2BµBµφ∗φ. (17.29)

For the case where the potential for the scalar field of (17.25) has µ2 < 0, the vac-
uum state is degenerate and the choice of the physical vacuum state spontaneously
breaks the symmetry of the Lagrangian of (17.29). As before, the physical vacuum
state is chosen to be φ1 + iφ2 = v, and the complex scalar field φ is expanded about
the vacuum state by writing

φ(x) = 1√
2
(v + η(x) + iξ(x)). (17.30)

Substituting (17.30) into (17.29) leads to (see Problem 17.6)

L = 1
2 (∂µη)(∂ µη)−λv2η2

︸!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!︸
massive η

+ 1
2 (∂µξ)(∂ µξ)︸!!!!!!!!!︷︷!!!!!!!!!︸

massless ξ

− 1
4 FµνFµν+ 1

2g
2v2BµBµ︸!!!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!!!︸

massive gauge field

−Vint + gvBµ(∂ µξ),

(17.31)

where Vint(η, ξ, B) contains the three- and four-point interaction terms of the fields
η, ξ and B. As before, the breaking of the symmetry of the Lagrangian produces a
massive scalar field η and a massless Goldstone boson ξ. In addition, the previously
massless gauge field B has acquired a mass term 1

2g
2v2BµBµ, achieving the aim of

giving a mass to the gauge boson of the local gauge symmetry. Again it should be
emphasised that this is exactly the same Lagrangian as (17.28), but with the com-
plex scalar field expanded about the vacuum state at φ1+ iφ2 = v; by expanding the
scalar fields about the vacuum where the fields have a non-zero vacuum expecta-
tion value, the underlying gauge symmetry of the Lagrangian has been hidden, but
has not been removed.

However, there appear to be two problems with (17.31). The original Lagrangian
contained four degrees of freedom, one for each of the scalar fields φ1 and φ2,
and the two transverse polarisation states for the massless gauge field B. In the
Lagrangian of (17.31), the gauge boson has become massive and therefore has
the additional longitudinal polarisation state; somehow in the process of sponta-
neous symmetry breaking an additional degree of freedom appears to have been
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B

gv

x!Fig. 17.10 The coupling between the gauge 'eld B and the Goldstone 'eld ξ.

introduced. Furthermore, the gvBµ(∂ µξ) term appears to represent a direct coupling
between the Goldstone field ξ and the gauge field B. It would appear that the spin-1
gauge field can transform into a spin-0 scalar field, as indicated in Figure 17.10.
This term is somewhat reminiscent of the off-diagonal mass term encountered in
the discussion of the neutral kaon system, which coupled the K0 and K0 flavour
states, suggesting that the fields appearing in (17.31) are not the physical fields.
This coupling to the Goldstone field ultimately will be associated with the longitu-
dinal polarisation state of the massive gauge boson.

The Goldstone field ξ in (17.31) can be eliminated from the Lagrangian by mak-
ing the appropriate gauge transformation. By writing

1
2 (∂µξ)(∂ µξ) + gvBµ(∂ µξ) + 1

2g
2v2BµBµ = 1

2g
2v2

[
Bµ +

1
gv

(∂µξ)
]2

,

and making the gauge transformation,

Bµ(x)→ B′µ(x) = Bµ(x) +
1
gv
∂µξ(x), (17.32)

the Lagrangian of (17.31) becomes

L = 1
2 (∂ µη)(∂µη)−λv2η2

︸!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!︸
massive η

+ − 1
4 FµνFµν+ 1

2g
2v2Bµ′B′µ︸!!!!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!!!!︸

massive gauge field

−Vint.

Since the original Lagrangian was constructed to be invariant under local U(1)
gauge transformations, the physical predications of the theory are unchanged by
the gauge transformation of (17.32).

Thus, with the appropriate choice of gauge, the Goldstone field ξ no longer
appears in the Lagrangian. This choice of gauge corresponds to taking χ(x) =
−ξ(x)/gv in (17.27). The corresponding gauge transformation of the original com-
plex scalar field φ(x) is therefore

φ(x)→ φ′(x) = e−ig ξ(x)
gv φ(x) = e−iξ(x)/vφ(x). (17.33)

After symmetry breaking, the complex scalar field was expanded about the physical
vacuum by writing φ(x) = 1√

2
(v+ η(x)+ iξ(x)), which to first order in the fields can

be expressed as

φ(x) ≈ 1√
2

[
v + η(x)

]
eiξ(x)/v.

The effect of the gauge transformation of (17.33) on the original complex scalar
field is therefore
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φ(x)→ φ′(x) = 1√
2
e−iξ(x)/v [v + η(x)

]
eiξ(x)/v = 1√

2
(v + η(x)).

Hence, the gauge in which the Goldstone field ξ(x) is eliminated from the
Lagrangian, which is known as the Unitary gauge, corresponds to choosing the
complex scalar field φ(x) to be entirely real,

φ(x) = 1√
2
(v + η(x)) ≡ 1√

2
(v + h(x)).

Here the field η(x) has been written as the Higgs field h(x) to emphasise that this is
the physical field in the unitary gauge. It is important to remember that the physical
predictions of the theory do not depend on the choice of gauge, but in the unitary
gauge the fields appearing in the Lagrangian correspond to the physical particles;
there are no “mixing” terms like Bµ(∂ µξ). The degree of freedom corresponding to
the Goldstone field ξ(x) no longer appears in the Lagrangian; it has been replaced
by the degree of freedom corresponding to the longitudinal polarisation state of the
now massive gauge field B. Sometimes it is said that the Goldstone boson has been
“eaten” by the gauge field. Writing µ2 = −λv2, and working in the unitary gauge
where φ(x) = 1√

2
(v + h(x)), the Lagrangian of (17.28) can be written

L = (Dµφ)∗(D µφ) − 1
4 FµνFµν − µ2φ2 − λφ4

= 1
2 (∂µ − igBµ)(v + h)(∂ µ + igBµ)(v + h) − 1

4 FµνFµν − 1
2µ

2(v + h)2 − 1
4λ(v + h)4

= 1
2 (∂µh)(∂ µh) + 1

2g
2BµBµ(v + h)2 − 1

4 FµνFµν − λv2h2 − λvh3 − 1
4λh4 + 1

4λv
4.

Gathering up the terms (and ignoring the λv4/4 constant) gives

L = 1
2 (∂µh)(∂ µh) − λv2h2

︸!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!︸
massive h scalar

− 1
4 FµνFµν + 1

2g
2v2BµBµ︸!!!!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!!!!︸

massive gauge boson

+ g2vBµBµh + 1
2g

2BµBµh2

︸!!!!!!!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!!!!!!!︸
h,B interactions

− λvh3 − 1
4λh4

︸!!!!!!!!!︷︷!!!!!!!!!︸
h self-interactions

. (17.34)

This Lagrangian describes a massive scalar Higgs field h and a massive gauge
boson B associated with the U(1) local gauge symmetry. It contains interaction
terms between the Higgs boson and the gauge boson, and Higgs boson self-
interaction terms, indicated in Figure 17.11. The mass of the gauge boson,

mB = g v,

is related to the strength of the gauge coupling and the vacuum expectation value
of the Higgs field. The mass of the Higgs boson is given by

mH =
√

2λ v.

It should be noted that the vacuum expectation value v sets the scale for the masses
of both the gauge boson and the Higgs boson.
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4!Fig. 17.11 The interaction terms arising from the Higgs mechanism for a U(1) local gauge theory.

17.5.4 The Standard Model Higgs

In the above example, the Higgs mechanism was used to generate a mass for
the gauge boson corresponding to a U(1) local gauge symmetry. In the Salam–
Weinberg model, the Higgs mechanism is embedded in the U(1)Y × SU(2)L local
gauge symmetry of the electroweak sector of the Standard Model. Three Goldstone
bosons will be required to provide the longitudinal degrees of freedom of the W+,
W− and Z bosons. In addition, after symmetry breaking, there will be (at least) one
massive scalar particle corresponding to the field excitations in the direction picked
out by the choice of the physical vacuum. The simplest Higgs model, which has
the necessary four degrees of freedom, consists of two complex scalar fields.

Because the Higgs mechanism is required to generate the masses of the elec-
troweak gauge bosons, one of the scalar fields must be neutral, written as φ0, and
the other must be charged such that φ+ and (φ+)∗ = φ− give the longitudinal degrees
of freedom of the W+ and W−. The minimal Higgs model consists of two complex
scalar fields, placed in a weak isospin doublet

φ =

(
φ+

φ0

)
= 1√

2

(
φ1 + iφ2

φ3 + iφ4

)
. (17.35)

As usual, the upper and lower components of the doublet differ by one unit of
charge. The Lagrangian for this doublet of complex scalar fields is

L = (∂µφ)†(∂ µφ) − V(φ), (17.36)

with the Higgs potential,

V(φ) = µ2φ†φ + λ(φ†φ)2.

For µ2 < 0, the potential has an infinite set of degenerate minima satisfying

φ†φ = 1
2 (φ2

1 + φ
2
2 + φ

2
3 + φ

2
4) =

v

2

2
= −µ

2

2λ
.

After symmetry breaking, the neutral photon is required to remain massless, and
therefore the minimum of the potential must correspond to a non-zero vacuum
expectation value only of the neutral scalar field φ0,
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〈0|φ|0〉 = 1√
2

(
0
v

)
.

The fields then can be expanded about this minimum by writing

φ(x) = 1√
2

(
φ1(x) + iφ2(x)
v + η(x) + iφ4(x)

)
.

After the spontaneous breaking of the symmetry, there will be a massive scalar
and three massless Goldstone bosons, which will ultimately give the longitudinal
degrees of freedom of the W± and Z bosons. Rather than repeating the derivation
given in Section 17.5.3 and “gauging-away” the Goldstone fields, here the Higgs
doublet is immediately written in the unitary gauge,

φ(x) = 1√
2

(
0

v + h(x)

)
.

The resulting Lagrangian is known as the Salam–Weinberg model. All that remains
is to identify the masses of gauge bosons and the interaction terms.

The mass terms can be identified by writing the Lagrangian of (17.36) such that
it respects the SU(2)L × U(1)Y local gauge symmetry of the electroweak model
by replacing the derivatives with the appropriate covariant derivatives (discussed
further in Appendix F),

∂µ → Dµ = ∂µ + igWT ·Wµ + ig′
Y
2

Bµ, (17.37)

where T = 1
2σ are the three generators of the SU(2) symmetry. In Chapter 15, the

weak hypercharge of the Glashow–Salam–Weinberg (GSW) model was identified
as Y = 2

(
Q − I(3)

W

)
. Here, the lower component of the Higgs doublet is neutral and

has I(3)
W = − 1

2 , and thus the Higgs doublet has hypercharge Y = 1. Hence, the effect
of the covariant derivative of (17.37) acting on the Higgs doublet φ is

Dµφ = 1
2

[
2∂µ +

(
igWσ ·Wµ + ig′Bµ

)]
φ,

where Dµ is a 2 × 2 matrix acting on the two component weak isospin doublet and
the identity matrix multiplying the ∂µ and Bµ terms is implicit in this expression.

The term in the Lagrangian that generates the masses of the gauge bosons is
(Dµφ)†(D µφ). In the Unitary gauge Dµφ is given by

Dµφ = 1
2
√

2




2∂µ + igWW(3)
µ + ig′Bµ igW[W(1)

µ − iW(2)
µ ]

igW[W(1)
µ + iW(2)

µ ] 2∂µ − igWW(3)
µ + ig′Bµ



(

0
v + h

)

= 1
2
√

2




igW(W(1)
µ − iW(2)

µ )(v + h)
(2∂µ − igWW(3)

µ + ig′Bµ)(v + h)


 .
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Taking the Hermitian conjugate gives (Dµφ)†, from which

(Dµφ)†(D µφ) = 1
2 (∂µh)(∂ µh) + 1

8g
2
W(W(1)

µ + iW(2)
µ )(W(1)µ − iW(2)µ)(v + h)2

+ 1
8 (gWW(3)

µ − g′Bµ)(gWW(3)µ − g′Bµ)(v + h)2. (17.38)

The gauge bosons masses are determined by the terms in (Dµφ)†(D µφ) that are
quadratic in the gauge boson fields, i.e.

1
8v

2g2
W

(
W(1)
µ W(1)µ +W(2)

µ W(2)µ
)
+ 1

8v
2
(
gWW(3)

µ − g′Bµ
) (
gWW(3)µ − g′Bµ

)
.

In the Lagrangian, the mass terms for the W(1) and W(2) spin-1 fields will appear as

1
2 m2

WW(1)
µ W(1)µ and 1

2 m2
WW(2)

µ W(2)µ,

and therefore the mass of the W boson is

mW =
1
2gWv. (17.39)

The mass of the W boson is therefore determined by the coupling constant of the
SU(2)L gauge interaction gW and the vacuum expectation value of the Higgs field.

The terms in the Lagrangian of (17.38) which are quadratic in the neutral W(3)

and B fields can be written as

v2

8

(
gWW(3)

µ −g′Bµ
) (
gWW(3)µ−g′Bµ

)
= v

2

8

(
W(3)
µ Bµ

) ( g2
W −gWg′

−gWg′ g′2

) (
W(3)µ

Bµ

)

= v
2

8

(
W(3)
µ Bµ

)
M

(
W(3)µ

Bµ

)
, (17.40)

where M is the non-diagonal mass matrix. The off-diagonal elements of M couple
together the W(3) and B fields, allowing them to mix. Again this is reminiscent of
the non-diagonal mass matrix encountered in the discussion of the neutral kaon sys-
tem (see Section 14.4.3). The physical boson fields, which propagate as indepen-
dent eigenstates of the free particle Hamiltonian, correspond to the basis in which
the mass matrix is diagonal. The masses of the physical gauge bosons are given by
the eigenvalues of M, obtained from characteristic equation det (M − λI) = 0,

(g2
W − λ)(g′2 − λ) − g2

Wg
′2 = 0,

giving

λ = 0 or λ = g2
W + g

′2. (17.41)

Hence, in the diagonal basis the mass matrix of (17.40) is

1
8
v2

(
Aµ Zµ

) ( 0 0
0 g2

W + g
′2

) (
Aµ

Zµ

)
,
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where the Aµ and Zµ are the physical fields corresponding to the eigenvectors of
M. In the diagonal basis, the term in the Lagrangian representing the masses of the
A and Z will be

1
2

(
Aµ Zµ

) ( m2
A 0

0 m2
Z

) (
Aµ

Zµ

)
,

from which the masses of the physical gauge bosons can be identified as

mA = 0 and mZ =
1
2v

√
g2

W + g
′2. (17.42)

Hence, in the physical basis there is a massless neutral gauge boson A which can be
identified as the photon and a massive neutral gauge boson which can be identified
as the Z. The physical fields, which correspond to the normalised eigenvectors of
the mass matrix, are

Aµ =
g′W(3)

µ + gWBµ
√
g2

W + g
′2

with mA = 0, (17.43)

Zµ =
gWW(3)

µ − g′Bµ√
g2

W + g
′2

with mZ =
1
2v

√
g2

W + g
′2. (17.44)

Thus, the physical fields are mixtures of the massless bosons associated with the
U(1)Y and SU(2)L local gauge symmetries. The combination corresponding to the
Z boson, which is associated with the neutral Goldstone boson of the broken sym-
metry, has acquired mass through the Higgs mechanism and the field corresponding
to the photon has remained massless. By writing the ratio of the couplings of the
U(1)Y and SU(2)L gauge symmetries as

g′

gW
= tan θW, (17.45)

the relationship between the physical fields and underlying fields of (17.43) and
(17.44) can be written as

Aµ = cos θWBµ + sin θWW(3)
µ ,

Zµ = − sin θWBµ + cos θWW(3)
µ ,

which are exactly the relations that were asserted in Section 15.3. Furthermore, by
using (17.45), the mass of Z boson in (17.42) can be expressed as

mZ =
1
2
gW

cos θW
v.
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Therefore, when combined with the corresponding expression for the W-boson
mass given in (17.39), the Glashow–Salam–Weinberg model predicts

mW

mZ
= cos θW.

The experimental verification of this relation, described in Chapter 16, provides a
compelling argument for the reality of the Higgs mechanism.

The GSW model is described by just four parameters, the SU(2)L×U(1)Y gauge
couplings gW and g′, and the two free parameters of the Higgs potential µ and λ,
which are related to the vacuum expectation value of the Higgs field v and the mass
of the Higgs boson mH by

v2 =
−µ2

λ
and m2

H = 2λv2.

By using the relation mW =
1
2gWv and the measured values for mW and gW, the

vacuum expectation value of the Higgs field is found to be

v = 246 GeV.

The parameter λ in the Higgs potential can be obtained from the mass of the Higgs
boson as measured at the LHC (see Section 17.7).

Couplings to the gauge bosons
In the (Dµφ)†(D µφ) term in the Lagrangian of (17.38), the gauge boson fields
appear in the form of VV(v + h)2, where V = W±,Z. The VVv2 terms determine
the masses of the gauge bosons and the VVh and VVhh terms give rise to triple and
quartic couplings between one or two Higgs bosons and the gauge bosons. From
(15.12), the W+ and W− fields are the linear combinations

W± = 1√
2

(
W(1) ∓ iW(2)

)
.

Hence the second term on the RHS (17.38) can be written in terms of the physical
W+ and W− fields,

1
4g

2
WW−µW+µ(v + h)2 = 1

4g
2
Wv

2W−µW+µ + 1
2g

2
WvW

−
µW+µh + 1

4g
2
WW−µW+µhh.

Here the first term gives the masses to the W+ and W−. The hW+W− and hhW+W−

terms give rise to the triple and quartic couplings of the Higgs boson to the gauge
bosons. The coupling strength at the hW+W− vertex of Figure 17.12 is therefore

gHWW =
1
2g

2
Wv ≡ gWmW.

Hence the coupling of the Higgs boson to the W boson is proportional to the
W-boson mass. Likewise, the coupling of the Higgs boson to the Z boson, gHZZ =

gZmZ, is proportional to mZ.
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!Fig. 17.12 The trilinear couplings of the Higgs boson to the W and Z, where gZ = gW/cosθW.

17.5.5 Fermion masses

The Higgs mechanism for the spontaneous symmetry breaking of the U(1)Y ×
SU(2)L gauge group of the Standard Model generates the masses of the W and
Z bosons. Remarkably, it also can be used to generate the masses of the fermions.
Because of the different transformation properties of left- and right-handed chiral
states, the fermion mass term in the Dirac Lagrangian,

−mψψ = −m
(
ψRψL + ψLψR

)
,

does not respect the SU(2)L × U(1)Y gauge symmetry, and therefore cannot be
present in the Lagrangian of the Standard Model.

In the Standard Model, left-handed chiral fermions are placed in SU(2) dou-
blets, here written L, and right-handed fermions are placed in SU(2) singlets, here
denoted R. Because the two complex scalar fields of the Higgs mechanism are
placed in an SU(2) doublet φ(x), an infinitesimal SU(2) local gauge transformation
has the effect,

φ→ φ′ = (I + igWε(x) · T)φ.

Exactly the same local gauge transformation applies to the left-handed doublet of
fermion fields L. Therefore, the effect of the infinitesimal SU(2) gauge transforma-
tion on L ≡ L†γ0 is

L→ L
′
= L(I − igWε(x) · T).

Consequently, the combination Lφ is invariant under the SU(2)L gauge transfor-
mations. When combined with a right-handed singlet, LφR, it is invariant under
SU(2)L and U(1)Y gauge transformations; as is its Hermitian conjugate (LφR)† =
Rφ†L. Hence, a term in the Lagrangian of the form −gf(LφR + Rφ†L) satisfies the
SU(2)L × U(1)Y gauge symmetry of the Standard Model. For the SU(2)L doublet
containing the electron, this corresponds to

Le = −ge

[(
νe e

)
L

(
φ+

φ0

)
eR + eR

(
φ+∗ φ0∗ )

(
νe

e

)

L

]
, (17.46)
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!Fig. 17.13 Left: the interaction between a massless chiral electron and the non-zero expectation value of the Higgs 'eld.
Right: the interaction vertex for the coupling of the Higgs boson to an electron.

where ge is a constant known as the Yukawa coupling of the electron to the Higgs
field. After spontaneously symmetry breaking, the Higgs doublet in the unitary
gauge is

φ(x) = 1√
2

(
0

v + h(x)

)
,

and thus (17.46) becomes

Le = − ge√
2
v
(
eLeR + eReL

) − ge√
2
h
(
eLeR + eReL

)
. (17.47)

The first term in (17.47) has exactly the form required for the fermion masses, but
has now been introduced in gauge invariant manner. The Yukawa coupling ge is
not predicted by the Higgs mechanism, but can be chosen to be consistent with the
observed electron mass,

ge =
√

2
me

v
.

In this case, (17.47) becomes

Le = −meee − me

v
eeh. (17.48)

The first term in (17.48), which gives the mass of the electron, represents the
coupling of electron to the Higgs field through its non-zero vacuum expectation
value. The second term in (17.48) gives rise to a coupling between the electron and
the Higgs boson itself. These two terms are illustrated in Figure 17.13, where the
fermion masses arise from the coupling of left-handed and right-handed massless
chiral fermions though the interaction with the non-zero expectation value of the
Higgs field.

Because the non-zero vacuum expectation value occurs in the lower (neutral)
component of the Higgs doublet, the combination of fields LφR + Rφ†L only can
generate the masses for the fermion in the lower component of an SU(2)L doublet.
Thus it can be used to generate the masses of the charged leptons and the down-
type quarks, but not the up-type quarks or the neutrinos. Putting aside the question
of neutrino masses, a mechanism is required to give masses to the up-type quarks.
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This can be achieved by constructing the conjugate doublet φc formed from the
four fields in (17.35),

φc = −iσ2φ
∗ =

(
−φ0∗

φ−

)
= 1√

2

(
−φ3 + iφ4

φ1 − iφ2

)
.

Because of the particular properties of SU(2), see Section 9.5, the conjugate dou-
blet φc transforms in exactly the same way as the doublet φ. This is analogous to the
representation of up- and down-quarks and anti-up and anti-down in SU(2) isospin
symmetry. A gauge invariant mass term for the up-type quarks can be constructed
from LφcR + Rφ†c L, for example

Lu = gu

(
u d

)
L

(
−φ0∗

φ−

)
uR + Hermitian conjugate,

which after symmetry breaking becomes

Lu = − gu√
2
v
(
uLuR + uRuL

) − gu√
2
h
(
uLuR + uRuL

)
,

with the Yukawa coupling gu =
√

2mu/v, giving

Lu = −muuu − mu

v
uuh.

Hence for all Dirac fermions, gauge invariant mass terms can be constructed
from either

L = −gf

[
LφR + (LφR)†

]
or L = gf

[
LφcR + (LφcR)†

]
,

giving rise to both the masses of the fermions and the interactions between the
Higgs boson and the fermion. The Yukawa couplings of the fermions to the Higgs
field are given by

gf =
√

2
mf

v
,

where the vacuum expectation value of the Higgs field is v = 246 GeV. Inter-
estingly, for the top quark with mt ∼ 173.5 ± 1.0 GeV, the Yukawa coupling is
almost exactly unity. Whilst this may be a coincidence, it is perhaps natural that the
Yukawa couplings of the fermions are O(1). If the neutrino masses are also asso-
ciated with the Higgs mechanism, it is perhaps surprising that they are so small,
with Yukawa couplings of ! 10−12. This might suggest that the mechanism which
generates the neutrino masses differs from that for other fermions. One interesting
possibility is the seesaw mechanism described in the addendum to this chapter.
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17.6 Properties of the Higgs boson

The Standard Model Higgs boson H is a neutral scalar particle. Its mass is a free
parameter of the Standard Model that is given by mH = 2λv2. The Higgs boson
couples to all fermions with a coupling strength proportional to the fermion mass.
From (17.48), the Feynman rule for the interaction vertex with a fermion of mass
mf can be identified as

−i
mf

v
≡ −i

mf

2mW
gW. (17.49)

The Higgs boson therefore can decay via H → ff for all kinematically allowed
decays modes with mH > 2mf . If it is sufficiently massive, the Higgs boson can
also decay via H → W+W− or H → ZZ. The Feynman diagrams and coupling
strengths for these lowest-order decay modes are shown in Figure 17.14. In each
case, the resulting matrix element is proportional to the mass of the particle cou-
pling to the Higgs boson. The proportionality of the Higgs boson couplings to mass
determines the dominant processes through which it is produced and decays; the
Higgs boson couples preferentially to the most massive particles that are kinemat-
ically accessible.

17.6.1 Higgs decay

In principle, the Higgs boson can decay to all Standard Model particles. However,
because of the proportionality of the coupling to the mass of the particles involved,
the largest branching ratios are to the more massive particles. For a Higgs boson
mass of 125 GeV, the largest branching ratio is to bottom quarks, BR(H → bb) =
57.8%. The corresponding partial decay width Γ(H → bb) can be calculated from
the Feynman rule for the Hbb interaction vertex of (17.49) and the spinors for the
quark and antiquark. Because the Higgs boson is a scalar particle, no polarisation
four-vector is required; it is simply described by a plane wave. Consequently, the
matrix element for the Feynman diagram shown in Figure 17.15 is

H

f

mf
gW

2mW
H

W−

W+

mWgW H

Z

Z

mZ
gW

cosqW

f

!Fig. 17.14 Three lowest-order Feynman diagrams for Higgs decay.
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!Fig. 17.15 The Feynman diagram for h→ bb and the four-momenta of the particles in the Higgs rest frame.

M = mb

v
u(p2)v(p3) =

mb

v
u†γ0v. (17.50)

Without loss of generality, the b-quark momentum can be taken to be in the z-axis.
Because mH - mb, the final-state quarks are highly relativistic and therefore have
four-momenta p2 ≈ (E, 0, 0, E) and p3 ≈ (E, 0, 0,−E), where E = mH/2. In the
ultra-relativistic limit, the spinors for the two possible helicity states for each of the
b-quark (θ = 0, φ = 0) and the b-antiquark (θ = π, φ = π) are

u↑(p2)=
√

E




1
0
1
0



, u↓(p2)=

√
E




0
1
0
−1



, v↑(p3)=

√
E




1
0
−1

0



v↓(p4)=

√
E




0
−1

0
−1



.

From the u†γ0v form of the matrix element of (17.50), it can be seen immediately
that only two of the four possible helicity combinations give non-zero matrix ele-
ments, these are

M↑↑ = −M↓↓ =
mb

v
2E.

In both cases, the non-zero matrix elements correspond to spin configurations
where the bb are produced in a spin-0 state. Because the Higgs is a spin-0 scalar, it
decays isotropically and matrix element has no angular dependence. Furthermore,
since the Higgs boson exists in a single spin state, the spin-averaged matrix element
squared is simply,

〈|M|2〉 = |M↑↑|2 + |M↓↓|2 =
m2

b

v2
8E2 =

2m2
bm2

H

v2
.

The partial decay width, obtained from (3.49), is therefore

Γ(H→ bb) = 3 ×
m2

bmH

8πv2
, (17.51)

where the factor of three accounts for the three possible colours of the bb pair. For
a Higgs boson mass of 125 GeV, the partial decay width Γ(H → bb) is O(2 MeV).
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Table 17.1 The predicted
branching ratios of the Higgs

boson for mH = 125 GeV.

Decay mode Branching ratio

H→ bb 57.8%
H→WW∗ 21.6%
H→ τ+τ− 6.4%
H→ gg 8.6%
H→ cc 2.9%
H→ ZZ∗ 2.7%
H→ γγ 0.2%

t

t

tH
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g
t

t

tH

W

W

WH

γ

γγ

γ

!Fig. 17.16 The Feynman diagrams for the decays H→ gg and H→ γγ.

From (17.51), it can be seen that the partial decay rate to fermions is proportional
to the square of the fermion mass, and therefore

Γ(H→ bb) : Γ(H→ cc) : Γ(H→ τ+τ−) ∼ 3m2
b : 3m2

c : m2
τ . (17.52)

It should be noted that quark masses run with q2 in a similar manner to the running
of αS. Hence the masses appearing in (17.51) are the appropriate values at q2 = m2

H,
where the charm and bottom quark masses are approximately mc(m2

H) ≈ 0.6 GeV
and mb(m2

H) ≈ 3.0 GeV.
The branching ratios for a Standard Model Higgs boson with mH = 125 GeV are

listed in Table 17.1. Despite the fact that mH < 2mW, the second largest branching
ratio is for the decay H→WW∗, where the star indicates that one of the W bosons
is produced off-mass-shell with q2 < m2

W. From the form of the W-boson propa-
gator of (16.27), the presence of the off-shell W boson will tend to suppress the
matrix element. Nevertheless, the large coupling of the Higgs boson to the mas-
sive W boson, gWmW, means that the branching ratio is relatively large. The Higgs
boson also can decay to massless particles, H→ gg and H→ γγ, through loops of
virtual top quarks and W bosons, as shown in Figure 17.16. Because the masses of
the particles in these loops are large, these decays can compete with the decays to
fermions and the off-mass-shell gauge bosons.
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17.7 The discovery of the Higgs boson

Prior to the turn-on of the Large Hadron Collider at CERN, the window for a Stan-
dard Model Higgs was relatively narrow. The absence of a signal from the direct
searches at LEP implied that mH > 114 GeV. At the same time, the limits on the
size of the quantum loop corrections from the precision electroweak measurements
at LEP and the Tevatron suggested that mH ! 150 GeV and that mH was unlikely
to be greater than 200 GeV.

One of the main aims of the LHC was the discovery of the Higgs boson (assum-
ing it existed). The LHC is not only the highest-energy particle collider ever built,
it is also the highest-luminosity proton–proton collider to date. During 2010–2011
it operated at a centre-of-mass energy of 7 TeV and during 2012 at 8 TeV. Com-
pelling evidence of the discovery of a new particle compatible with the Standard
Model Higgs boson was published by the ATLAS and CMS experiments in the
Summer of 2012.

The Higgs boson can be produced at the LHC through a number of different pro-
cesses, two of which are shown in Figure 17.17. Because the Higgs boson couples
preferentially to mass, the largest cross section at the LHC is through gluon–gluon
fusion via a loop of virtual top quarks. The cross section for this process can be
written in terms of the underlying cross section for gg→ H and the gluon PDFs,

σ(pp→ hX) ∼
∫ 1

0

∫ 1

0
g(x1)g(x2)σ(gg→ H) dx1dx2.

Consequently, the detailed knowledge of the PDFs for the proton is an essential
component in the calculation of the expected Higgs boson production rate at the
LHC. Fortunately, the proton PDFs are well known and the related uncertainties
on the various Higgs production cross sections are less than 10%. Although the
gluon–gluon fusion process has the largest cross section, from the experimental
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H

!Fig. 17.17 Two of the most important Feynman diagram for Higgs boson production in pp collisions at the LHC. The
gluon–gluon fusion process has a signi'cantly higher cross section.
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!Fig. 17.18 Left: a candidate H → γγ event in the CMS detector. Right: a candidate H → ZZ∗ → e+e−e+e− in the
ATLAS detector. Reproduced with kind permission from the ATLAS and CMS collaborations, © 2012 CERN.

perspective the vector boson fusion process (shown in Figure 17.17) is also impor-
tant. This is because it results in more easily identifiable final states consisting of
just the decay products of the Higgs boson and two forward jets from the break-up
of the colliding protons. In contrast, the gluon–gluon fusion process is accompa-
nied by QCD radiation from the colour field, making the identification of the Higgs
boson final states less easy.

In proton–proton collisions at a centre-of-mass energy of ∼ 8 TeV, the total pro-
duction cross section for a Higgs boson with mH = 125 GeV is approximately
20 pb. The first observations of the Higgs boson were based on approximately
20 fb−1 of data (ATLAS and CMS combined). This data sample corresponded to
a total of approximately N = σL = 400 000 produced Higgs bosons. Whilst this
number might seem large, it is a tiny fraction of the total number of interactions
recorded at the LHC, most of which involve the QCD production of multi-jet final
states. Consequently, it is difficult to distinguish the decays of the Higgs boson
producing final states with jets from the large QCD background. For this reason,
the most sensitive searches for the Higgs boson at the LHC are in decay channels
with distinctive final-state topologies, such as H → γγ, H → ZZ∗ → 2+2−2′+2′−

(where 2 = e or µ) and H→WW∗ → eνeµνµ. Despite the relatively low branching
ratios for these decay modes, the experimental signatures are sufficiently clear for
them to be distinguished from the backgrounds from other processes. For exam-
ple, Figure 17.18 shows a candidate H → γγ event in the CMS detector (left-hand
plot). The dashed lines point to the two large energy deposits in the electromagnetic
calorimeter from two high-energy photons, which are easily identifiable. Similarly,
the right-hand plot of Figure 17.18 shows a candidate H→ ZZ∗ → e+e−e+e− event
in the ATLAS detector. Here the four charged-particle tracks, pointing to four large
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energy deposits in the electromagnetic calorimeter, are clearly identifiable as high-
energy electrons.

17.7.1 Results

The ATLAS and CMS experiments searched for the Higgs boson in several final
states, γγ, ZZ∗, WW∗, τ+τ− and bb. In both experiments, the most significant evi-
dence for the Higgs boson was observed in the two most sensitive decay channels,
H → γγ and H → ZZ∗ → 42. In both these decay channels, the mass of the
Higgs boson candidate can be reconstructed on an event-by-event basis from the
invariant mass of its decay products. The left-hand plot of Figure 17.19 shows
the distribution of the reconstructed invariant mass of the two photons in candi-
date H → γγ events in the ATLAS detector. In this plot, each observed event is
entered into the histogram with a weight of between zero and one, reflecting the
estimated probability of it being compatible with the kinematics of Higgs pro-
duction and decay. Compared to the expected background, an excess of events is
observed at mγγ ≈ 126 GeV. The CMS experiment observed a similar excess. The
right-hand plot of Figure 17.19 shows the distribution of the invariant masses of
the four charged leptons in the CMS H → ZZ∗ → 42 search. The peak at 91 GeV
is from Z-boson production. The peak at about 125 GeV can be attributed to the
Higgs boson. Whilst the numbers of events are relatively small, the expected back-
ground in this region is also small. The ATLAS experiment observed a comparable
excess of H→ ZZ∗ → 42 candidates at the same mass.
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m4" /GeV!Fig. 17.19 Left: the reconstructed invariant mass distribution of the two photons from candidate H → γγ decays in
the ATLAS experiment, adapted from Aad et al. (2012). Right: the distribution of the reconstructed invari-
ant masses of the four leptons in candidate H → ZZ∗ → 42 events in the CMS experiment, adapted from
Chatrchyan et al. (2012). In both plots the solid line shows the expected distribution from background and the
observed Higgs signal and the dashed line indicates the expectation from background events alone.
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The combined results of the ATLAS and CMS experiments provided statisti-
cally compelling evidence for the discovery of a new particle compatible with the
expected properties of the Higgs boson. Until it has been demonstrated that the
observed particle is a scalar, it is not possible to say conclusively that the Higgs
boson has been discovered. However, even at the time of writing, it seems almost
certain that the Higgs boson has been discovered; its production cross section is
consistent with the Standard Model expectation and its mass is compatible with the
indirect determinations from its presence in quantum loop corrections, as inferred
from the precision electroweak measurements. Consistent measurements of the
mass of the new particle were obtained by the ATLAS (m = 126.0 ± 0.6 GeV)
and the CMS (m = 125.3 ± 0.6 GeV) experiments. On the reasonable assumption
that the new particle is the Higgs boson, it can be concluded that

mH 0 125.7 ± 0.5 GeV.

Since the discovery of the W and Z bosons in the mid 1980s, the search for the
Higgs boson has been the highest priority in particle physics. Its discovery finally
completed the particle spectrum of the Standard Model.

17.7.2 Outlook

The discovery of the Higgs boson is not the end of the story. The use of a sin-
gle Higgs doublet in the Standard Model is the most economical choice, but it is
not the only possibility. In supersymmetry (see Section 18.2.2), which is a popu-
lar extension to the Standard Model, there are (at least) two complex doublets of
scalar fields, which give rise to five physical Higgs bosons. Furthermore, it is not
clear whether the observed Higgs boson is a fundamental scalar particle or whether
it might be composite. In the coming years, the measurements of the spin and
branching ratios of the Higgs boson will further test the predictions of the Standard
Model. Perhaps more importantly, a detailed understanding of all the properties of
the Higgs boson may well open up completely new avenues in our understanding
of the Universe and point to what lies beyond the Standard Model.

Summary

The Higgs mechanism is an essential part of the Standard Model. It is based on a
doublet of complex scalar fields with the Higgs potential V(φ) = µ2(φ†φ)+λ(φ†φ)2

where µ2 < 0. As a result, the vacuum state of the Universe is degenerate. The spon-
taneous breaking of this symmetry, when combined with the underlying SU(2)L ×
U(1)Y gauge symmetry of the electroweak model, provides masses to the W and Z
gauge bosons with



494 The Higgs boson

mW = mZ cos θW =
1
2gW v,

where v is the vacuum expectation value of the Higgs field. The value of

v = 246 GeV,

sets the mass scale for the electroweak and Higgs bosons. The interaction between
the fermion fields and the non-zero expectation value of the Higgs field, provides
a gauge-invariant mechanism for generating the masses of the Standard Model
fermions.

In 2012, the discovery of the Higgs boson at the LHC with mass

mH 0 126 GeV,

completed the spectrum of Standard Model particles. Following the discovery of
the Higgs boson, it is hoped that the studies of its properties will provide clues to
physics beyond the Standard Model, which is the main topic of the final chapter of
this book.

17.8 *Addendum: Neutrino masses

The right-handed chiral neutrino states νR do not participate in any of the interac-
tions of the Standard Model; they do not couple to the gluons or electroweak gauge
bosons. Consequently, there is no direct evidence that they exist. However, from
the studies of neutrino oscillations it is known that neutrinos do have mass, and
therefore there must be a corresponding mass term in the Lagrangian. In the Stan-
dard Model, neutrino masses can be introduced in exactly the same way as for the
up-type quarks using the conjugate Higgs doublet. In this case, after spontaneous
symmetry breaking, the gauge invariant Dirac mass term for the neutrino is

LD = −mD (νRνL + νLνR).

If this is the origin of neutrino masses, then right-handed chiral neutrinos exist.
However, the neutrino masses are very much smaller than the masses of the other
fermions, suggesting that another mechanism for generating neutrino mass might
be present.

Because the right-handed neutrinos and left-handed antineutrinos transform as
singlets under the Standard Model gauge transformations, any additional terms in
the Lagrangian formed from these fields alone can be added to the Lagrangian
without breaking the gauge invariance of the Standard Model. The left-handed
antineutrinos appear in the Lagrangian as the CP conjugate fields defined by
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ψc = ĈP̂ψ = iγ2γ0ψ∗,

where the CP conjugate field for the right-handed neutrino, written νc
R, corresponds

to a left-handed antineutrino. Therefore the Majorana mass term

LM = − 1
2 M (νc

RνR + νRν
c
R),

which is formed from right-handed neutrino fields and left-handed antineutrino
fields, respects the local gauge invariance of the Standard Model. Consequently, it
can be added to the Standard Model Lagrangian. However, there is a price to pay;
the Majorana mass term provides a direct coupling between between a particle and
an antiparticle. For example, the corresponding Majorana mass term for the elec-
tron would allow e+ ↔ e− transitions, violating charge conservation. This problem
does not exist for the neutrinos. Furthermore, because neutrinos are neutral, it is
possible that they are their own antiparticles, in which case they are referred to as
Majorana neutrinos as opposed to Dirac neutrinos.

17.8.1 The seesaw mechanism

The most general renormalisable Lagrangian for the neutrino masses includes both
the Dirac and Majorana mass terms, indicated in Figure 17.20. Because νLνR is
equivalent to νc

Rν
c
L, the Dirac mass term can be written

LD = − 1
2 mD (νLνR + ν

c
Rν

c
L) + h.c.,

where h.c. stands for the corresponding Hermitian conjugate. This term admits the
possibility that neutrino masses arise from the spontaneous symmetry breaking of
the Higgs mechanism. If in addition, the automatically gauge-invariant Majorana
mass term is added by hand, the Lagrangian for the combined Dirac and Majorana
masses is

LDM = − 1
2

[
mD νLνR + mD ν

c
Rν

c
L + M νc

RνR

]
+ h.c.

or, equivalently,

LDM = − 1
2

(
νL νc

R

) ( 0 mD

mD M

) (
νc

L
νR

)
+ h.c. (17.53)
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νR νL

νR
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M

!Fig. 17.20 The Dirac and Majorana neutrino mass terms.
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The physical states of this system can be obtained from the basis in which the mass
matrix is diagonal, analogous to the procedure for identifying the physical states of
the neutral kaon system and the neutral gauge bosons of the U(1)Y × SU(2)L gauge
symmetry. Hence, with the Lagrangian including Dirac and Majorana mass terms,
the masses of the physical neutrino states are the eigenvalues of mass matrix M
in (17.53). These can be found from the characteristic equation det (M − λI) = 0,
which implies λ2 −Mλ−m2

D = 0. Hence, in this model, the masses of the physical
neutrinos would be

m± = λ± =
M ±

√
M2 + 4m2

D

2
=

M ± M
√

1 + 4m2
D/M

2

2
.

If the Majorana mass M is taken to be much greater than the Dirac mass mD, then

m± ≈ 1
2 M ± 1

2


M +

2m2
D

M


 , (17.54)

giving a light neutrino state2 (ν) and heavy neutrino state (N) with masses

|mν| ≈
m2

D

M
and mN ≈ M.

In the seesaw mechanism, it is hypothesised that the Dirac mass terms for the
neutrinos are of a similar size to the masses of the other fermions, i.e. O(1 GeV).
The Majorana mass M is then made sufficiently large that the lighter of the two
physical neutrino states has a mass mν ∼ 0.01 eV. In this way, the masses of the
lighter neutrino states can be made to be very small, even when the Dirac mass
term is of the same order of magnitude as the other fermions. For this to work, the
Majorana mass must be very large, M ∼ 1011 GeV.

If a Majorana mass term exists, the seesaw mechanism predicts that for each
of the three neutrino generations, there is a very light neutrino with a mass much
smaller than the other Standard Model fermions and a very massive neutrino state
mN ≈ M. The physical neutrino states, which are obtained from the eigenvalues of
the mass matrix, are

ν = cos θ(νL + ν
c
L) − sin θ(νR + ν

c
R) and N = cos θ(νR + ν

c
R) + sin θ(νL + ν

c
L),

where tan θ ≈ mD/M. Since the left-handed chiral components of the light neutrino
are multiplied by cos θ, the effect of introducing the Majorana mass term is to
reduce the weak charged-current couplings of the light neutrino states by a factor
cos θ. However, for M - mD, the neutrino states are

ν ≈ (νL + ν
c
L) − mD

M
(νR + ν

c
R) and N ≈ (νR + ν

c
R) +

mD

M
(νL + ν

c
L),

2 The minus sign for the mass of the light neutrino in (17.54) can be absorbed in to the definition of
the fields.
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and the couplings of the light neutrinos to the weak charged-current are essentially
the same as those of the Standard Model. Since the massive neutrino state is almost
entirely right-handed, it would not participate in the weak charged- or neutral-
currents.

The seesaw mechanism provides an interesting hypothesis for the smallness of
neutrino masses, but it is just a hypothesis. It would be placed on firmer ground
if neutrinos were shown to be Majorana particles. One experimental consequence
of neutrinos being Majorana particles would be the possibility of observing the
phenomenon of neutrinoless double β-decay, which is discussed in the following
chapter.

Problems

17.1 By considering the form of the polarisation four-vector for a longitudinally polarised massive gauge bosons,
explain why the t-channel neutrino-exchange diagram for e+e− → W+W−, when taken in isolation, is badly
behaved at high centre-of-mass energies.

17.2 The Lagrangian for the Dirac equation is

L = iψγµ∂ µψ − mψψ,

Treating the eight 'eldsψi andψi as independent, show that the Euler-Lagrange equation for the component
ψi leads to

i∂µψγ µ + mψ = 0.

17.3 Verify that the Lagrangian for the free electromagnetic 'eld,

L = − 1
4 FµνFµν,

is invariant under the gauge transformation Aµ → A′µ = Aµ − ∂µχ.

17.4 The Lagrangian for the electromagnetic 'eld in the presence of a current j µ is

L = − 1
4 FµνFµν − j µAµ.

By writing this as

L = − 1
4 (∂ µAν − ∂νAµ)(∂µAν − ∂νAµ) − j µAµ

= − 1
2 (∂ µAν)(∂µAν) + 1

2 (∂νAµ)(∂µAν) − j µAµ,

show that the Euler–Lagrange equation gives the covariant form of Maxwell’s equations,

∂µFµν = jν.

17.5 Explain why the Higgs potential can contain terms with only even powers of the 'eldφ.

17.6 Verify that substituting (17.30) into (17.29) leads to

L = 1
2 (∂ µη)(∂µη) − λv2η2 + 1

2 (∂ µξ)(∂µξ),− 1
4 FµνFµν + 1

2 g2v2BµBµ − Vint + gvBµ(∂ µξ).
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17.7 Show that the Lagrangian for a complex scalar 'eldφ,

L = (Dµφ)∗(Dµφ),

with the covariant derivative Dµ = ∂µ + igBµ, is invariant under local U(1) gauge transformations,

φ(x)→ φ′(x) = eigχ(x)φ(x),

provided the gauge 'eld transforms as

Bµ → B′µ = Bµ − ∂µχ(x).

17.8 From the mass matrix of (17.40) and its eigenvalues (17.41), show that the eigenstates in the diagonal
basis are

Aµ =
g′W(3)
µ + gBµ

√
g2 + g′Bµ

and Zµ =
gW(3)
µ − g′Bµ

√
g2 + g′Bµ

,

where Aµ and Zµ correspond to the physical 'elds for the photon and Z.

17.9 By considering the interaction terms in (17.38), show that the HZZ coupling is given by

gHZZ =
gW

cos θW
mZ.

17.10 For a Higgs boson with mH > 2mW, the dominant decay mode is into two on-shell W bosons, H → W+W−.
The matrix element for this decay can be written

M = −gWmWgµνε µ(p2)∗εν(p3)∗,

where p2 and p3 are respectively the four-momenta of the W+ and W−.

(a) Taking p2 to lie in the positive z-direction, consider the nine possible polarisation states of the W+W−
and show that the matrix element is non-zero only when both W bosons are left-handed (M↓↓), both W
bosons are right-handed (M↑↑), or both are longitudinally polarised (MLL).

(b) Show that

M↑↑ =M↓↓ = −gWmW and MLL =
gW

mW

(
1
2 m2

H − m2
W

)
.

(c) Hence show that

Γ(H→ W+W−) =
GFm3

H

8π
√

2

√
1 − 4λ2

(
1 − 4λ2 + 12λ4

)
,

whereλ = mW/mH.

17.11 Assuming a total Higgs production cross section of 20 pb and an integrated luminosity of 10 fb−1, how many
H→ γγ and H→ µ+µ−µ+µ− events are expected in each of the ATLAS and CMS experiments.

17.12 Draw the lowest-order Feynman diagrams for the processes e+e− → HZ and e+e− → Hνeνe, which are the
main Higgs production mechanism at a future high-energy linear collider.

17.13 In the future, it might be possible to construct a muon collider where the Higgs boson can be produced directly
through µ+µ− → H. Compare the cross sections for e+e− → H→ bb, µ+µ− → H→ bb and µ+µ− →
γ→ bb at

√
s = mH.


