
16 Tests of the Standard Model

Over the course of the previous 15 chapters, the main elements of the Stan-
dard Model of particle physics have been described. There are 12 fundamen-
tal spin-half fermions, which satisfy the Dirac equation, and 12 corresponding
antiparticles. The interactions between particles are described by the exchange
of spin-1 gauge bosons where the form of the interaction is determined by the
local gauge principle. The underlying gauge symmetry of the Standard Model
is U(1)Y × SU(2)L × SU(3), with the electromagnetic and weak interactions
described by the unified electroweak theory. The precise predictions of the
electroweak theory were confronted with equally precise experimental mea-
surements of the properties of the W and Z bosons at the LEP and Tevatron
colliders. These precision tests of the Standard Model are the main subject of
this chapter.

16.1 The Z resonance

The unified electroweak model introduced in Chapter 15 provides precise predic-
tions for the properties of the Z boson. These predictions were tested with high
precision at the Large Electron–Positron (LEP) collider at CERN, where large
numbers of Z bosons were produced in e+e− annihilation at the Z resonance.

Because the neutral Z boson couples to all flavours of fermions, the photon in
any QED process can be replaced by a Z. For example, Figure 16.1 shows the two
lowest-order Feynman diagrams for the annihilation process e+e− → µ+µ−. The
respective couplings and propagator terms that enter the matrix elements for the
photon and Z exchange diagrams are

Mγ ∝
e2

q2 and MZ ∝
g2

Z

q2 − m2
Z

. (16.1)

In the s-channel annihilation process, the four-momentum of the virtual parti-
cle is equal to the centre-of-mass energy squared, q2 = s. Owing to the presence
of the m2

Z term in the Z-boson propagator, the QED process dominates at low
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!Fig. 16.1 The lowest-order Feynman diagrams for the annihilation process e+e− → µ+µ−.

centre-of-mass energies,
√

s&mZ. This is why the Z-boson diagram could be
neglected in the discussion of electron–positron annihilation in Chapter 6. At very
high centre-of-mass energies,

√
s ' mZ, the QED and Z exchange processes are

both important because the strengths of the couplings of the photon and the Z
boson are comparable. In the region

√
s ∼ mZ, the Z-boson process dominates.

Indeed, from (16.1) it would appear that the matrix element diverges at
√

s = mZ.
This apparent problem arises because the Z-boson propagator of (16.1) does not
account for the Z boson being an unstable particle.

There are a number of ways of deriving the propagator for a decaying state.
Here, the form of the Z-boson propagator is obtained from the time evolution
of the wavefunction for a decaying state. The time dependence of the quantum
mechanical wavefunction for a stable particle, as measured in its rest frame, is
given by e−imt. For an unstable particle, with total decay rate Γ = 1/τ, this must be
modified to

ψ ∝ e−imt → ψ ∝ e−imte−Γt/2, (16.2)

such that the probability density decays away as ψψ∗ ∝ e−Γt = e−t/τ. The introduc-
tion of the exponential decay term in (16.2) can be obtained from the replacement

m→ m − iΓ/2.

This suggests that the finite lifetime of the Z boson can be accounted for in the
propagator of (16.1) by making the replacement

m2
Z → (mZ − iΓZ/2)2 = m2

Z − imZΓZ − 1
4Γ

2
Z.

For the Z boson, the total decay width ΓZ & mZ, and to a good approximation the
1
4Γ

2
Z term can be neglected. In this case, the Z-boson propagator of (16.1) becomes

1
q2 − m2

Z

→ 1
q2 − m2

Z + imZΓZ
. (16.3)
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The cross section for e+e− → Z→ µ+µ−, with q2 = s, is therefore proportional to

σ ∝ |M|2 ∝
∣∣∣∣∣∣∣

1
s − m2

Z + imZΓZ

∣∣∣∣∣∣∣

2

=
1

(s − m2
Z)2 + m2

ZΓ
2
Z

.

Hence the e+e− → Z annihilation cross section peaks sharply at
√

s = mZ, and the
resulting Lorentzian dependence on the centre-of-mass energy is referred to as a
Breit–Wigner resonance.

The experimental measurements of the e+e− → qq cross section over a wide
range of centre-of-mass energies are shown in Figure 16.2. The data are compared
to the prediction from the s-channel γ- and Z-exchange Feynman diagrams, includ-
ing the interference between the two processes,

|M|2 = |Mγ +MZ|2.
The predicted cross section from the QED process alone is also shown. For centre-
of-mass energies below 40 GeV, the cross section is dominated by the QED photon
exchange diagram. In the region

√
s = 50 − 80 GeV, both γ and Z processes are

important. Close to the Z resonance, the Z-boson exchange diagram dominates;
at the peak of the resonance it is about three orders of magnitude greater than
pure QED contribution. For

√
s ' mZ, the contributions from the photon and

Z-exchange diagrams are of the same order of magnitude, reflecting the unified
description of QED and the weak interaction where gZ ∼ e.
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16.1.1 Z production cross section

In principle, the cross section for e+e− annihilation close to the Z resonance, in
for example the process e+e− → µ+µ−, needs to account for the two Feynman
diagrams of Figure 16.1. However, for

√
s ∼ mZ the QED contribution to the total

cross section can be neglected. In this case, only the matrix element for e+e− →
Z → µ+µ− needs to be considered. This matrix element can be obtained by using
the propagator of (16.3) and the weak neutral-current vertex factor of (15.38),

M f i = −
g2

Z

(s − m2
Z + imZΓZ)

gµν
[
v(p2)γ µ 1

2

(
ce

V − ce
Aγ

5
)

u(p1)
]
×

[
u(p3)γν 1

2

(
cµV − cµAγ

5
)
v(p4)

]
,

where ce
V , ce

A, cµV and cµA are the vector and axial-vector couplings of the Z to the
electron and muon. Given the chiral nature of vector boson interactions, it is con-
venient to re-express this matrix element in terms of the couplings of the Z boson
to left- and right-handed chiral states by writing cV = (cL + cR) and cA = (cL − cR).
In this case, the matrix element can be written

M f i = −
g2

Z

(s − m2
Z + imZΓZ)

gµν
[
ce

Lv(p2)γ µPLu(p1) + ce
Rv(p2)γ µPRu(p1)

]
×

[
cµLu(p3)γνPLv(p4) + cµRu(p3)γνPRv(p4)

]
, (16.4)

where PL =
1
2 (1−γ5) and PR =

1
2 (1+γ5) are the chiral projection operators. Given

that mZ ' mµ, the fermions in the process e+e− → Z→ µ+µ− are ultra-relativistic
and the helicity and chiral states are essentially the same. The chiral projection
operators in (16.4) therefore have the effect

PLu = u↓, PRu = u↑, PLv = v↑ and PRv = v↓.

Furthermore, as described in Section 15.4, helicity combinations such as u↑γ µv↑
give zero matrix elements. Consequently the matrix element of (16.4) is only non-
zero for the four helicity combinations shown in Figure 16.3, with the correspond-
ing matrix elements

MRR = −PZ(s) g2
Z ce

RcµR gµν [v↓(p2)γ µu↑(p1)] [u↑(p3)γνv↓(p4)], (16.5)

MRL = −PZ(s) g2
Z ce

RcµL gµν [v↓(p2)γ µu↑(p1)] [u↓(p3)γνv↑(p4)], (16.6)

MLR = −PZ(s) g2
Z ce

LcµR gµν [v↑(p2)γ µu↓(p1)] [u↑(p3)γνv↓(p4)], (16.7)

MLL = −PZ(s) g2
Z ce

LcµL gµν [v↑(p2)γ µu↓(p1)] [u↓(p3)γνv↑(p4)], (16.8)

where PZ(s) = 1/(s − m2
Z + imZΓZ) is the Z propagator and the labels on the differ-

ent matrix elementsM denote the helicity states of the e− and µ−.
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!Fig. 16.3 The four possible helicity combinations contributing to e+e− → Z → µ+µ−. The corresponding matrix
elements are labelled by the helicity states of the e− andµ−.

The combinations of four-vector currents in (16.5)−(16.8) are identical to those
encountered in Chapter 6 for the pure QED process e+e− → µ+µ−, where for
example

gµv[v↓(p2)γ µu↑(p1)][u↑(p3)γνv↓(p4)] = s(1 + cos θ).

Using the previously derived results of (6.20) and (6.21), the matrix elements
squared for the four helicity combinations in the process e+e− → Z→ µ+µ− are

|MRR|2 = |PZ(s)|2 g4
Zs2(ce

R)2(cµR)2(1 + cos θ)2, (16.9)

|MRL|2 = |PZ(s)|2 g4
Zs2(ce

R)2(cµL)2(1 − cos θ)2, (16.10)

|MLR|2 = |PZ(s)|2 g4
Zs2(ce

L)2(cµR)2(1 − cos θ)2, (16.11)

|MLL|2 = |PZ(s)|2 g4
Zs2(ce

L)2(cµL)2(1 + cos θ)2, (16.12)

where |PZ(s)|2 = 1/[(s − m2
Z)2 + m2

ZΓ
2
Z].

For unpolarised e− and e+ beams, the spin-averaged matrix element is given by

〈|M|2〉 = 1
4

(
|MRR|2 + |MLL|2 + |MLR|2 + |MRL|2

)
,

where the factor of one quarter arises from averaging over the two possible helicity
states for each of the electron and the positron, and therefore from (16.9)−(16.12),

〈|M|2〉 = 1
4

g4
Zs2

(s − m2
Z)2 + m2

ZΓ
2
Z

×
{ [

(ce
R)2(cµR)2 + (ce

L)2(cµL)2
]

(1 + cos θ)2

+
[

(ce
R)2(cµL)2 + (ce

L)2(cµR)2
]

(1 − cos θ)2
}
.

(16.13)

The terms in the braces can be grouped into

{· · ·} =
[
(ce

R)2 + (ce
L)2

] [
(cµR)2 + (cµL)2

] (
1 + cos2 θ

)

+ 2
[
(ce

R)2 − (ce
L)2

] [
(cµR)2 − (cµL)2

]
cos θ, (16.14)

which can then be expressed back in terms of the vector and axial-vector couplings
of the electron and muon to the Z boson using

c2
V + c2

A = 2(c2
L + c2

R) and cVcA = c2
L − c2

R,
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giving

{. . .} = 1
4

[
(ce

V )2 + (ce
A)2

] [
(cµV )2 + (cµA)2

] (
1 + cos2 θ

)
+ 2ce

Vce
AcµVcµA cos θ.

Finally, the e+e− → Z→ µ+µ− differential cross section is obtained by substituting
the spin-averaged matrix element squared into (3.50),

dσ
dΩ
=

1
256π2s

·
g4

Zs2

(s − m2
Z)2 + m2

ZΓ
2
Z

×
{

1
4

[
(ce

V )2 + (ce
A)2

] [
(cµV )2 + (cµA)2

] (
1 + cos2 θ

)
+ 2ce

Vce
AcµVcµA cos θ

}
. (16.15)

The total cross section is determined by integrating over the solid angle dΩ. This
is most easily performed by writing dΩ = dφ d(cos θ) and making the substitution
x = cos θ, such that

∫
(1 + cos2 θ) dΩ =

∫ 2π

0
dφ

∫ +1

−1
(1 + x2) dx =

16π
3

and
∫

cos θ dΩ = 0.

The resulting cross section for the process e+e− → Z→ µ+µ− is

σ(e+e− → Z→ µ+µ−) =
1

192π

g4
Zs

(s − m2
Z)2 + m2

ZΓ
2
Z

[
(ce

V )2+ (ce
A)2

][
(cµV )2+ (cµA)2

]
.

Thus, the total e+e− → Z → µ+µ− cross section is proportional to the product
of the sum of the squares of the vector and axial-vector couplings of the initial-
state electrons and the final-state muons. Using the expression for the partial decay
widths of the Z boson, given in (15.41), the sums c2

V +c2
A for the electron and muon

can be related to Γee = Γ(Z→ e+e−) and Γµµ = Γ(Z→ µ+µ−),

Γee =
g2

ZmZ

48π

[
(ce

V )2 + (ce
A)2

]
and Γµµ =

g2
ZmZ

48π

[
(cµV )2 + (cµA)2

]
.

Hence, the total cross section, expressed in terms of the partial decay widths, is

σ(e+e− → Z→ µ+µ−) =
12πs

m2
Z

ΓeeΓµµ

(s − m2
Z)2 + m2

ZΓ
2
Z

. (16.16)

The cross sections for other final-state fermions are given by simply replacing Γµµ
by the partial width Γff = Γ(e+e− → ff).

The properties of the Z resonance are described by (16.16). The maximum value
of the cross section, which occurs at the centre-of-mass energy

√
s = mZ, is

σ0
ff =

12π
m2

Z

ΓeeΓff

Γ2
Z

. (16.17)
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From (16.16) it is straightforward to show that the cross section falls to half of its
peak value at

√
s = mZ ± ΓZ/2.

Therefore ΓZ is not only the total decay rate of the Z boson, it is also the full-width-
at-half-maximum (FWHM) of the cross section as a function of centre-of-mass
energy. Hence the mass and total width of the Z boson can be determined directly
from measurements of the centre-of-mass energy dependence of the cross section
for e+e− → Z → ff. Furthermore, once mZ and ΓZ are known, the measured value
of peak cross section for a particular final-state fermion σ0

ff
can be related to the

product of the partial decay widths using (16.17),

ΓeeΓff =
σ0
ff
Γ2

Zm2
Z

12π
.

Hence, the observed peak cross sections can be used to determine the partial decay
widths of the Z boson for the different visible final states.

16.2 The Large Electron–Positron collider

The LEP collider, which operated at CERN from 1989 to 2000, is the highest
energy electron–positron collider ever built. The circular accelerator was located
in the 26 km circumference underground tunnel that is now home to the LHC. The
electrons and positrons circulated in opposite directions and collided at four inter-
action points, spaced equally around the ring, accommodating four large general
purpose detectors, ALEPH, DELPHI, L3 and OPAL. From 1989 to 1995, LEP
operated at centre-of-mass energies close to the Z mass and the four experiments
accumulated over 17 million Z events between them, allowing its properties to
be determined with high precision. From 1996 to 2000, LEP operated above the
threshold for W+W− production and the LEP experiments accumulated a total of
more than 30 000 e+e− → W+W− events over the centre-of-mass energy range
161–208 GeV, allowing the properties of the W boson to be studied in detail.

16.2.1 Measurement of the mass and width of the Z

At LEP, the mass and width of the Z boson were determined from the centre-
of-mass energy dependence of the measured e+e− → Z → qq cross section. In
principle, the cross section is described by the Breit–Wigner resonance of (16.16),
with the maximum occurring at

√
s = mZ and the FWHM giving ΓZ. In practice,

this is not quite the case. In addition to the lowest-order Feynman diagram, there
are two higher-order QED diagrams where a photon is radiated from either the
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initial-state electron or positron, as shown in Figure 16.4. The effect of initial-state
radiation (ISR) is to distort the shape of the Z resonance curve. If an ISR photon
with energy Eγ is radiated, the energy of the e+ or e− is reduced from E to E′ = E−
Eγ, where E is the nominal energy of the electron and positron beams. In the limit
where the photon is emitted collinear with the incoming electron/positron (which is
usually the case), the four-momenta of the electron and positron at the Z production
vertex are p1 = (E − Eγ, 0, 0, E − Eγ) and p2 = (E, 0, 0,−E). For collisions at a
nominal centre-of-mass energy of

√
s, the effect of ISR is to produce a distribution

of the four-momentum qZ of the virtual Z bosons. This can be expressed as the
effective centre-of-mass energy squared at the e+e− annihilation vertex s′ = q2

Z,
given by the square of the sum of four-momenta of the e+ and e− after ISR,

s′ = (p1 + p2)2 = (2E − Eγ)2 − E2
γ = 4E2

(
1 − Eγ

E

)
= s

(
1 − Eγ

E

)
.

The impact of ISR is to reduce the effective centre-of-mass energy for the collisions
where ISR photons are emitted; even if the accelerator is operated at a nominal
centre-of-mass energy equal to mZ, some fraction of the Z bosons will be produced
with q2

Z < m2
Z.

The distribution of
√

s′ can be written in terms of the normalised probability
distribution f (s′, s). The measured cross section is the convolution of the s′ distri-
bution with the cross section σ(s′) obtained from (16.16),

σmeas(s) =
∫

σ(s′) f (s′, s) ds′.

The effect of ISR is to distort the measured Z resonance. However, because ISR
is a QED process, the function f (s′, s) can be calculated to high precision. Conse-
quently, the measured cross section can be corrected back to the underlying Breit–
Wigner distribution. Figure 16.5 shows the measured e+e− → Z→ qq cross section
as a function of centre-of-mass energy. The data are compared to the expected dis-
tribution including ISR. The dashed curve shows the reconstructed shape of the Z
resonance after the deconvolution of the effects of ISR. Close to and below the peak
of the resonance, ISR results in a reduction in the measured cross section because
the centre-of-mass energy at the e+e− vertex is moved further from the peak of
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the resonance. Above the peak of the resonance, ISR increases the cross section
because the average centre-of-mass energy is moved closer to the peak.

From the measurements of the Z resonance at LEP, shown in Figure 16.5, the
mass of the Z boson is determined to be

mZ = 91.1875 ± 0.0021 GeV.

Owing to the large numbers of Z bosons produced at LEP, mZ could be measured
with a precision of 0.002%, making it one of the more precisely known funda-
mental parameters. To achieve this high level of precision, the average centre-
of-mass energy of the LEP collider had to be known to 2 MeV. This required a
detailed understanding of a number of potential systematic biases. For example,
tidal effects due to the gravitational pull of the Moon distort the rock surround-
ing the LEP accelerator by a small amount, resulting in ±0.15 mm variations in
the 4.3 km radius of the accelerator. These variations are sufficient to change the
beam energy by approximately ±10 MeV. Nevertheless, the position of the Moon
is known and the effect of these tidal variations could be accounted for. A more
subtle and unexpected effect was the observation of apparent jumps in the beam
energies at specific times of the day. After much investigation, the origin was iden-
tified as leakage currents from the local high-speed railway. These leakage currents
followed the path of least resistance in a circuit formed from the rails, a local river
and the LEP ring. The small currents that ran along the LEP ring, were sufficient to
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modify the magnetic field in the accelerator, leading to small changes in the beam
energy. Once understood, the affected data could be treated appropriately.

The width of the Z-boson
The total width of the Z boson, determined from the FWHM of the Breit–Wigner
resonance curve after unfolding the effects of ISR (shown in Figure 16.5) is

ΓZ = 2.4952 ± 0.0023 GeV,

corresponding to a lifetime of just 2.6× 10−25 s. The total width of the Z is the sum
of the partial decay widths for all its decay modes,

ΓZ = Γee + Γµµ + Γττ + Γhadrons + Γνeνe + Γνµνµ + Γντντ , (16.18)

where Γhadrons is the partial decay width to all final states with quarks. Assuming
the lepton universality of the weak neutral-current, (16.18) can be written

ΓZ = 3Γ)) + Γhadrons + 3Γνν,

where Γ)) and Γνν are respectively the partial decay widths to a single flavour of
charged lepton or neutrino. Although the decays to neutrinos are not observed, they
still affect the observable total width of the Z resonance.

To date only three generations of fermions have been observed. This in itself
does not preclude the possibility of a fourth generation, provided the fourth-
generation particles are sufficiently massive to have avoided detection. However, if
there were a fourth-generation neutrino, with similar properties to the three known
generations, the neutrino would be sufficiently light for the decay Z → ν4ν4 to
occur. This possibility can be tested through its observable effect on ΓZ. For Nν

light neutrino generations, the expected width of the Z boson is

ΓZ = 3Γ)) + Γhadrons + NνΓνν. (16.19)

Hence the number of light neutrino generations that exist in nature can be obtained
from the measured values of ΓZ, Γ)) and Γhadrons using

Nν =
(ΓZ − 3Γ)) − Γhadrons)

ΓSM
νν

, (16.20)

where ΓSM
νν is the Standard Model prediction of (15.42). The individual partial

decay widths to particles other than neutrinos, can be determined from the mea-
sured cross sections at the peak of the Z resonance using

σ0(e+e− → Z→ ff) =
12π
m2

Z

ΓeeΓff

Γ2
Z

. (16.21)

Given that mZ and ΓZ are known precisely, the measured peak cross section for
e+e− → Z → e+e− determines Γ2

ee. Once Γee is known, the partial decay widths of
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the Z boson to the other visible final states can be determined from the respective
peak cross sections, again using (16.21). Using the measured values of the partial
decay widths and the relation of (16.20), the number of light neutrino generations
is determined to be

Nν = 2.9840 ± 0.0082. (16.22)

Figure 16.6 compares the measured e+e−→ qq cross section, close to the Z reso-
nance, with the expected cross sections for two, three and four neutrino generations.
The consistency of the data with the predictions for three neutrino generations pro-
vides strong evidence that there are exactly three generations of light neutrinos
(assuming Standard Model couplings) from which it can be inferred that there are
probably only three generations of fermions.

16.2.2 Measurements of the weak mixing angle

The weak mixing angle θW is one of the fundamental parameters of the Standard
Model. The Standard Model vector and axial-vector couplings of the fermions to
the Z boson are given by (15.36) and (15.37),

cV = I(3)
W − 2Q sin2 θW and cA = I(3)

W ,
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and thus sin2 θW can be obtained from measurements of cV . In practice, the relevant
experimental observables depend on the ratio of couplings,

cV

cA
= 1 − 2Q sin2 θW

I(3)
W

.

For the charged leptons, with Q = −1 and I(3)
W = −1/2,

c)V
c)A
= 1 − 4 sin2 θW. (16.23)

There are a number of ways in which the ratio cV/cA can be obtained from mea-
surements at LEP. The simplest conceptually is the measurement of the forward–
backward asymmetry AFB of the leptons produced in e+e− → Z → )+)−. AFB

reflects the asymmetry in angular distribution of the final-state leptons and is
defined as

A)FB =
σF − σB

σF + σB
. (16.24)

Here σF and σB are the respective cross sections for the negatively charged lepton
being produced in the forward (θ)− < π/2) and backward (θ)− > π/2) hemispheres,
as indicated in Figure 16.7.

The differential cross section for e+e− → Z→ µ+µ− of (16.14) has the form

dσ
dΩ
∝ a(1 + cos2 θ) + 2b cos θ, (16.25)

where the coefficients a and b are given by

a =
[
(ce

L)2 + (ce
R)2

] [
(cµL)2 + (cµR)2

]
and b =

[
(ce

L)2 − (ce
R)2

] [
(cµL)2 − (cµR)2

]
.

If the couplings of the Z boson to left-handed (LH) and right-handed (RH) fermions
were the same, b would be equal to zero and the angular distribution would have
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the symmetric (1+cos2 θ) form seen previously for the pure QED process, in which
case AFB = 0.

The different couplings of the Z boson to LH and RH fermions manifests itself
in differences in the magnitudes of the squared matrix elements for the four helicity
combinations of Figure 16.3. From (16.9)−(16.12), it can be seen that the sum of
the squared matrix elements for the RL→ RL and LR→ LR helicity combinations
depends on (1 + cos θ)2, whereas the sum for the RL → LR and LR → RL com-
binations depends on (1 − cos θ)2. This difference results in a forward–backward
asymmetry in the differential cross section, as indicated in the right-hand plot of
Figure 16.7.

The forward and backward cross sections, σF and σB, can be obtained by inte-
grating the differential cross section of (16.25) over the two different polar angle
ranges, 0 < θ < π/2 and π/2 < θ < π. Writing dΩ = dφ d(cos θ),

σF ≡ 2π
∫ 1

0

dσ
dΩ

d(cos θ) and σB ≡ 2π
∫ 0

−1

dσ
dΩ

d(cos θ).

From the form of the differential cross section of (16.25), σF and σB are

σF ∝
∫ 1

0

[
a(1 + cos2 θ) + 2b cos θ

]
d(cos θ) =

∫ 1

0

[
a(1 + x2) + 2bx

]
dx =

(
4
3 a + b

)
,

σB∝
∫ 0

−1

[
a(1 + cos2 θ) + 2b cos θ

]
d(cos θ) =

∫ 0

−1

[
a(1 + x2) + 2bx

]
dx =

(
4
3 a − b

)
.

Thus the forward–backward asymmetry is given by

AFB =
σF − σB

σF + σB
=

3b
4a
.

From the expressions for the coefficients a and b, the forward–backward asymme-
try is related to the left- and right-handed couplings of the fermions by

AFB =
3
4



(ce

L)2 − (ce
R)2

(ce
L)2 + (ce

R)2


 ·



(cµL)2 − (cµR)2

(cµL)2 + (cµR)2


 .

This can be written in the form

AFB =
3
4
AeAµ,

where the asymmetry parameterAf for a particular flavour f is defined by

Af =
(cf

L)2 − (cf
R)2

(cf
L)2 + (cf

R)2
≡

2cf
Vcf

A

(cf
V )2 + (cf

A)2
. (16.26)

At LEP, AFB is most cleanly measured using the e+e−, µ+µ− and τ+τ− final states,
where the charges of the leptons are determined from the sense of the curvature of
the measured particle track in the magnetic field of the detector. By counting the
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Adapted from the OPAL Collaboration, Abbiendi et al. (2001).

numbers of events where the )− is produced in either the forward or backward
hemispheres, NF and NB, the measured forward–backward asymmetry is simply

AFB =
NF − NB

NF + NB
.

In the measurement of AFB, many potential systematic biases cancel because they
tend to affect both forward and backward events in the same manner, consequently
a precise measurement can be made. In practice, AFB is obtained from the observed
angular distribution, rather than simply counting events. For example, Figure 16.8
shows the OPAL measurements of the e+e− → µ+µ− and e+e− → τ+τ− differential
cross sections at

√
s = mZ. The observed asymmetry is small, but non-zero.

Combining the results from the four LEP experiments gives

Ae
FB = 0.0145 ± 0.0025, AµFB = 0.0169 ± 0.0013 and AτFB = 0.0188 ± 0.0017.

These measurements can be expressed in terms of the asymmetry parameter defined
in (16.26), giving

Ae
FB =

3
4
A2

e , AµFB =
3
4
AeAµ and AτFB =

3
4
AeAτ.

Hence the measurements of the forward–backward asymmetries can be interpreted
as measurements of the asymmetry parameters for the individual lepton flavours,
with the e+e− → Z→ e+e− process uniquely determiningAe.

There are a number of other ways of measuring the lepton asymmetry parame-
ters at LEP and elsewhere. For example, the results from the left-right asymmetry
measured in the SLD detector at the Stanford Linear Collider (SLC) provides a
precise measurement of Ae alone (see Problem 16.4). The combined results from
LEP and SLC give



442 Tests of the Standard Model

Ae = 0.1514 ± 0.0019, Aµ = 0.1456 ± 0.0091 and Aτ = 0.1449 ± 0.0040,

consistent with the lepton universality of the weak neutral-current.
Dividing both the numerator and denominator of (16.26) by c2

A gives the expres-
sion for the asymmetry parameters in terms of cV/cA,

A = 2cV/cA

1 + (cV/cA)2 .

Therefore, the measured asymmetry parameters for the leptons can be interpreted
as measurements of cV/cA, which then can be related to sin2 θW using (16.23),

cV

cA
= 1 − 4 sin2 θW.

When the various measurements of sin2 θW from the Z resonance and elsewhere
are combined, the weak mixing angle is determined to be

sin2 θW = 0.23146 ± 0.00012.

The lepton forward–backward asymmetries are small because sin2 θW is nearly 1/4.

16.3 Properties of the W boson

The studies of the Z boson provide a number of important results, including the pre-
cise measurements of mZ, ΓZ and sin2 θW. Further constraints on the electroweak
sector of the Standard Model can be obtained from studies of the W boson. From
1996 to 2000, the LEP collider operated at

√
s > 161 GeV, above the threshold

for production of e+e− → W+W−. In e+e− → W+W− events, each W boson can
decay either leptonically, for example W− → µ−νµ, or hadronically, for exam-
ple W− → du. Consequently, e+e− → W+W− interactions at LEP are observed
in the three distinct event topologies shown in Figure 16.9. Events where both W
bosons decay leptonically are observed as two charged leptons and an imbalance of
momentum in the transverse plane due to the two unseen neutrinos. Events where
one W decays leptonically and the other decays hadronically are observed as two
jets, a single charged lepton and an imbalance of momentum from the neutrino.
Finally, events where both W bosons decay hadronically produce four jets. The
distinctive event topologies enable e+e− → W+W− events to be identified with
high efficiency and little ambiguity.

The observed numbers of events in each of the three W+W− topologies can be
related to branching ratio for W→ qq′. For example, the numbers of fully hadronic
decays and fully leptonic decays are respectively proportional to

Nqqqq ∝
[
BR(W→ qq′)

]2
and N)ν)ν ∝

[
1 − BR(W→ qq′)

]2
.
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W+W- → e-νeµ+νµ W+W- → e-νeq1q2 W+W- → q1q2q3q4!Fig. 16.9 The three possible event topologies for the decays of W+W− in e+e− → W+W− at LEP. Reproduced courtesy
of the OPAL Collaboration.

Consequently, the relative numbers of observed events in the three W+W− topolo-
gies gives a precise measurement of the W-boson branching ratio to hadrons,

BR(W→ qq′) = 67.41 ± 0.27%.

This is consistent with the Standard Model expectation of 67.5% obtained from
(15.9). Furthermore, the decays W → eν, W → µν and W → τν are observed
to occur with equal frequencies, consistent with the expectation from the lepton
universality of the charged-current weak interaction.

Figure 16.10 shows the combined measurements of the e+e− → W+W− cross
section from the four LEP experiments. The data are consistent with the Standard
Model expectation determined from the three Feynman diagrams of Figure 15.5.
The contribution to the total cross section from the s-channel Z-exchange diagram,
shown in Figure 16.11, depends on the strength of the W+W−Z coupling, which
in the Standard Model is fixed by the local gauge symmetry and the electroweak
unification mechanism. The predicted cross section without the contribution from
the Z-exchange diagram, also shown in Figure 16.10, clearly does not reproduce
the data. The e+e− → W+W− cross section measurements therefore provide a test
the Standard Model prediction of the strength of coupling at the W+W−Z vertex.
Yet again, the Standard Model provides an excellent description of the data.

16.3.1 Measurement of the W boson mass and width

The mass and width of the Z boson are determined from the shape of the resonance
in the Z production cross section in e+e− collisions. The production of W-pairs
at LEP is not a resonant process; for

√
s > 2mW, the Z boson in the s-channel

Feynman diagram of Figure 16.11 is far from being on-mass shell. Consequently
different techniques are required to measure the mass and width of the W boson.
In principle, it is possible to measure the W boson mass and width from the shape
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of the e+e− → W+W− cross section close to threshold at
√

s ∼ 2mW, where the
position and sharpness of the turn-on of the cross section depend on mW and ΓW.
Significantly above threshold, where the majority of the LEP data were recorded,
mW and ΓW are determined from the direct reconstruction of the invariant masses
of the W-decay products.

Up to this point, the production and decay of the W bosons in the process
e+e− → W+W− have been discussed as independent processes. This distinction,
which effectively treats the W bosons as real on-shell particles, is not strictly
correct. The W bosons should be considered as virtual particles. For example,
Figure 16.11 shows one of the three Feynman diagrams for e+e− → µ−νµq1q2,
which proceeds via the production and decay of two virtual W bosons. In this
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pν
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pq3!Fig. 16.12 The WW → qqqq and WW → qq)ν event topologies used at LEP to determine the W-boson mass from
the direct reconstruction of the decay products.

diagram, there are three propagators, one for the Z boson and one for each of the
two W bosons. The propagators for the virtual W bosons have the form

1
q2 − m2

W + imWΓW
,

where q is the four-momentum of the W boson and the imaginary term accounts for
its finite lifetime. The contribution of the two W-boson propagators to the matrix
element squared is therefore

|M|2 ∝ 1
(q2

1 − m2
W)2 + m2

WΓ
2
W

× 1
(q2

2 − m2
W)2 + m2

WΓ
2
W

, (16.27)

where q1 and q2 are the four-momenta of the two W bosons. Hence, the invariant
mass of the two fermions from each W-boson decay is not fixed to be exactly
mW, but will distributed as a Lorentzian centred on mW with width ΓW. A precise
determination of the W-boson mass and width can be obtained from the direct
reconstruction of the four-momenta of the four fermions in the W+W− → )νq1q2
and W+W− → q1q2q3q4 decay topologies, shown in Figure 16.12.

For W+W− → q1q2q3q4 decays, the measured four-momenta of the four jets can
be used directly to reconstruct the invariant masses of the two W bosons,

m2
1 = q2

1 = (pq1 + pq2)2 and m2
2 = q2

2 = (pq3 + pq4)2.

The masses of the two W bosons produced in W+W− → )νq1q2 decays can be
determined by reconstructing the momentum of the neutrino. Because the e+e−

collisions occur in the centre-of-mass frame, the total four-momentum of the final-
state particles is constrained to

Ptot = (
√

s, 0).
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Consequently, the neutrino four-momentum can be obtained from the measured
four-momenta of the charged lepton and the two jets,

pν = Ptot − p) − pq1 − pq2 .

Thus, the masses of the two W bosons in the W+W− → )νq1q2 decays can be
measured from

m2
1 = q2

1 = (pq1 + pq2)2 and m2
2 = q2

2 = (p) + pν)2.

Whilst jet angles are generally well reconstructed, the experimental jet energy
resolution is relatively poor. The resolution on the reconstructed invariant masses
in each observed event can be improved by using the constraint Ptot = (

√
s, 0),

which implies that both W bosons will have half the centre-of-mass energy and
will have equal and opposite three-momenta.

Figure 16.13 shows the reconstructed W-mass distribution for )νq1q2 events
observed in the L3 experiment. For each observed W+W− event, the average recon-
structed W-boson mass m = 1

2 (m1 + m2) is plotted. The position of the peak deter-
mines mW and the width of the distribution, after accounting for the experimental
resolution, determines ΓW. The results from the four LEP experiments give

mW = 80.376 ± 0.033 GeV and ΓW = 2.195 ± 0.083 GeV.

It is worth noting that, owing to the Lorentzian form of the propagator, the vir-
tual W bosons in the Feynman diagram of Figure 16.11 tend to be produced in the
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range q2 ∼ (mW ± ΓW)2 and are therefore usually close to being on-shell, as can
be seen from (16.13). For this reason, the process e+e− → W+W− → f1f2f3f4 can
be approximated as the production of two real W bosons, each of which subse-
quently decays to two fermions. For more accurate calculations, such as the Stan-
dard Model prediction shown in Figure 16.10, this approximation is not sufficient
to match the experimental precision and the process has to be treated as the pro-
duction of four fermions through two virtual W bosons.

16.3.2 Measurement of the W mass at the Tevatron

The study of W-boson pair production at LEP provides precise measurements of
mW, ΓW and the W-boson branching ratios. Precision measurements can also be
made at hadron colliders. For example, mW has been measured precisely at the
Tevatron in the process pp → WX, where X is the hadronic system from initial-
state QCD radiation and the remnants of the colliding hadrons. In pp collisions, the
W boson is produced in parton-level processes such as ud→W+ → µ+νµ. In order
to reconstruct the mass of the W boson, the momentum of the neutrino needs to be
determined.

At a hadron collider, the centre-of-mass energy of the underlying qq′ annihila-
tion process is not known on an event-by-event basis. If x1 and x2 are the momen-
tum fractions of the proton and antiproton carried by the annihilating q and q′, the
four-momentum of the final state is

Ptot =
[
(x1 + x2)

√
s

2 , 0, 0, (x1 − x2)
√

s
2

]
.

Consequently, the final-state W boson will be boosted along the beam (z) axis.
Because the momentum fractions x1 and x2 are unknown, the components of the
momentum of the final-state system only balance in the transverse (xy) plane. The
typical W → µν event topology, as seen in the plane transverse to the beam axis,
is illustrated in the left plot of Figure 16.14. The transverse components of the
momentum of the neutrino can be reconstructed from the transverse momentum of
the muon, pµT = pxx̂+ pyŷ, and the (usually small) transverse momentum uT of the
hadronic system X,

pνT = −pµT − uT .

Owing to the unknown momentum fractions of the colliding partons, the
z-component of the neutrino momentum cannot be determined.

Because the z-component of the momentum of the neutrino is unknown, the
invariant mass of the products from the decaying W boson can not be determined
on an event-by-event-basis. However, it is possible to define the transverse mass

mT ≡
[
2
(
pµT pνT − pµT · pνT

)] 1
2 .
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Figure 16.14 shows the reconstructed mT distribution from over 600 000 W → µν
decays observed in the CDF detector. Because the longitudinal components of the
momentum are not included, mT does not peak at mW and the distribution of mT

is relatively broad. Nevertheless, these disadvantages are outweighed by the very
large W-production cross section at a hadron–hadron collider. Because of the large
numbers of events, mW can be measured even more precisely than at LEP. The
sensitivity to mW comes from the shape of the mT distribution and the position of
the broad peak. The combined results from the CDF and D0 experiments at the
Tevatron and the four LEP experiments give

mW = 80.385 ± 0.015 GeV and ΓW = 2.085 ± 0.042 GeV.

16.4 Quantum loop corrections

The data from LEP, the Tevatron and elsewhere provide precise measurements of
the fundamental parameters of the electroweak model. The masses of the weak
gauge bosons are determined to be

mZ = 91.1875 ± 0.0021 GeV and mW = 80.385 ± 0.015 GeV.

The weak mixing angle is determined to be

sin2 θW = 0.23146 ± 0.00012,
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and the strengths of the weak and electromagnetic interaction are

GF = 1.166 378 7(6) × 10−5 GeV−2 and α(m2
Z) =

1
128.91 ± 0.02

,

where α is given at the electroweak scale of q2 = m2
Z. In the Standard Model, the

masses of the W and Z bosons are not free parameters, they are determined by
the Higgs mechanism, described in Chapter 17. Consequently, if any three of the
parameters mZ, mW, GF, α and sin2 θW are known, the other two are determined by
exact relations from the electroweak unification mechanism of the Standard Model.
For example, the mass of the W boson is related to α, GF and θW by

mW =

(
πα√
2GF

) 1
2 1

sin θW
,

and the masses of the W and Z bosons are related by

mW = mZ cos θW.

These constraints, coupled with the precise measurements described above, allow
the electroweak sector of the Standard Model to be tested to high precision. For
example, using the measurements of mZ and sin2 θW, the predicted mass of the W
boson obtained from mW = mZ cos θW is

mpred
W = 79.937 ± 0.009 GeV.

Despite being of the right order, this prediction is thirty standard deviations smaller
than the measured value of mW = 80.385 ± 0.015 GeV. This apparent discrepancy
does not represent a failure of the Standard Model; it can be explained by higher-
order contributions from virtual quantum loop corrections. For example, the mass
of the W boson includes contributions from virtual loops, of which the two largest
are shown in Figure 16.15. As a result of these quantum loops, the physical W-
boson mass differs from the lowest-order prediction m0

W by

mW = m0
W + a m2

t + b ln
(

mH

mW

)
+ · · · , (16.28)

where a and b are calculable constants, and mt and mH are the masses of the top
quark and Higgs boson.

The difference between the predicted lowest-order W-boson mass and the meas-
ured value effectively measures the size of these quantum loop corrections. Since
the dependence on the Higgs mass is only logarithmic, the dominant correction in
(16.28) comes from the top quark mass. In 1994 the measurements of the elec-
troweak parameters at LEP implied a top quark mass of 175 ± 11 GeV. Shortly
afterwards, the top quark was discovered at the Tevatron with a mass consistent
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q t!Fig. 16.16 The lowest-order Feynman diagram for tt production in pp collisions at the Tevatron.

with this prediction. This direct observation of the effects of quantum loop correc-
tions provides an impressive validation of the electroweak sector of the Standard
Model.

Because the electroweak measurements are sufficiently precise to be sensitive
to quantum loop corrections, they strongly constrain possible models for physics
beyond the Standard Model; any new particle or interaction that gives rise to a
significant contribution to the quantum loop corrections to the W-boson mass will
not be consistent with the experimental data.

16.5 The top quark

The top quark is by some way the most massive of the quarks. In fact, with a
mass of approximately 175 GeV, it is the most massive fundamental particle in
the Standard Model, m(t) > m(H) > m(Z) > m(W). Because of its mass, the top
quark could not be observed directly at LEP and was only discovered in 1994 in pp
collisions at the Tevatron. In pp collisions, top quarks are predominantly produced
in pairs in the QCD process qq→ tt, shown in Figure 16.16.

Owing to its large mass, the lifetime of the top quark is very short. Consequently,
the top pairs produced in the process qq → tt do not have time to form bound
states, such as those observed in the resonant production of charmonium (cc) and
bottomonium (bb) states (discussed in Section 10.8). Because |Vtb| ' |Vts| > |Vtd|,
the top quark decays almost entirely by t→ bW+. Hence top quark pair production
and decay at the Tevatron (and at the LHC) proceeds mostly by

qq→ tt→ bW+ bW−.
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The Feynman diagram for the production of the tt semi-leptonic final state, where
one W boson decays leptonically and the other decays hadronically, is shown in
Figure 16.17. The corresponding matrix element contains four propagators for
massive particles, two for the top quarks and two for the W bosons. Because
ΓW & mW, the largest contributions to the matrix element will be when the W
bosons are produced almost on-shell with q2 ∼ m2

W. Similarly, the presence of the
propagators for the two virtual top quarks implies that

|M|2 ∝ 1
(q2

1 − m2
t )2 + m2

t Γ
2
t
× 1

(q2
2 − m2

t )2 + m2
t Γ

2
t
.

As a result, the invariant masses of each of the W+b and W−b systems, produced
in the top decays, will be distributed according Lorentzian centred on mt with
width Γt.

16.5.1 Decay of the top quark

Because the W boson from the decay of a top quark is close to being on-shell,
q2 ∼ m2

W, the top decay width can be calculated from the Feynman diagram for
t → bW+ shown in Figure 16.18, where the W boson is treated as a real on-
shell final-state particle. The corresponding matrix element is obtained from the
quark spinors, the weak charged-current vertex factor and the term ε∗(pW) for the
polarisation state of the W boson,

−iM =
[
u(pb) −igW√

2
γ µ 1

2 (1 − γ5) u(pt)
]
× ε∗µ(pW),

and thus

M = gW√
2
ε∗µ(pW) u(pb)γ µ 1

2 (1 − γ5)u(pt). (16.29)

It is convenient to consider the decay in the rest frame of the top quark and to
take the final-state b-quark direction to define the z-axis. Neglecting the mass of
the b-quark, the four-momenta of the t, b and W+ can be written
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pt = (mt, 0, 0, 0), pb = (p∗, 0, 0, p∗) and pW = (E∗, 0, 0,−p∗),

where p∗ is the magnitude of the momentum of the final-state particles in the
centre-of-mass frame and E∗ is the energy of the W boson, E∗2 = (p∗)2 + m2

W.
The weak interaction couples only to left-handed chiral particle states. Here, in
the limit p∗ ' mb, the chiral states are equivalent to the helicity states and, con-
sequently, the b-quark can only be produced in a left-handed helicity state such
that for the configuration of Figure 16.18 its spin points in the negative z-direction.
Hence, the matrix element of (16.29) can be written as

M = gW√
2
ε∗µ(pW) u↓(pb)γ µu(pt). (16.30)

From (4.67), the LH helicity spinor for the b-quark is

u↓(pb) ≈
√

p∗




0
1
0
−1



.

The two possible spin states of the top quark can be written using the u1 and u2

spinors, which for a top quark at rest are (4.48),

u1(pt) =
√

2mt




1
0
0
0




and u2(pt) =
√

2mt




0
1
0
0



,

respectively representing S z = +
1
2 and S z = − 1

2 states. The four-vector quark cur-
rents for the two possible spin states, calculated using the relations of (6.12)−(6.15),
are

j µ1 = u↓(pb)γ µu1(pt) =
√

2mtp∗(0,−1,−i, 0),

j µ2 = u↓(pb)γ µu2(pt) =
√

2mtp∗(1, 0, 0, 1).
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!Fig. 16.19 The two allowed spin combinations in the process t→ bW+.

The three possible polarisation states of the W boson, given by (15.1), are

ε∗+(pW) = − 1√
2
(0, 1,−i, 0),

ε∗−(pW) = 1√
2
(0,+1,+i, 0),

ε∗L(pW) = 1
mW

(−p∗, 0, 0, E∗),

which correspond to the S z = ±1 and the longitudinal polarisation states. For a
particular top quark spin and W polarisation state, the matrix element of (16.30) is
given by the four-vector scalar product

M = gW√
2

ji ·ε∗λ.

The only combinations of the two possible quark currents and the three possible
W-boson polarisations for which the matrix element is non-zero are ε∗+· j1 and ε∗L· j2.
These two combinations correspond to the spin states shown in Figure 16.19, which
(unsurprisingly) are the only configurations that conserve angular momentum.

The matrix elements for these two allowed spin configurations are

M1 =
gW√

2
ε∗+ · j1 = − gW√

2

√
mtp∗ (0, 1, i, 0)·(0,−1,−i, 0) = −gW

√
2mtp∗,

M2 =
gW√

2
ε∗L · j2 =

gW
mW

√
mtp∗ (−p∗, 0, 0, E∗)·(1, 0, 0, 1) = − gW

mW

√
mtp∗(E∗ + p∗).

From conservation of energy, E∗ + p∗ = mt, and therefore the spin-averaged matrix
element squared for the decay t→ bW+ is

〈|M2|〉 = 1
2

(
|M2

1| + |M2
2|
)
= 1

2g
2
Wmtp∗


2 +

m2
t

m2
W


 ,

where the factor of one half averages over the two spin states of the t-quark. The
total decay rate is obtained by substituting the spin-averaged matrix element into
the formula of (3.49) which, after integrating over the 4π of solid angle, gives

Γ(t→ bW+) =
p∗

8πm2
t
〈|M2|〉 =

g2
Wp∗2

16πmt


2 +

m2
t

m2
W


 . (16.31)
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With some algebraic manipulation (see Problem 16.10), this can be written as

Γ(t→ bW+) =
GFm3

t

8
√

2π


1 −

m2
W

m2
t




2 
1 +

2m2
W

m2
t


 , (16.32)

where g2
W is given in terms of the Fermi constant, GF =

√
2g2

W/(8m2
W). For the

measured values of mt = 173 GeV, mW = 80.4 GeV and GF = 1.166×10−5 GeV−2,
the lowest-order calculation of the total decay width of the top quark gives

Γt = 1.5 GeV. (16.33)

Hence the top quark lifetime is of order τt = 1/Γt ≈ 5× 10−25 s. This is sufficiently
short that the top quarks produced at the Tevatron decay in a distance of order
10−16 m. This is small compared to the typical length scale for the hadronisation
process, and therefore the tt pairs produced at the Tevatron not only decay before
forming a bound state, but also decay before hadronising.

16.5.2 Measurement of the top quark mass

The mass of the top quark has been measured in the process pp → tt by direct
reconstruction of the top quark decay products, similar to the procedure used to
measure the W-boson mass at LEP. Since both top quarks decay to a b-quark and
a W boson there are three distinct final-state topologies:

tt→ (bW+)(bW−)→ (b q1q2) (b q3q4)→ 6 jets,

tt→ (bW+)(bW−)→ (b q1q2) (b )−ν))→ 4 jets + 1, charged lepton + 1ν

tt→ (bW+)(bW−)→ (b )+ν)) (b )′−ν)′)→ 2 jets + 2 charged leptons + 2νs.

The measurement of the top quark mass is more complicated than the corre-
sponding measurement of the W-mass at LEP, but the principle is the same. The
b-quark jets are identified from the tagging of secondary vertices (see Section 1.3.1)
and the remaining jets have to be associated to the W-boson decay(s), as indicated
in Figure 16.20. Because the momentum of the tt system in the beam (z) direction
is not known (see Section 16.3.2), it might appear that there is insufficient informa-
tion to fully reconstruct the neutrino momentum in observed tt → four jets + ) + ν
events. However, the invariant mass of the two jets associated with a W boson
and the invariant mass of the lepton and neutrino both can be constrained to mW

within ±ΓW. Furthermore, the invariant masses of the particles forming the two
reconstructed top quarks can be required to be equal. These additional constraints
provide a system of equations that allow the momentum of the neutrino to be
determined from the technique of kinematic fitting. In both the fully hadronic and
tt→ four jets+)+ν decay topologies, these constraints improve the event-by-event
mass resolution.
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!Fig. 16.20 The two main tt event topologies used at the Tevatron to determine the top quark mass from the direct recon-
struction of the decay products.

The top quark mass has been determined by both the CDF and D0 collaborations
using the measured four-momenta of the jets and leptons in observed tt → six jets
and tt → four jets + ) + ν events. As an example, Figure 16.21 shows the recon-
structed top mass distribution from an analysis of data recorded by the CDF exper-
iment. Whilst the reconstructed mass peak is relatively broad due to experimental
resolution, a clear peak is observed allowing the top mass to be determined with a
precision of O(1%). The current average of the top quark mass measurements from
the CDF and D0 experiments is

mt = 173.5 ± 1.0 GeV.

The total width of the top quark is measured to be Γt = 2.0 ± 0.6 GeV. The top
width is determined much less precisely than the top quark mass because the width
of the distribution in Figure 16.21 is dominated by the experimental resolution.
Nevertheless, the current measurement is consistent with the result of the lowest-
order calculation presented in Section 16.5.1.

A window on the Higgs boson
Just as the electroweak measurements at LEP provided a prediction of the top quark
mass through its quantum loop corrections to the W-boson mass, the precise deter-
mination of the top quark mass at the Tevatron provides a window on the Higgs
boson. Its measurement determines the size of the largest loop correction to the
W-boson mass, which arises from the virtual tb loop in Figure 16.15. The next
largest correction arises from the WH loop that leads to the logarithmic term in
(16.28). The electroweak measurements at LEP and the Tevatron, when combined
with the direct measurement of the top quark mass, constrain the mass of the Stan-
dard Model Higgs boson to be in the range

50 GeV ! mH ! 150 GeV.
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!Fig. 16.21 The distribution of the reconstructed top mass in selected tt → four jets+ )+ ν events in the CDF detector
at the Tevatron. The dashed curve indicates the expected contribution from processes other than tt. Adapted
from Aaltonen et al. (2011).

Direct searches for the Higgs boson at LEP placed a lower bound on its mass of

mH > 115 GeV.

Hence, prior to the turn-on of the LHC, the window for the Standard Model Higgs
boson was already quite narrow.

Summary

The Z boson was studied with very high precision at the LEP e+e− collider. The
resulting measurements provided a stringent test of the predictions of the GSW
model for electroweak unification. The mass of the Z boson, which is a fundamen-
tal parameter of the Standard Model, was determined to be

mZ = 91.1875 ± 0.0021 GeV.

The observed couplings of the Z boson are consistent with the Standard Model
expectations with

sin2 θW = 0.23146 ± 0.00012.
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The measurements of ΓZ and the e+e− → Z → ff cross sections, demonstrate that
there are only three generations of light neutrinos (assuming standard couplings),
which is strongly suggestive that there are only three generations of fundamental
fermions. Furthermore, studies of the W boson at LEP and the Tevatron and the
studies of the top quark at the Tevatron, show that

mW = 80.385 ± 0.015 GeV and mt = 173.5 ± 1.0 GeV.

Remarkably, when combined, the above measurements of the electroweak sec-
tor of the Standard Model are sufficiently precise to reveal effects at the quantum
loop level. These precision measurements and the ability of the Standard Model to
describe the electroweak data, represent one of the highlights of modern physics.
However, there is a serious problem with the Standard Model as it has been pre-
sented so far; the fact the W and Z bosons have mass breaks the required gauge
symmetry of the Standard Model. The solution to this apparent contradiction is the
Higgs mechanism.

Problems

16.1 After correcting for QED e,ects, including initial-state radiation, the measured e+e− → µ+µ− and e+e− →
hadrons cross sections at the peak of the Z resonance give

σ0(e+e− → Z→ µ+µ−) = 1.9993 nb and σ0(e+e− → Z→ hadrons) = 41.476 nb.

(a) Assuming lepton universality, determineΓ)) andΓhadrons.
(b) Hence, using the measured value ofΓZ = 2.4952± 0.0023 GeV and the theoretical value ofΓνν given by

Equation (15.41), obtain an estimate of the number of light neutrino -avours.

16.2 Show that the e+e− → Z→ µ+µ− di,erential cross section can be written as

dσ
dΩ
∝ (1 + cos2 θ) + 8

3 AFB cos θ.

16.3 From the measurement of the muon asymmetry parameter,

Aµ = 0.1456 ± 0.0091,

determine the corresponding value of sin2 θW.

16.4 The e+e− Stanford Linear Collider (SLC), operated at
√

s = mZ with left- and right-handed longitudinally
polarised beams. This enabled the e+e− → Z → ff cross section to be measured separately for left-handed
and right-handed electrons.

Assuming that the electron beam is 100% polarised and that the positron beam is unpolarised, show that the
left–right asymmetry ALR is given by
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ALR =
σL − σR

σL + σR
=

(ce
L )

2 − (ce
R)

2

(ce
L )

2 + (ce
R)

2 = Ae,

whereσL andσR are respectively the measured cross sections at the Z resonance for LH and RH electron beams.

16.5 From the expressions for the matrix elements given in (16.8), show that:

(a) the average polarisation of the tau leptons produced in the process e+e− → Z→ τ+τ− is

〈Pτ−〉 =
N↑ − N↓
N↑ + N↓

= −Aτ,

where N↑ and N↓ are the respective numbers of τ− produced in RH and LH helicity states;
(b) the tau polarisation where the τ− is produced at an angle θwith respect to the initial-state e− is

Pτ− (cos θ) =
N↑(cos θ) − N↓(cos θ)
N↑(cos θ) + N↓(cos θ)

= −Aτ(1 + cos2 θ) + 2Ae cos θ
(1 + cos2 θ) + 8

3 AFB cos θ
.

16.6 The average tau polarisation in the process e+e− → Z → τ+τ− can be determined from the energy dis-
tribution of π− in the decay τ− → π−ντ. In the τ− rest frame, the π− four-momentum can be written
p = (E∗, p∗ sin θ∗, 0, p∗ cos θ∗), where θ∗ is the angle with respect to the τ− spin, and the di,erential par-
tial decay width is

dΓ
d cos θ∗

∝ (p∗)2

mτ
(1 + cos θ∗).

(a) Without explicit calculation, explain this angular dependence.
(b) For the case where the τ− is right-handed, show that the observed energy distribution of the π− in the

laboratory frame is

dΓτ−↑
dEπ−

∝ x,

where x = Eπ/Eτ.
(c) What is the correspondingπ− energy distribution for the decay of a LH helicity τ−.
(d) If the observed pion energy distribution is consistent with

dΓ
dx
= 1.14 − 0.28x ≡ 0.86x + 1.14(1 − x),

determineAτ and the corresponding value of sin2 θW.

16.7 There are ten possible lowest-order Feynman diagrams for the process e+e− → µ−νµud, of which only three
involve a W+W− intermediate state. Draw the other seven diagrams (they are all s-channel processes involving
a single virtual W).

16.8 Draw the two lowest-order Feynman diagrams for e+e− → ZZ.

16.9 In the OPAL experiment at LEP, the e.ciencies for selecting W+W− → )νq1q2 and W+W− → q1q2q3q4
events were 83.8% and 85.9% respectively. After correcting for background, the observed numbers of )νq1q2
and q1q2q3q4 events were respectively 4192 and 4592. Determine the measured value of the W-boson hadronic
branching ratio BR(W→ qq′) and its statistical uncertainty.

16.10 Suppose the four jets in an identi+ed e+e− → W+W− event at LEP are measured to have momenta,

p1 = 82.4 ± 5 GeV, p2 = 59.8 ± 5 GeV, p3 = 23.7 ± 5 GeV and p4 = 42.6 ± 5 GeV,
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and directions given by the Cartesian unit vectors,

n̂1 = (0.72, 0.33, 0.61), n̂2 = (−0.61, 0.58,−0.53),
n̂3 = (−0.63,−0.72,−0.25), n̂4 = (−0.14,−0.96,−0.25).

Assuming that the jets can be treated as massless particles, +nd the most likely association of the four jets to the
two W bosons and obtain values for the invariant masses of the (o,-shell) W bosons in this event. Optionally,
calculate the uncertainties on the reconstructed masses assuming that the jet directions are perfectly measured.

16.11 Show that the momenta of the +nal-state particles in the decay t→ W+b are

p∗ =
m2

t − m2
W

2mt
,

and show that the decay rate of (16.31) leads to the expression forΓt given in (16.32).


