
15 Electroweak uni!cation

One of the main goals of particle physics is to provide a unified picture of
the fundamental particles and their interactions. In the nineteenth century,
Maxwell provided a description of electricity and magnetism as different
aspects of a unified electromagnetic theory. In the 1960s, Glashow, Salam
and Weinberg (GSW) developed a unified picture of the electromagnetic and
weak interactions. One consequence of the GSW electroweak model is the
prediction of a weak neutral-current mediated by the neutral Z boson with
well-defined properties. This short chapter describes electroweak unification
and the properties of the W and Z bosons.

15.1 Properties of the W bosons

The W boson is a spin-1 particle with a mass of approximately 80 GeV. Its wave-
function can be written in terms of a plane wave and a polarisation four-vector,

Wµ = ε µλ e−ip·x = ε µλ ei(p·x−Et).

For a massive spin-1 particle the polarisation four-vector ε µλ is restricted to one of
three possible polarisation states (see Appendix D). For a W boson travelling in the
z-direction, the three orthogonal polarisation states λ can be written as

ε µ− =
1√
2
(0, 1,−i, 0), ε µL =

1
mW

(pz, 0, 0, E) and ε µ+ = − 1√
2
(0, 1, i, 0). (15.1)

These states represent two transverse polarisation modes ε±, corresponding to cir-
cularly polarised spin-1 states with S z = ±1, and a longitudinal S z = 0 state.

15.1.1 W-boson decay

The calculation of the W-boson decay rate provides a good illustration of the use
of polarisation four-vectors in matrix element calculations. The lowest-order Feyn-
man diagram for the W− → e−νe decay is shown in Figure 15.1. The matrix ele-
ment for the decay is obtained using the appropriate Feynman rules. The final-state
electron and antineutrino are written respectively as the adjoint particle spinor
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!Fig. 15.1 The lowest-order Feynman diagram for W− → e−νe.

u(p3) and the antiparticle spinor v(p4). The initial-state W− is written as ελµ (p1),
where λ indicates one of the three possible polarisation states. Finally, the vertex
factor for the weak charged-current is the usual V − A interaction

−i gW√
2

1
2γ
µ(1 − γ5).

Using these Feynman rules, the matrix element for W− → e−νe is given by

−iM f i = ε
λ
µ (p1) u(p3)

[
−i gW√

2
γ µ 1

2 (1 − γ5)
]
v(p4),

and therefore

M f i =
gW√

2
ελµ (p1) u(p3)γ µ 1

2 (1 − γ5)v(p4). (15.2)

This expression can be written as the four-vector scalar product of the W-boson
four-vector polarisation and the lepton current,

M f i =
gW√

2
ελµ (p1) j µ, (15.3)

where the leptonic weak charged-current j µ is given by

j µ = u(p3)γ µ 1
2 (1 − γ5)v(p4). (15.4)

It is convenient to consider the W− → e−νe decay in the rest frame of the W
boson, as illustrated in Figure 15.2. Given that mW $ me, the mass of the electron
can be neglected and the four-vectors of the W−, e− and νe can be taken to be

p1 = (mW, 0, 0, 0),

p3 = (E, E sin θ, 0, E cos θ),

p4 = (E,−E sin θ, 0,−E cos θ),

with E = mW/2. In the ultra-relativistic limit, where the helicity states are the same
as the chiral states, only left-handed helicity particle states and right-handed helic-
ity antiparticle states contribute to the weak interaction. In this case, the leptonic
current of (15.4) can be written

j µ = u↓(p3)γ µv↑(p4), (15.5)
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where u↓(p3) and v↑(p4) are respectively the left-handed particle and right-handed
antiparticle helicity spinors for the electron and electron antineutrino. The lep-
tonic current of (15.5) is identical to that encountered for the µ+µ− current in the
s-channel process e+e− → µ+µ− and is given by (6.17) with E = mW/2,

j µ = mW(0,− cos θ,−i, sin θ).

For a W boson at rest, the three possible polarisation states of (15.1) are

ε µ− =
1√
2
(0, 1,−i, 0), ε µL = (0, 0, 0, 1) and ε µ+ = − 1√

2
(0, 1, i, 0).

Therefore, from (15.3), the matrix elements for the decay W− → e−νe in the three
possible W-boson polarisation states are

M− = gWmW
2 (0, 1,−i, 0) · (0,− cos θ,−i, sin θ) = 1

2gWmW(1 + cos θ),

ML =
gWmW√

2
(0, 0, 0, 1) · mW(0,− cos θ,−i, sin θ) = − 1√

2
gWmW sin θ,

M+ = − gWmW
2 (0, 1, i, 0) · mW(0,− cos θ,−i, sin θ) = 1

2gWmW(1 − cos θ).

Hence, for the three possible W-boson polarisations

|M−|2 = g2
Wm2

W
1
4 (1 + cos θ)2,

|ML|2 = g2
Wm2

W
1
2 sin2 θ,

|M+|2 = g2
Wm2

W
1
4 (1 − cos θ)2.

The resulting angular distributions of the decay products for each of the different
W-boson polarisations can be understood by noting that the LH and RH helici-
ties of the electron and antineutrino imply that they are produced in a spin-1 state
aligned with the direction of the neutrino, as shown in Figure 15.3. The angular
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!Fig. 15.3 The angular distributions of the electron and electron antineutrino in the decay W− → e−νe for the three
possible W-boson polarisation states.

distributions then follow from the quantum mechanical properties of spin-1, as dis-
cussed in Section 6.3.

The total decay rate is determined by the spin-averaged matrix element squared,
which (for unpolarised W decays) is given by

〈
|M f i|2

〉
= 1

3

(
|M−|2 + |ML|2 + |M+|2

)

= 1
3g

2
Wm2

W

[
1
4 (1 + cos θ)2 + 1

2 sin2 θ + 1
4 (1 − cos θ)2

]

= 1
3g

2
Wm2

W. (15.6)

Hence, after averaging over the three polarisation states of the W boson, there is
no preferred direction for the final-state particles that are, as expected, produced
isotropically in the W-boson rest frame. The W− → e−νe decay rate is obtained by
substituting the expression for the spin-averaged matrix element of (15.6) into the
decay rate formula of (3.49),

Γ =
p∗

32π2m2
W

∫ 〈
|M f i|2

〉
dΩ∗ =

p∗

8πm2
W

〈
|M f i|2

〉
,

where p∗ is the momentum of the electron (or antineutrino) in the centre-of-mass
frame. If the masses of the final-state particles are neglected, p∗ = mW/2, and
therefore the W− → e−νe decay rate is given by

Γ(W− → e−νe) =
g2

WmW

48π
. (15.7)
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!Fig. 15.4 The lowest-order Feynman diagram for W− → qq′ and the 'rst-order QCD correction from W− → qq′g.

The expression of (15.7) gives the partial decay width for W− → e−νe. To calcu-
late the total decay rate of the W boson, all possible decay modes have to be consid-
ered. From the lepton universality of the weak charged-current (and neglecting the
very small differences due to the lepton masses), the three leptonic decay modes
have the same partial decay rates,

Γ(W− → e−νe) = Γ(W− → µ−νµ) = Γ(W− → τ−ντ).

The W boson also can decay to all flavours of quarks with the exception of the
top quark, which is too massive (mt > mW). The decay rate of the W boson to a
particular quark flavour needs to account for the elements of the CKM matrix and
the three possible colours of the final-state quarks, therefore the decay rates relative
to Γeν = Γ(W− → e−νe) are

Γ(W− → du)= 3|Vud|2 Γeν, Γ(W− → dc)= 3|Vcd|2 Γeν,

Γ(W− → su)= 3|Vus|2 Γeν, Γ(W− → sc)= 3|Vcs|2 Γeν,

Γ(W− → bu)= 3|Vub|2 Γeν, Γ(W− → bc)= 3|Vcb|2 Γeν.

From the unitarity of the CKM matrix,

|Vud|2 + |Vus|2 + |Vub|2 = 1 and |Vcd|2 + |Vcs|2 + |Vcb|2 = 1,

and the lowest-order prediction for the W-boson decay rate to quarks is

Γ(W− → qq′) = 6Γ(W− → e−νe).

In addition to the lowest-order W → qq′ process, the QCD correction from the
process W → qq′g, shown in Figure 15.4, enhances the decay rate to hadronic
final states by a factor

κQCD =

[
1 +

αS (mW)
π

]
≈ 1.038. (15.8)
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Thus the total decay rate of the W boson to either quarks or to the three possible
leptonic final states is

ΓW = (3 + 6 κQCD) Γ(W− → e−νe) ≈ 9.2 ×
g2

WmW

48π
= 2.1 GeV,

and the branching ratio of the W boson to hadronic final states is

BR(W→ qq′) =
6 κQCD

3 + 6 κQCD
= 67.5%. (15.9)

The prediction of ΓW = 2.1 GeV is in good agreement with the measured value of
ΓW = 2.085 ± 0.042 GeV (see Chapter 16). Because the mass of the W boson is
large, so is the total decay width, and the lifetime of the W boson is onlyO(10−25 s).

15.1.2 W-pair production

The fact that the force carrying particles of the weak interaction possess the charge
of the electromagnetic interaction is already suggestive that the weak and electro-
magnetic forces are somehow related. Further hints of electroweak unification are
provided by the observation that the coupling constants of the electromagnetic and
weak interactions are of the same order of magnitude (see Section 11.5.1). How-
ever, there are also strong theoretical arguments for why a theory with just the weak
charged current must be incomplete.

Pairs of W bosons can be produced in e+e− annihilation at an electron–positron
collider or in qq annihilation at a hadron collider. The three lowest-order Feynman
diagrams for the process e+e− → W+W− are shown in Figure 15.5. The t-channel
neutrino exchange diagram represents a purely weak charged-current process. The
s-channel photon exchange diagram is an electromagnetic process, which arises
because the W+ and W− carry electromagnetic charge. With the first two dia-
grams of Figure 15.5 alone, the calculated e+e−→W+W− cross section is found
to increase with centre-of-mass energy without limit, as shown in Figure 15.6.
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!Fig. 15.5 The three lowest-order Feynman diagram for e+e− → W+W−.
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At some relatively high centre-of-mass energy, the cross section violates quantum
mechanical unitarity, whereby particle probability is no longer conserved; the cal-
culated number of W-pairs produced in the interaction exceeds the incident e+e−

flux. This problematic high-energy behaviour of the e+e− → W+W− cross section
indicates that the theory with just the first two diagrams of Figure 15.5 is incom-
plete. Because the s- and t-channel diagrams interfere negatively, the problem
would be even worse with the neutrino exchange diagram alone,

|Mν +Mγ|2 < |Mν|2.

The problem of unitarity violation in e+e− → W+W− production is resolved
naturally in the electroweak theory, which predicts an additional gauge boson, the
neutral Z. Because the contribution to the e+e− → W+W− cross section from the
Z-exchange diagram interferes negatively,

|Mν +Mγ +MZ|2 < |Mν +Mγ|2,

the calculated e+e− → W+W− cross section is well behaved at all centre-of-mass
energies, as shown in Figure 15.6. This partial cancellation only works because the
couplings of the γ, W± and the new Z boson are related to each other in the unified
electroweak model.
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15.2 The weak interaction gauge group

In Section 10.1 it was shown that QED and QCD are associated with respective
U(1) and SU(3) local gauge symmetries. The charged-current weak interaction is
associated with invariance under SU(2) local phase transformations,

ϕ(x)→ ϕ′(x) = exp
[
igW α(x) · T]

ϕ(x). (15.10)

Here T are the three generators of the SU(2) group that can be written in terms of
the Pauli spin matrices,

T = 1
2σ,

and α(x) are three functions which specify the local phase at each point in space-
time. The required local gauge invariance can only be satisfied by the introduction
of three gauge fields, Wk

µ with k = 1, 2, 3, corresponding to three gauge bosons
W(1), W(2) and W(3). Because the generators of the SU(2) gauge transformation are
the 2 × 2 Pauli spin-matrices, the wavefunction ϕ(x) in (15.10) must be written in
terms of two components. In analogy with the definition of isospin, ϕ(x) is termed
a weak isospin doublet. Since the weak charged-current interaction associated with
the W± couples together different fermions, the weak isospin doublets must contain
flavours differing by one unit of electric charge, for example

ϕ(x) =
(
νe(x)
e−(x)

)
.

In this weak isospin space, the νe and e− have total weak isospin IW =
1
2 and third

component of weak isospin I(3)
W (νe) = + 1

2 and I(3)
W (e−) = −1

2 . Since the observed
form of the weak charged-current interaction couples only to left-handed chiral
particle states and right-handed chiral antiparticle states, the gauge transformation
of (15.10) can affect only LH particles and RH antiparticles. To achieve this, RH
particle and LH antiparticle chiral states are placed in weak isospin singlets with
IW = 0 and are therefore unaffected by the SU(2) local gauge transformation. The
weak isospin doublets are composed only of LH chiral particle states and RH chiral
antiparticle states and, for this reason, the symmetry group of the weak interaction
is referred to as SU(2)L.

The weak isospin doublets are constructed from the weak eigenstates and there-
fore account for the mixing in the CKM and PMNS matrices. For example, the
u quark appears in a doublet with the weak eigenstate d′, as defined in (14.3).
The upper member of the doublet, with I(3)

W = +1/2, is always the particle state
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which differs by plus one unit in electric charge relative to the lower member of the
doublet,

(
νe

e−

)

L
,

(
νµ
µ−

)

L
,

(
ντ
τ−

)

L
,

(
u
d′

)

L
,

(
c
s′

)

L
,

(
t

b′

)

L
.

This common ordering within the doublets is necessary for a consistent definition
of the physical W± bosons. The right-handed particle chiral states are placed in
weak isospin singlets with IW = I(3)

W = 0,

e−R, µ
−
R, τ−R, uR, cR, tR, dR, sR, bR.

Because the weak isospin singlets are unaffected by the SU(2)L local gauge trans-
formation of the weak interaction, they do not couple to the gauge bosons of the
symmetry.

The requirement of local gauge invariance implies the modification of the Dirac
equation to include a new interaction term, analogous to (10.11),

igWTkγ
µWk
µϕL = igW

1
2σkγ

µWk
µϕL, (15.11)

where ϕL represents a weak isospin doublet of left-handed chiral particles. This
form of the interaction gives rise to three weak currents, one for each of the three
gauge fields Wk. In the case of the weak isospin doublet formed from the left-
handed electron and the electron neutrino,

ϕL =

(
νL

eL

)
,

the three weak currents, one for each of the Pauli spin-matrices, are

j µ1 =
gW

2
ϕLγ

µσ1ϕL, j µ2 =
gW

2
ϕLγ

µσ2ϕL and j µ3 =
gW

2
ϕLγ

µσ3ϕL,

where ϕL =
(
νL eL

)
contains the left-handed chiral adjoint spinors, νL and eL. The

weak charged-currents are related to the weak isospin raising and lowering opera-
tors, σ± = 1

2 (σ1 ± iσ2), which step between the two states within a weak isospin
doublet. The four-vector currents corresponding to the exchange of the physical
W± bosons are

j µ± =
1√
2

(
j µ1 ± i j µ2

)
=
gW√

2
ϕLγ

µ 1
2 (σ1 ± iσ2)ϕL,

=
gW√

2
ϕLγ

µσ±ϕL.

The physical W bosons can be identified as the linear combinations

W±µ =
1√
2

(
W(1)
µ ∓ iW(2)

µ

)
, (15.12)
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such that the weak currents can be written

jµ ·Wµ = j µ1 W(1)
µ + j µ2 W(2)

µ + j µ3 W(3)
µ ≡ j µ+W+µ + j µ−W−µ + j µ3 W(3)

µ .

The current j µ+ , which corresponds to the exchange of a W+ boson, can be
expressed as

j µ+ =
gW√

2
ϕLγ

µσ+ϕL =
gW√

2

(
νL eL

)
γ µ

(
0 1
0 0

) (
νL

eL

)

=
gW√

2
νLγ

µeL ≡
gW√

2
ν γ µ 1

2 (1 − γ5)e.

Similarly, the current corresponding to the W− vertex is

j µ− =
gW√

2
ϕLγ

µσ−ϕL =
gW√

2

(
νL eL

)
γ µ

(
0 0
1 0

) (
νL

eL

)

=
gW√

2
eLγ

µνL ≡
gW√

2
e γ µ 1

2 (1 − γ5)ν.

Thus, the SU(2)L symmetry of the weak interaction results in the now familiar
weak charged-currents

j µ+ =
gW√

2
ν γ µ 1

2 (1 − γ5)e and j µ− =
gW√

2
e γ µ 1

2 (1 − γ5)ν,

corresponding to the W+ and W− vertices shown in Figure 15.7.
In addition to the two weak charged-currents, j+ and j−, which arise from lin-

ear combinations of the W(1) and W(2), the SU(2)L gauge symmetry implies the
existence a weak neutral-current given by

j µ3 = gWϕLγ
µ 1

2σ3ϕL.

The weak neutral-current, written in terms of the component fermions, is

j µ3 = gW
1
2

(
νL eL

)
γ µ

(
1 0
0 −1

) (
νL

eL

)

= gW
1
2νLγ

µνL − gW
1
2 eLγ

µeL. (15.13)
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Hence the SU(2)L symmetry of the weak interaction implies the existence of the
weak neutral-current corresponding to the vertices shown in Figure 15.8, with

j µ3 = I(3)
W gW f γ µ 1

2 (1 − γ5)f, (15.14)

where f denotes the fermion spinor. The sign in this expression is determined by the
third component of weak isospin I(3)

W = ±1/2. Because RH particles/LH antiparti-
cles have I(3)

W = 0, they do not couple to the weak neutral-current corresponding to
the W(3).

15.3 Electroweak uni!cation

It is tempting to identify the neutral-current of (15.14) as that due to the exchange
of the Z boson, in which case the Z boson would correspond to the W(3) of the
SU(2)L local gauge symmetry. This would imply that the weak neutral-current cou-
pled only to left-handed particles and right-handed antiparticles. This is in contra-
diction with experiment, which shows that the physical Z boson couples to both
left- and right-handed chiral states (although not equally).

Of the four observed bosons of QED and the weak interaction, the photon and the
Z boson, with the corresponding fields Aµ and Zµ, are both neutral. Consequently, it
is plausible that they can be expressed in terms of quantum state formed from two
neutral bosons, one of which is the W(3) associated with the SU(2)L local gauge
symmetry. In the electroweak model of Glashow, Salam and Weinberg (GSW),
the U(1) gauge symmetry of electromagnetism is replaced with a new U(1)Y local
gauge symmetry

ψ(x)→ ψ′(x) = Û(x)ψ(x) = exp
[
ig′

Y
2
ζ(x)

]
ψ(x), (15.15)

giving rise to a new gauge field Bµ that couples to a new kind of charge, termed
weak hypercharge Y . The resulting interaction term is

g′
Y
2
γ µBµψ, (15.16)
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which has the same form as the interaction from the U(1) symmetry of QED,

Qeγ µAµψ,

with Qe replaced by Yg′/2. In the unified electroweak model, the photon and Z
boson are written as linear combinations of the Bµ and neutral W(3)

µ of the weak
interaction,

Aµ = +Bµ cos θW +W(3)
µ sin θW, (15.17)

Zµ = −Bµ sin θW +W(3)
µ cos θW, (15.18)

where θW is the weak mixing angle. This mixing of the neutral fields of the U(1)Y

and SU(2)L gauge symmetries might seem contrived; however, it arises naturally
in the Higgs mechanism (see Chapter 17). From (15.17) and (15.18), the physical
currents of QED and the weak neutral current are

j µem = j µY cos θW + j µ3 sin θW, (15.19)

j µZ = − j µY sin θW + j µ3 cos θW. (15.20)

The GSW model of electroweak unification implies that the couplings of the
weak and electromagnetic interactions are related. This can be seen by considering
the interactions of the electron and the electron neutrino. The weak neutral-current
associated with the W(3) is given by (15.13) and involves only left-handed particles,

j µ3 =
1
2gW νLγ

µνL − 1
2gW eLγ

µeL. (15.21)

The currents from the interaction term of (15.16), which treats left- and right-
handed states equally, are

j µY =
1
2g
′YeL eL γ

µeL +
1
2g
′YeR eR γ

µeR +
1
2g
′YνL νL γ

µνL +
1
2g
′YνR νR γ

µνR,
(15.22)

where, for example, YeL is the weak hypercharge of the left-handed electron. The
current for the electromagnetic interaction, written in terms of the chiral compo-
nents of the electron, is

j µem = Qee eLγ
µeL + Qee eRγ

µeR.

Since the neutrino is a neutral particle its electromagnetic current is zero. For the
GSW model to work, it must reproduce the observed couplings of QED. From
(15.19) the electromagnetic current can be written

j µem = Qee eLγ
µeL + Qee eRγ

µeR = j µY cos θW + j µ3 sin θW,
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where j µY and j µ3 , which include terms for the electron neutrino, are given by
(15.21) and (15.22). Hence the terms in electromagnetic current j µem, including
those for the neutrinos which are zero, can be equated to

eLγ
µeL : Qee = 1

2g
′YeL cos θW − 1

2gW sin θW, (15.23)

νLγ
µνL : 0 = 1

2g
′YνL cos θW +

1
2gW sin θW, (15.24)

eRγ
µeR : Qee = 1

2g
′YeR cos θW, (15.25)

νRγ
µνR : 0 = 1

2g
′YνR cos θW. (15.26)

Equations (15.23)–(15.26) relate the couplings of electromagnetism to those of the
weak interaction and the couplings associated with the U(1)Y symmetry.

In the GSW model, the underlying gauge symmetry of the electroweak sector
of the Standard Model is the U(1)Y of weak hypercharge and the SU(2)L of the
weak interaction, written as U(1)Y × SU(2)L. For invariance under U(1)Y and
SU(2)L local gauge transformations, the weak hypercharges of the particles in a
weak isospin doublet must be the same, for example YeL = YνL . If this were not
the case, a U(1)Y local gauge transformation would introduce a phase difference
between the two components of a weak isospin doublet, breaking the SU(2)L sym-
metry. The weak hypercharge assignments of the fermions can be expressed as a
linear combination of the electromagnetic charge Q and the third component of
weak isospin I(3)

W ,

Y = αQ + βI(3)
W .

The charges and third component of weak isospin for the left-handed electron and
the left-handed electron neutrino are respectively

(
Q = −1, I(3)

W = − 1
2

)
and(

Q = 0, I(3)
W = +

1
2

)
, and therefore

YνL = +
1
2β and YeL = −α − 1

2β.

From the requirement that YeL = YνL , it follows that β = −α and the weak hyper-
charge can be identified as

Y = 2
(
Q − I(3)

W

)
. (15.27)

The factor of two in (15.27) is purely conventional; a different choice could be
absorbed into the definition of g′ without modifying the actual couplings. The weak
hypercharges of the eL and νL are therefore

YeL = YνL = −1.

Since YeL = YνL , subtracting (15.23) from (15.24) gives the relationship between
the weak and electromagnetic couplings in terms of the weak mixing angle,

e = gW sin θW. (15.28)
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The sum of (15.23) and (15.24) gives

Qee = 1
2g
′(YeL + YνL) cos θW.

Since QeL = −1 and YeL = YνL = −1, the coupling g′ is related to the electron
charge by

e = g′ cos θW. (15.29)

Finally, from (15.27), the weak hypercharge assignments of the I(3)
W = 0 right-

handed states are

YeR = −2 and YνR = 0,

which when substituted into (15.25) and (15.26) give the correct electromagnetic
charges of Q = −1 and Q = 0 for the eR and νR.

The unified electroweak model is able to provide a consistent picture of the elec-
tromagnetic interactions of the fermions with the relation,

e = gW sin θW = g
′ cos θW, (15.30)

and where the weak hypercharge is given by

Y = 2
(
Q − I(3)

W

)
.

The weak mixing angle has been measured in a number of different ways, includ-
ing the studies of e+e− → Z → ff, described in Chapter 16. The average of the
measurements of sin2 θW gives

sin2 θW = 0.23146 ± 0.00012. (15.31)

From (15.28) and the measured value of sin2 θW, the expected ratio of the weak to
electromagnetic coupling constants is

α

αW
=

e2

g2
W

= sin2 θW ∼ 0.23,

consistent with the measured values discussed previously in Section 11.5.1.

15.3.1 The couplings of the Z

At this point it might be tempting to think that the procedure for electroweak uni-
fication has just replaced two independent couplings, e and gW, by a single unified
coupling and the weak mixing angle. However, once the couplings in the elec-
troweak model are chosen to reproduce the observed electromagnetic couplings,
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Z
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cR  
gZ cL  

gZfL

Z

fL

!Fig. 15.9 The weak neutral-current interaction vertices for the physical Z boson and the chiral states of a fermion f.

the couplings of the Z boson to all the fermions are completely specified. The cur-
rent from the interaction between the Z boson and a fermion of flavour f is given
by (15.20),

j µZ = − 1
2g
′ sin θW[YfLuLγ

µuL + YfRuRγ
µuR] + I(3)

W gW cos θW[uLγ
µuL],

where uL/R and uL/R are the spinors and adjoints spinors for LH and RH chiral
states. Using (15.27) to express the weak hypercharge in terms of Q and I(3)

W implies

j µZ = −g
′ sin θW

[(
Qf − I(3)

W

)
uLγ

µuL + QfuRγ
µuR

]
+ I(3)

W gW cos θW
[
uLγ

µuL
]
.

Collecting up the factors in front of the left- and right-handed currents gives

j µZ =
[
−g′

(
Qf − I(3)

W

)
sin θW + I(3)

W gW cos θW

]
uLγ

µuL −
[
g′ sin θWQf

]
uRγ

µuR.

From (15.30) it can be seen that g′ = gW tan θW and therefore

j µZ = gW

[
−

(
Qf − I(3)

W

) sin2 θW

cos θW
+ I(3)

W cos θW

]
uLγ

µuL − gW

[
sin2 θW

cos θW
Qf

]
uRγ

µuR.

(15.32)

Defining the coupling to the physical Z boson as

gZ =
gW

cos θW
≡ e

sin θW cos θW
,

allows the neutral-current due to the Z boson to be written as

j µZ = gZ

(
I(3)
W − Qf sin2 θW

)
uLγ

µuL − gZ

(
Qf sin2 θW

)
uRγ

µuR.

Hence the couplings of the Z boson to left- and right-handed chiral states, shown
in Figure 15.9, are

j µZ = gZ
(
cL uLγ

µuL + cRuRγ
µuR

)
, (15.33)

with

cL = I(3)
W − Qf sin2 θW and cR = −Qf sin2 θW. (15.34)

Thus, the Z boson couples to both left- and right-handed chiral states, but not
equally. This should come as no surprise; the current associated with the Z boson
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Table 15.1 The charge, I(3)
W and weak hypercharge assignments of the fundamental

fermions and their couplings to the Z assuming sin2θW = 0.231 46.

fermion Qf I(3)
W YL YR cL cR cV cA

νe, νµ, ντ 0 + 1
2 −1 0 + 1

2 0 + 1
2 + 1

2

e−, µ−, τ− −1 − 1
2 −1 −2 −0.27 +0.23 −0.04 − 1

2

u, c, t + 2
3 + 1

2 + 1
3 + 4

3 +0.35 −0.15 +0.19 + 1
2

d, s, b − 1
3 − 1

2 + 1
3 − 2

3 −0.42 +0.08 −0.35 − 1
2

has contributions from the weak interaction, which couples only to left-handed
particles, and from the Bµ field associated with the U(1)Y local gauge symmetry,
which treats left- and right-handed states equally.

The couplings of the Z boson to fermions also can be expressed in terms of
vector and axial-vector couplings using the chiral projection operators of (6.33),

uLγ
µuL = uγ µ 1

2 (1 − γ5)u and uRγ
µuR = uγ µ 1

2 (1 + γ5)u,

such that the current j µZ of (15.33) becomes

j µZ = gZuγ µ
[
cL

1
2 (1 − γ5) + cR

1
2 (1 + γ5)

]
u

= gZuγ µ 1
2

[
(cL + cR) − (cL − cR)γ5

]
u.

Therefore the weak neutral-current can be written as

j µZ =
1
2gZu

(
cVγ

µ − cAγ
µγ5

)
u, (15.35)

where the vector and axial-vector couplings of the Z boson are

cV = (cL + cR) = I(3)
W − 2Q sin2 θW, (15.36)

cA = (cL − cR) = I(3)
W . (15.37)

In terms of these vector and axial-vector couplings, the Feynman rule associated
with the Z-boson interaction vertex is

−i 1
2gZγ

µ
[
cV − cAγ

5
]
. (15.38)

Because the weak neutral-current contains both vector and axial-vector couplings,
it does not conserve parity (see Section 11.3); this also immediately follows from
its different couplings to left- and right-handed chiral states.

In the Standard Model, once sin2 θW is known, the couplings of the Z boson to
the fermions are predicted exactly. For sin2 θW = 0.23146, the predicted couplings
of the fermions to the Z boson are listed in Table 15.1, both in terms of the vector
and axial-vector couplings (cV , cA) and the couplings to left- and right-handed chi-
ral states, (cL, cR).
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15.4 Decays of the Z

The calculation of the Z-boson total decay width and branching ratios follows
closely that for the decay of the W boson, given in Section 15.1.1. However,
whereas the W boson couples only to left-handed chiral particle states, the Z boson
couples to both left- and right-handed states. Nevertheless, because the weak
neutral-current is a vector/axial-vector interaction, the currents due to certain chiral
combinations are still zero. For example, for the decay Z → ff, the weak neutral-
current where both the fermion and antifermion are right-handed is zero, which can
be seen from

uRγ
µ(cV − cAγ

5)vR = u† 1
2 (1 + γ5)γ0γ µ(cV − cAγ

5) 1
2 (1 − γ5)v

= 1
4 u†γ0(1 − γ5)(1 + γ5)γ µ(cV − cAγ

5)v

= 1
4 uγ µPLPR(cV − cAγ

5)v = 0.

Consequently, in the limit where the masses of the fermions in the decay Z → ff
can be neglected, only the two helicity combinations shown in Figure 15.10 give
non-zero matrix elements for the decay of the Z boson.

The Z-boson decay rate either can be calculated from first principles (see Prob-
lem 15.3) or can be obtained from the spin-averaged matrix element of (15.6),
derived previously for W-boson decay. For the helicity combination where the
decay of the Z boson gives a LH particle and RH antiparticle, the spin-averaged
matrix element is the same as that for W-boson decay, but with

1
2g

2
W → g2

Zc2
L, ⇒ 〈|ML|2〉 = 2

3 c2
Lg

2
Zm2

Z.

The corresponding matrix element for the Z decay to a RH particle and LH antipar-
ticle will be proportional to cR rather than cL. After averaging over the spin states
and decay angle, all other factors will be the same. Therefore the spin-averaged
matrix element squared for Z→ ff is

〈|M|2〉 = 〈|ML|2 + |MR|2〉 = 2
3 (c2

L + c2
R)g2

Zm2
Z. (15.39)

z

e-

W-

z
Z

f

z
Z

f

cR gZcL gZ
1 gw
2√

f fνe!Fig. 15.10 The possible helicities in the decays W− → e−νe and Z→ ff.
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This can be expressed in terms of the vector and axial-vector couplings of the Z
boson using cV = cL+cR and cA = cL−cR, which implies that c2

V +c2
A = 2(c2

L+c2
R).

Hence

〈|M|2〉 = 1
3 (c2

V + c2
A)g2

Zm2
Z, (15.40)

from which it follows that

Γ(Z→ ff) =
g2

ZmZ

48π
(c2

V + c2
A). (15.41)

15.4.1 Z width and branching ratios

The Z-boson partial decay rates depend on gZ and mZ. The measured value of mass
of the Z boson is mZ = 91.2 GeV (see Section 16.2.1). The numerical value of gZ

can be obtained from the measured values of the Fermi constant and sin2 θW,

g2
Z =

g2
W

cos2 θW
=

8m2
W√

2 cos2 θW
GF ≈ 0.55.

The partial decay rate to a particular fermion flavour can be calculated from (15.41)
using the appropriate vector and axial-vector couplings. For example, in the case
of the decay Z → νeνe, the neutrino vector and axial-vector couplings are cV =

cA =
1
2 , and therefore

Γ(Z→ νeνe) =
g2

ZmZ

48π

(
1
4
+

1
4

)
= 167 MeV. (15.42)

Because the Z boson couples to all fermions, it can decay to all flavours with the
exception of the top quark (mt > mZ). The total decay width ΓZ is given by the sum
of the partial decay widths

ΓZ =
∑

f

Γ(Z→ ff).

The Z-boson couplings, listed in Table 15.1, are the same for all three generations,
and thus the total decay width can be written

ΓZ = 3Γ(Z→ νeνe) + 3Γ(Z→ e+e−) + 3 × 2Γ(Z→ uu) + 3 × 3Γ(Z→ dd),

where the additional factors of three multiplying the decays to quarks account for
colour, and only two decays to up-type quarks are possible since mt > mZ. Using
the couplings in Table 15.1, and multiplying the hadronic decay widths by [1 +
αS (Q2)/π] to account for the gluon radiation in the decay, the total decay width of
the Z is predicted to be

ΓZ ≈ 2.5 GeV,
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and the branching ratios of the Z boson, given by Br(Z→ ff) = Γ(Z→ ff)/ΓZ, are

Br(Z→ νeνe) = Br(Z→ νµνµ) = Br(Z→ ντντ) ≈ 6.9%,

Br(Z→ e+e−) = Br(Z→ µ+µ−) = Br(Z→ τ+τ−) ≈ 3.5%,

Br(Z→ uu) = Br(Z→ cc) ≈ 12%,

Br(Z→ dd) = Br(Z→ ss) = Br(Z→ bb) ≈ 15%.

Grouping together the decays to neutrinos, charged leptons, and quarks gives

Br(Z→ νν) ≈ 21%, Br(Z→ -+-−) ≈ 10% and Br(Z→ hadrons) ≈ 69%,

and thus almost 70% of Z decays result in final states with jets.

Summary

In the Standard Model, the weak charged-current is associated with an SU(2)L

local gauge symmetry. This gives rise to the W+ and W− bosons and a neutral
gauge field, W(3). In the GSW model of electroweak unification, this neutral field
mixes with a photon-like field of the U(1)Y gauge symmetry to give the physical
photon and Z-boson fields

Aµ = +Bµ cos θW +W(3)
µ sin θW

Zµ = −Bµ sin θW +W(3)
µ cos θW,

where θW is the weak mixing angle. Within this unified model, the couplings of the
γ, W and Z are related by

e = gW sin θW = gZ sin θW cos θW.

Within the unified electroweak model, once θW is known, the properties of the Z
boson are completely specified. The precise tests of these predictions are main the
subject of the next chapter.

Problems

15.1 Draw all possible lowest-order Feynman diagrams for the processes:

e+e− → µ+µ−, e+e− → νµνµ, νµe− → νµe− and νee− → νee−.

15.2 Draw the lowest-order Feynman diagram for the decayπ0 → νµνµ and explain why this decay is e,ectively
forbidden.
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15.3 Starting from the matrix element, work through the calculation of the Z → ff partial decay rate, expressing
the answer in terms of the vector and axial-vector couplings of Z. Taking sin2 θW = 0.2315, show that

Rµ =
Γ(Z→ µ+µ−)
Γ(Z→ hadrons)

≈ 1
20
.

15.4 Consider the purely neutral-current (NC) process νµe− → νµe−.

(a) Show that in the limit where the electron mass can be neglected, the spin-averaged matrix element for
νµe− → νµe− can be written

〈|M|2〉 = 1
2

(∣∣∣MNC
LL

∣∣∣2 +
∣∣∣MNC

LR

∣∣∣2
)
,

where

MNC
LL = 2c(ν)

L c(e)
L

g2
Zs

m2
Z

and MNC
RR = 2c(ν)

L c(e)
R

g2
Zs

m2
Z

1
2 (1 + cos θ∗),

and θ∗ is the angle between the directions of the incoming and scattered neutrino in the centre-of-mass
frame.

(b) Hence 'nd an expression for the νµe− neutral-current cross section in terms of the laboratory frame neu-
trino energy.

15.5 The two lowest-order Feynman diagrams for νee− → νee− are shown in Figure 13.5. Because both diagrams
produce the same 'nal state, the amplitudes have to be added before the matrix element is squared. The matrix
element for the charged-current (CC) process is

MCC
LL =

g2
Ws

m2
W

.

(a) In the limit where the lepton masses and the q2 term in the W-boson propagator can be neglected, write
down expressions for spin-averaged matrix elements for the processes

νµe− → νµe−, νee− → νee− and νµe− → νeµ
−.

(b) Using the relation gZ/mZ = gW/mW, show that

σ(νµe− → νµe−) : σ(νee− → νee−) : σ(νµe− → νeµ
−) = c2

L +
1
3 c2

R : (1 + cL)2 + 1
3 c2

R : 1,

where cL and cR refer to the couplings of the left- and right-handed charged leptons to the Z.
(c) Find numerical values for these ratios of NC+ CC : NC : CC cross sections and comment on the sign of the

interference between the NC and CC diagrams.


