
14 CP violation and weak hadronic interactions

CP violation is an essential part of our understanding of both particle physics
and the evolution of the early Universe. It is required to explain the observed
dominance of matter over antimatter in the Universe. In the Standard Model,
the only place where CP violating effects can be accommodated is in the weak
interactions of quarks and leptons. This chapter describes the weak charged-
current interactions of the quarks and concentrates on the observations of CP
violation in the neutral kaon and B-meson systems. This is not an easy topic
and it is developed in several distinct stages. The detailed quantum mechani-
cal derivations of the mixing of neutral meson states are given in two starred
sections.

14.1 CP violation in the early Universe

The atoms in our local region of the Universe are formed from electrons, protons
and neutrons rather than their equivalent antiparticles. The possibility that there are
galaxies and/or regions of space dominated by antimatter can be excluded by the
astronomical searches for photons from the e+e− annihilation process that would
occur at the interfaces between matter and antimatter dominated regions of the Uni-
verse. The predominance of matter is believed to have arisen in the early evolution
of the Universe.

In the early Universe, when the thermal energy kBT was large compared to the
masses of the hadrons, there were an equal number of baryons and antibaryons.
The baryons and antibaryons were initially in thermal equilibrium with the soup of
relatively high-energy photons that pervaded the early Universe, through processes
such as

γ + γ! p + p. (14.1)

As the Universe expanded, its temperature decreased as did the mean energy of
the photons. At some point, the forward reaction of (14.1) effectively ceased. Fur-
thermore, with the expansion, the number density of baryons and antibaryons also
decreased and eventually became sufficiently low that annihilation processes such
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as the backward reaction of (14.1) became very rare. At this point in time, the num-
ber of baryons and antibaryons in the Universe was effectively fixed. This process
is known as Big Bang baryogenesis. The calculations of the thermal freeze out of
the baryons without CP violation predict equal number densities of baryons and
antibaryons, nB = nB, and a baryon to photon number density ratio of

nB = nB ∼ 10−18nγ.

This prediction is in contradiction with the observed matter-dominated Universe,
where the baryon–antibaryon asymmetry, which can be inferred from the relative
abundances of light isotopes formed in the process of Big Bang nucleosynthesis, is

nB − nB

nγ
∼ 10−9.

Broadly speaking, to generate this asymmetry, for every 109 antibaryons in the
early Universe there must have been 109 + 1 baryons, which annihilated to give
O(109) photons, leaving 1 baryon.

To explain the observed matter–antimatter asymmetry in the Universe, three con-
ditions, originally formulated by Sakharov (1967), must be satisfied. In the early
Universe there must have been: (i) baryon number violation such that nB−nB is not
constant; (ii) C and CP violation, because if CP is conserved, for every reaction that
creates a net number of baryons over antibaryons there would be a CP conjugate
reaction generating a net number of antibaryons over baryons; and (iii) departure
from thermal equilibrium, since in thermal equilibrium any baryon number vio-
lating process will be balanced by the inverse reaction. The Standard Model of
particle physics provides the possibility of CP violation in the weak interactions of
quarks and leptons. To date, CP violation has only been observed in the quark sec-
tor, where many detailed measurements have been made. Despite the clear observa-
tions of CP violating effects in the weak interactions of quarks, this is not sufficient
to explain the matter–antimatter asymmetry in the Universe and ultimately another
source needs to be identified.

14.2 The weak interactions of quarks

In Section 12.1, it was shown that there is a universal coupling strength of the
weak interaction to charged leptons and the corresponding neutrino weak eigen-
states; G(e)

F = G(µ)
F = G(τ)

F . The strength of the weak interaction for quarks can
be determined from the study of nuclear β-decay, where |M|2 ∝ G(e)

F G(β)
F and G(β)

F
gives the coupling at the weak interaction vertex of the quarks in Figure 14.1. From
the observed β-decay rates for superallowed nuclear transitions, the strength of the
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coupling at the ud quark weak interaction vertex is found to be 5% smaller than
that at the µ−νµ vertex,

G(µ)
F = (1.166 3787 ± 0.000 0006) × 10−5 GeV−2,

G(β)
F = (1.1066 ± 0.0011) × 10−5 GeV−2.

Furthermore, different coupling strengths are found for the ud and us weak charged-
current vertices. For example, the measured decay rate for K−(us) → µ−νµ com-
pared to that of π−(ud) → µ−νµ is approximately a factor 20 smaller than would
be expected for a universal weak coupling to the quarks. These observations were
originally explained by the Cabibbo hypothesis. In the Cabibbo hypothesis, the
weak interactions of quarks have the same strength as the leptons, but the weak
eigenstates of quarks differ from the mass eigenstates. The weak eigenstates,
labelled d′ and s′, are related to the mass eigenstates, d and s, by the unitary matrix,

(
d′

s′

)
=




cos θc sin θc

− sin θc cos θc







d

s


 , (14.2)

where θc is known as the Cabibbo angle. This idea is very similar to the two-flavour
mixing of the neutrino mass and weak eigenstates encountered in Section 13.4. In
the Cabibbo model, the weak interactions of quarks are described by ud′ and cs′

couplings, shown in Figure 14.2.
Nuclear β-decay involves the weak coupling between u and d quarks. There-

fore, with the Cabibbo hypothesis, β-decay matrix elements are proportional to
gW cos θc and decay rates are proportional to GF cos2 θc. Similarly, the matrix
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elements for the decays K− → µ−νµ and π− → µ−νµ, shown in Figure 14.3,
respectively include factors of cos θc and sin θc. Consequently, after accounting
for the difference in phase space, the K− decay rate is suppressed by a factor of
tan2 θc relative to that for the π−. The observed β-decay rates and the measured
ratio of Γ(K−(us) → µ−νµ) to Γ(π−(ud) → µ−νµ) can be explained by the Cabibbo
hypothesis with θc ' 13◦.

When the Cabibbo mechanism was first proposed, the charm quark had not been
discovered. Since the Cabibbo mechanism allows for ud and us couplings, the
flavour changing neutral-current (FCNC) decay of the neutral kaon KL → µ+µ−
can occur via the exchange of a virtual up-quark, as shown in the first box diagram
of Figure 14.4. However, the observed branching ratio,

BR(KL → µ+µ−) = (6.84 ± 0.11) × 10−9,

is much smaller than expected from this diagram alone. This observation was
explained by the GIM mechanism; see Glashow, Iliopoulos and Maiani (1970).
In the GIM mechanism, which was formulated before the discovery of the charm
quark, a postulated fourth quark coupled to the s′ weak eigenstate. In this case, the
decay KL → µ+µ− can also proceed via the exchange of a virtual charm quark, as
shown in the second box diagram of Figure 14.4. The matrix elements for the two
KL → µ+µ− box diagrams are respectively

Mu ∝ g4
W cos θc sin θc and Mc ∝ −g4

W cos θc sin θc.

Because both diagrams give the same final state, the amplitudes must be summed

|M|2 = |Mu +Mc|2 ≈ 0.
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The GIM mechanism therefore explains the smallness of the observed KL → µ+µ−
branching ratio. The cancellation is not exact because of the different masses of the
up and charm quarks.

14.3 The CKM matrix

The Cabibbo mechanism is naturally extended to the three generations of the Stan-
dard Model, where the weak interactions of quarks are described in terms of the
unitary Cabibbo–Kobayashi–Maskawa (CKM) matrix. The weak eigenstates are
related to the mass eigenstates by




d′

s′

b′


 =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb







d
s
b


 . (14.3)

Consequently, the weak charged-current vertices involving quarks are given by

−i
gW√

2
( u, c, t ) γ µ 1

2 (1 − γ5)




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb







d
s
b


 ,

where, for example, d is a down-quark spinor and u is the adjoint spinor for an
up-quark. The relative strength of the interaction is defined by the relevant element
of the CKM matrix. For example, the weak charged-current associated with the
duW vertex shown in the top left plot of Figure 14.5 is

j µdu = −i gW√
2

Vud uγ µ 1
2 (1 − γ5)d.
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The CKM matrix is defined such that the associated vertex factor contains Vud

when the charge −1
3 quark enters the weak current as the spinor. If the charge −1

3
quark is represented by an adjoint spinor, d = d†γ0, the vertex factor from the CKM
matrix is V∗ud. For example, the current associated with the vertex in the bottom left
plot of Figure 14.5 is

j µud = −i gW√
2

V∗ud dγ µ 1
2 (1 − γ5)u.

The CKM matrix, which is the analogous to the PMNS matrix for the weak
interactions of leptons, is unitary and can be described by three rotation angles and
a complex phase,

VCKM =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


 =




1 0 0
0 c23 s23

0 −s23 c23


 ×




c13 0 s13e−iδ′

0 1 0
−s13eiδ′ 0 c13


 ×




c12 s12 0
−s12 c12 0

0 0 1


 ,

(14.4)

where si j = sin φi j and ci j = cos φi j.
Whilst the structure of the weak interactions of quarks and leptons is the same,

the phenomenology is very different. Quarks do not propagate as free particles,
but hadronise on a length scale of 10−15 m. Consequently, the final states of weak
interactions involving quarks have to be described in terms of mesons or baryons.
The observed hadronic states are composed of particular quark flavours and, there-
fore, it is the quark mass (flavour) eigenstates that form the observable quantities
in hadronic weak interactions. Consequently, the nine individual elements of the
CKM matrix can be measured separately. For example, Vud is determined from
superallowed nuclear β-decays,

|Vud| = cos θc = 0.974 25(22).

The weak coupling between the u and s quarks can be determined from the mea-
sured branching ratio of the K0 → π−e+νe decay shown in Figure 14.6a,

|Vus| = 0.225 2(9).
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!Fig. 14.6 The Feynman diagrams for a) K0 → π−e+νe, b) B0 → π−e+νe and c) νµd→ µ−c.
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The large numbers of B0(db) and B0(bd) mesons produced at the BaBar and Belle
experiments, described in Section 14.6.3, allow precise measurements of the
branching ratios for decays such as B0 → π−e+νe, shown in Figure 14.6b. The mea-
surements of the inclusive and exclusive branching ratios of the B-mesons imply

|Vub| = (4.15 ± 0.49) × 10−3.

The CKM matrix element Vcs can be determined from the leptonic decays of
the D+s (us) meson, for example D+s → µ+νµ, and Vcb can be determined from the
semi-leptonic decay modes of B-mesons to final states with charm quarks, giving

|Vcs| = 1.006 ± 0.023 and |Vcb| = (40.9 ± 1.1) × 10−3.

The CKM matrix element Vcd is most precisely measured in neutrino–nucleon scat-
tering, νµd → µ−c, shown in Figure 14.6c. The final-state charm quark can be
identified from its semi-leptonic decay c → sµ+νµ, which gives an experimental
signature of a pair of oppositely charged muons, one from the charm production
process and one from its decay. The observed production rate of opposite sign
muons in neutrino deep inelastic scattering gives

|Vcd| = 0.230(11).

The experimental situation for the CKM matrix elements involving top quarks
is somewhat less clear. The observations of B0 ↔ B0 oscillations, described in
Section 14.6, can be interpreted in the Standard Model as measurements of

|Vtd| = (8.4 ± 0.6) × 10−3 and |Vts| = (42.9 ± 2.6) × 10−3.

From the observed decay modes of the top quark at CDF and D0, it is known that
the top quark decays predominantly via t→ bW and therefore |Vtb| is close to unity,
although the current experimental error is at the 10% level.

In the Standard Model, the CKM matrix is unitary, V†V = I, which implies that

|Vud|2 + |Vus|2 + |Vub|2 = 1, (14.5)

|Vcd|2 + |Vcs|2 + |Vcb|2 = 1, (14.6)

|Vtd|2 + |Vts|2 + |Vtb|2 = 1. (14.7)

The measurements of the individual CKM matrix elements, described above, are
consistent with these three unitarity relations. Assuming unitarity, further con-
straints can be placed on the less precisely determined CKM matrix elements, for
example |Vtb|2 = 1 − |Vts|2 − |Vtb|2, which implies that |Vtb| = 0.999. With the
unitarity constraints from (14.5)−(14.7), the experimental measurements can be
interpreted as




|Vud| |Vus| |Vub|
|Vcd| |Vcs| |Vcb|
|Vtd| |Vts| |Vtb|


 ≈




0.974 0.225 0.004
0.225 0.973 0.041
0.009 0.040 0.999


 . (14.8)
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Unlike the PMNS matrix of the lepton flavour sector, the off-diagonal terms in
the CKM matrix are relatively small. This implies that the rotation angles between
the quark mass and weak eigenstates in (14.4) are also small, φ12 = 13◦, φ23 = 2.3◦

and φ13 = 0.2◦. The smallness of these angles leads to the near diagonal form
of the CKM matrix. Consequently, the weak interactions of quarks of different
generations are suppressed relative to those of the same generation, ud, cs and
tb. The suppression is largest for the couplings between first and third generation
quarks, ub and td.

Because of the near diagonal nature of the CKM matrix, it is convenient to
express it as an expansion in the relatively small parameter λ = sin θc = 0.225.
In the widely used Wolfenstein parameterisation, the CKM matrix is written in
terms of four real parameters, λ, A, ρ and η. To O(λ4) the CKM matrix then can be
parameterised as




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


 =




1 − λ2/2 λ Aλ3(ρ − iη)
−λ 1 − λ2/2 Aλ2

Aλ3(1 − ρ − iη) −Aλ2 1


 + O(λ4). (14.9)

In the Wolfenstein parameterisation, the complex components of the CKM matrix
reside only in Vub and Vtd (although if higher-order terms are included, Vcd and Vts

also have a small complex components that are proportional to λ5). For CP to be
violated in the quark sector, the CKM matrix must contain an irreducible complex
phase and this corresponds to η being non-zero. The experimental measurements of
branching ratios only constrain the magnitudes of the individual CKM matrix ele-
ments, and do not provide any information about this complex phase. To constrain
η and ρ separately, measurements that are sensitive to the amplitudes, rather than
amplitudes squared are required. Such measurements can be made in the neutral
kaon and neutral B-mesons systems.

14.4 The neutral kaon system

The first experimental observation of CP violation was made in the neutral kaon
system. The K0(ds) and K0(sd) are the lightest mesons containing strange quarks.
They are produced copiously in strong interactions, for example in processes

π−(du) + p(uud)→ Λ(uds) + K0(ds),

p(uud) + p(u ud)→ K+(us) + K0(sd) + π−(du).

The K0 and K0 are the eigenstates of the strong interaction and are referred to as
the flavour states. Since they are the lightest hadrons containing strange quarks,
the K0 and K0 can decay only by the weak interaction. Because the neutral kaons
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are relatively light, m(K) = 498 MeV, only decays to final states with either lep-
tons (e/µ) or pions are kinematically allowed. The weak interaction also provides a
mechanism whereby the neutral kaons can mix through the K0 ↔ K0 box diagrams
shown in Figure 14.7.

In quantum mechanics, the physical states are the eigenstates of the free-particle
Hamiltonian. These are the stationary states introduced in Section 2.3.3. Until now,
independent stationary states have been used to describe each type of particle. Here
however, because of the K0 ↔ K0 mixing process, a neutral kaon that is produced
as a K0 will develop a K0 component. For this reason, the K0–K0 system has to
be considered as a whole. The physical neutral kaon states are the stationary states
of the combined Hamiltonian of the K0–K0 system, including the weak interaction
mixing Hamiltonian. Consequently, the neutral kaons propagate as linear combi-
nations of the K0 and K0. These physical states are known as the K-short (KS )
and the K-long (KL). The KS and KL are observed to have very similar masses,
m(KS ) ≈ m(KL) ≈ 498 MeV, but quite different lifetimes,

τ(KS ) = 0.9 × 10−10 s and τ(KL) = 0.5 × 10−7 s.

If CP were an exact symmetry of the weak interaction, the KS and KL would
be equivalent to the CP eigenstates of the neutral kaon system (the proof of this
statement is given in Section 14.4.3). The CP states can be identified by considering
the action of the parity and charge conjugation operators on the neutral kaons. The
flavour eigenstates, K0(ds) and K0(sd), have spin-parity JP = 0− and therefore

P̂|K0〉 = −|K0〉 and P̂|K0〉 = −|K0〉.

The K0 and K0 are not eigenstates of the charge conjugation operator Ĉ that has
the effect of replacing particles with antiparticles and vice versa. However, since
they are neutral particles with opposite flavour content, one can write

Ĉ|K0(ds)〉 = eiζ |K0(ds)〉 and Ĉ|K0(ds)〉 = e−iζ |K0(ds)〉,
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where ζ is an unobservable phase factor, which is conventionally1 chosen to be
ζ = π such that

Ĉ|K0(ds)〉 = −|K0(ds)〉 and Ĉ|K0(ds)〉 = −|K0(ds)〉.

With this choice, the combined action of ĈP̂ on the neutral kaon flavour eigen-
states are

ĈP̂|K0〉 = +|K0〉 and ĈP̂|K0〉 = +|K0〉.
Consequently, the orthogonal linear combinations

K1 =
1√
2
(K0 + K0) and K2 =

1√
2
(K0 − K0), (14.10)

are CP eigenstates with

ĈP̂|K1〉 = +|K1〉 and ĈP̂|K2〉 = −|K2〉.
If CP were conserved in the weak interaction, these states would correspond to the
physical KS and KL particles. In practice, CP is observed to be violated but at a
relatively low level, and to a reasonable approximation it is found that

|KS 〉 ≈ |K1〉 and |KL〉 ≈ |K2〉.

14.4.1 Kaon decays to pions

Neutral kaons propagate as the physical particles KS and KL, which have well-
defined masses and lifetimes. The KS and KL mainly decay to hadronic final states
of either two/three pions or to semi-leptonic final states with electrons or muons.
For the hadronic decays, the KS decays mostly to ππ final states, whereas the main
hadronic decays of the KL are to πππ final states,

Γ(KS → ππ) . Γ(KS → πππ) and Γ(KL → πππ) . Γ(KL → ππ).

The differences in the lifetimes of the KS and KL can be attributed to the different
hadronic decay modes that are a consequence of the (near) conservation of CP in
kaon decays, as discussed below

First consider the decays to two pions. The two pions can be produced with
relative orbital angular momentum ,, as indicated in Figure 14.8a. Because kaons
and pions both have JP = 0−, the pions produced in the decay K → π0π0 must be
in an , = 0 state in order to conserve angular momentum. The overall parity of the
π0π0 system, which is given by the symmetry of the spatial wavefunction and the
intrinsic parity of the pion, is therefore

P(π0π0) = (−1),P(π0)P(π0) = (+1) × (−1) × (−1) = +1.

1 Sometimes, the convention ζ = 0 is used, leading to a different definition of the K1 and K2 in
terms of the flavour eigenstates. However, provided this weak phase is treated consistently, there
are no physical consequences in the choice.
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The flavour wavefunction of the π0 is

|π0〉 = 1√
2
(uu − dd),

and consequently the π0 is an eigenstate of Ĉ with eigenvalue +1. Therefore

C(π0π0) = C(π0)C(π0) = +1,

and since P(π0π0) = +1, the π0π0 system must be produced in a CP-even state,

CP(π0π0) = +1.

The angular momentum arguments given above apply equally to the π+π− system,
and therefore P(π+π−) = +1. The effect of the parity operation on the π+π− system
is to swap the positions of the two particles, with no change in sign. Because the
charge conjugation operation turns a π+ into a π− and vice versa, the effect of the
charge conjugation on the π+π− system is also to swap the positions of the particles,
with no change in sign. Hence, here the parity and charge conjugation operations
have the same effect, as shown in Figure 14.9, and thus C(π+π−) = P(π+π−) = +1.
Therefore, the decay of a neutral kaon into two pions always produces a CP-even
final state,

CP(π0π0) = +1 and CP(π+π−) = +1.

If CP is conserved in kaon decay (which it is to a very good approximation), the
decay K→ ππ can only occur if the neutral kaon state has CP = +1.

The corresponding arguments for the decays K→ π0π0π0 and K→ π+π−π0 are
slightly more involved. Here, the orbital angular momentum has to be decomposed
into two components; the relative angular momentum of the first two particles, L1,
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and the relative angular momentum of the third with respect to the centre of mass
of the first two, L2, as indicated in Figure 14.8b. Because both kaons and pions are
spin-0 particles, the total orbital angular momentum in the decay K → πππ must
be zero, L = L1 + L2 = 0. This only can be the case if ,1 = ,2 = ,. The overall
parity of the final state in a K→ πππ decay is therefore

P(πππ) = (−1),1 (−1),2(P(π))3 = (−1)2,(−1)3 = −1.

For the π0π0π0 final state, the effect of the charge conjugation operator is

C(π0π0π0) = C(π0)C(π0)C(π0) = (+1)3 = +1,

and therefore CP(π0π0π0) = −1. The effect of the charge conjugation operator on
the π+π−π0 system follows from the arguments given previously,

C(π+π−π0) = C(π+π−)C(π0) = +C(π+π−) = P(π+π−) = (−1),1 ,

where again the effect of Ĉ(π+π−) is the same as that of P̂(π+π−). Because m(K)−
3m(π) ≈ 80 MeV, the kinetic energy of the three-pion system is relatively small,
and the decays where ,1 = ,2 > 0 are suppressed to the point where the contribution
is negligible. For this reason ,1 can be taken to be zero and thus

CP(π0π0π0) = −1 and CP(π+π−π0) = −1.

Therefore, the K → πππ decay modes of neutral kaons always result in a CP-odd
final state.

If CP were conserved in the decays of neutral kaons, the hadronic decays of the
CP-eigenstates |K1〉 and |K2〉 would be exclusively K1 → ππ and K2 → πππ.
Because the phase space available for decays to two and three pions is very differ-
ent, m(K) − 2m(π) ≈ 220 MeV compared to m(K) − 3m(π) ≈ 80 MeV, the decay
rate to two pions is much larger than that to three pions. Hence, the short-lived KS ,
which decays mostly to two pions, can be identified as being a close approximation
to the CP-even state

KS ≈ K1 =
1√
2
(K0 + K0), (14.11)

and the longer lived KL as

KL ≈ K2 =
1√
2
(K0 − K0). (14.12)

If CP were exactly conserved in the weak interaction, then KS ≡ K1 and KL ≡ K2.

CP violation in hadronic kaon decays
The decays of neutral kaons have been extensively studied using kaon beams pro-
duced from hadronic interactions. If a neutral kaon is produced in the strong
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interaction p p → K−π+K0, at the time of production, the kaon is the flavour
eigenstate,

|K(0)〉 = |K0〉.
In the absence of CP violation, where KS ≡ K1 and KL ≡ K2, the |K0〉 flavour state
can be written in terms of the CP eigenstates using (14.11) and (14.12),

|K(0)〉 = |K0〉 = 1√
2
[ |K1〉 + |K2〉] = 1√

2
[ |KS 〉 + |KL〉]. (14.13)

The subsequent time evolution is described in terms of the KS and KL, which are
the observed physical neutral kaons with well-defined masses and lifetimes. In the
rest frame of the kaon, the time-evolution of the KS and KL states are given by

|KS (t)〉 = |KS 〉 exp [−imS t − ΓS t/2], (14.14)

|KL(t)〉 = |KL〉 exp [−imLt − ΓLt/2], (14.15)

where the exp [−Γt/2] terms ensure that the probability densities decay exponen-
tially. For example

〈KS (t)|KS (t)〉 ∝ e−ΓS t = e−t/τS .

Hence the time evolution of the state of (14.13) is

|K(t)〉 = 1√
2

[
|KS 〉e−(imS+ΓS /2)t + |KL〉e−(imL+ΓL/2)t

]
,

which can be written as

|K(t)〉 = 1√
2

[θS (t)|KS 〉 + θL(t)KL] , (14.16)

with

θS (t) = exp [− (imS + ΓS /2) t] and θL(t) = exp [− (imL + ΓL/2) t]. (14.17)

The decay rate to the CP-even two-pion final state is proportional to the K1 com-
ponent of the wavefunction, which in the limit where CP is conserved is equivalent
to the KS component. Therefore, if CP is conserved, the decay rate to two pions
from a beam that was initially in a pure |K0〉 state is

Γ(K0
t=0 → ππ) ∝ |〈KS |K(t)〉|2 ∝ |θS (t)|2 = e−ΓS t = e−t/τS ,

and similarly

Γ(K0
t=0 → πππ) ∝ |〈KL|ψ(t)〉|2 ∝ e−t/τL .

If a kaon beam, which originally consisted of K0(ds), propagates over a large dis-
tance (L . cτS ), the KS component will decay away leaving a pure KL beam, as
indicated in Figure 14.10. The same would be true for an initial K0 beam.

If CP were conserved in the weak interactions of quarks, the KL would corre-
spond exactly to the CP-odd K2 state and at large distances from the production
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Table 14.1 The main decay modes of the KS and KL.

KS Decays BR KL Decays BR

KS → π+π− 69.2% KL → π+π− 0.20%
KS → π0π0 30.7% KL → π0π0 0.09%
KS → π+π−π0 ∼3 × 10−5% KL → π+π−π0 12.5%
KS → π0π0π0 − KL → π0π0π0 19.5%

KS → π−e+νe 0.03% KL → π−e+νe 20.3%
KS → π+e−νe 0.03% KL → π+e−νe 20.3%
KS → π−µ+νµ 0.02% KL → π−µ+νµ 13.5%
KS → π+µ−νµ 0.02% KL → π+µ−νµ 13.5%

KS → pp

KL → ppp

Distance from K0 production

Lo
g 

in
te

ns
ity

!Fig. 14.10 Expected decay rates to pions from an initially pure K0 beam, assuming no CP violation.

of a kaon beam, the hadronic decays to two pions would never be detected. The
first experimental evidence for CP violation was the observation of 45 KL → π+π−

decays out of a total of 22 700 KL decays at a large distance from the production of
the neutral kaon beam; see Christenson et al. (1964). This provided the first direct
evidence for CP violation in the neutral kaon system, albeit only at the level of
0.2%, for which Cronin and Fitch were awarded the Nobel prize.

The branching ratios for the main decay modes of the KS and KL are listed in
Table 14.1, including the relatively rare CP violating hadronic decays. The small-
ness of the semi-leptonic branching ratios of the KS compared to the KL, reflects
the relatively large KS → ππ decay rate; the semi-leptonic partial decay rates of
the KS and KL are almost identical (see Section 14.5.4).

14.4.2 The origin of CP violation

There are two main ways of introducing CP violation into the neutral kaon system.
If CP is violated in the K0 ↔ K0 mixing process (see Section 14.4.3), then the



378 CP violation and weak hadronic interactions

KS and KL will not correspond to the CP eigenstates, K1 and K2. Given that the
observed level of CP violation is relatively small, the KS and KL can be related to
the CP eigenstates by the small (complex) parameter ε,

|KS 〉 =
1

√
1 + |ε|2

(|K1〉 + ε|K2〉) and |KL〉 =
1

√
1 + |ε|2

(|K2〉 + ε|K1〉) ,

such that KS ≈ K1 and KL ≈ K2. In this case, the observed KL → ππ decays are
accounted for by

|KL〉 =
1

√
1 + |ε|2

(|K2〉 + ε|K1〉)
ππ

πππ!
!

and the relative rate of decays to two pions will be depend on ε.
The second possibility is that CP is violated directly in the decay of a CP eigen-

state,

|KL〉 = |K2〉
ππ

πππ!
!

The relative strength of this direct CP violation in neutral kaon decay is parame-
terised by ε′ with Γ(K2 → ππ)/Γ(K2 → πππ) = ε′. Experimentally, it is known
that CP is violated in both mixing and directly in the decay. The results of the
NA48 experiment at CERN and the KTeV experiment at Fermilab, demonstrate
that direct CP violation is a relatively small effect,

Re

(
ε′

ε

)
= (1.65 ± 0.26) × 10−3,

and ε is already a small parameter. Therefore, the main contribution to CP violation
in the neutral kaon system is from K0 ↔ K0 mixing. The quantum mechanics of
mixing in the neutral kaon system is described in detail in the following starred
section.

14.4.3 *The quantum mechanics of kaon mixing

To fully understand the physics of the neutral kaon system, it is necessary to con-
sider the quantum mechanical time evolution of the combined K0–K0 system. This
is not an easy topic, but the results are important.

In the absence of neutral kaon mixing, the time dependence of the wavefunction
of the K0 would be

|K0(t)〉 = |K0〉e−Γt/2e−imt, (14.18)
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∗!Fig. 14.11 Two box diagrams for K0 ↔ K0. There are corresponding diagrams involving all nine combinations of virtual
up, charm and top quarks.

where m is the mass of the particle and the term Γ = 1/τ ensures the probability
density decays away exponentially. The time-dependent wavefunction of (14.18)
clearly satisfies the differential equation

i
∂

∂t
|K0(t)〉 = (m − i

2Γ)|K0(t)〉,

and therefore the effective HamiltonianH can be identified as

H|K0(t)〉 = (m − i
2Γ)|K0(t)〉. (14.19)

Because of the inclusion of the exponential decay term in the wavefunction, the
effective Hamiltonian is not Hermitian and also the expectation values of opera-
tors corresponding to physical observable will not be constant. The mass m in the
effective Hamiltonian of (14.19) includes contributions from the masses of the con-
stituent quarks and from the potential energy of the system. The potential energy
includes contributions from the strong interaction potential (which is the dominant
term), the coulomb interaction and the weak interaction. The interaction terms can
be expressed as expectation values of the corresponding interaction Hamiltonians.
Therefore the mass of the K0, when taken in isolation, can be written as

m = md + ms + 〈K0|ĤQCD + ĤEM + ĤW |K0〉 +
∑

j

〈K0|ĤW | j〉〈 j|ĤW |K0〉
E j − mK

. (14.20)

The last term in this expression comes from the small second-order O(G2
F) con-

tribution to the weak interaction potential from the K0 ↔ K0 box diagrams of
Figure 14.11. The decay rate Γ that appears in (14.19) is given by Fermi’s golden
rule

Γ = 2π
∑

f

|〈 f |ĤW |K0〉|2ρ f ,

where the sum is taken over all possible final states, labelled f , and ρ f is the density
of states for that decay mode.

Up to this point, the K0 has been considered in isolation. However, a K0 will
develop a K0 component through the K0 ↔ K0 mixing diagrams of Figure 14.7.
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Consequently, the time evolution of a neutral kaon state must include both K0 and
K0 components,

|K(t)〉 = a(t)|K0〉 + b(t)|K0〉, (14.21)

where the coefficients a(t) and b(t) are the amplitudes and phases of the K0 and
K0 components of the state at a time t. The time evolution of |K(t)〉, analogous to
(14.19), now has to be written as the coupled equations




M11 − i
2Γ11 M12 − i

2Γ12

M21 − i
2Γ21 M22 − i

2Γ22







a(t) |K0〉
b(t) |K0〉


 = i

∂

∂t




a(t) |K0〉
b(t) |K0〉


 , (14.22)

and the effective Hamiltonian becomes

H =M − i
2Γ =

(
M11 M12

M21 M22

)
− i

2

(
Γ11 Γ12

Γ21 Γ22

)
. (14.23)

It is important to understand the physical meaning of the terms in (14.23). First
consider the decay matrix Γ that accounts for the decay of the state |K(t〉). Here the
total decay rate is given by Fermi’s golden rule, which to lowest order is

Γ = 2π
∑

f

|〈 f |ĤW |K(t)〉|2ρ f ≡ 2π
∑

f

〈K(t)|ĤW | f 〉〈 f |ĤW |K(t)〉 ρ f .

By writing |K(t)〉 in terms of K0 and K0, the matrix element squared for the decay
to a final state f becomes

|〈 f |ĤW |K(t)〉|2 = |a(t)|2 |〈 f |ĤW |K0〉|2 + |b(t)|2 |〈 f |ĤW |K0〉|2

+ a(t)b(t)∗ 〈K0|ĤW | f 〉〈 f |ĤW |K0〉 + a(t)∗b(t) 〈K0|ĤW | f 〉〈 f |ĤW |K0〉.

The diagonal elements of Γ are therefore given by the decay rates

Γ11 = 2π
∑

f

|〈 f |ĤW |K0〉|2ρ f and Γ22 = 2π
∑

f

|〈 f |ĤW |K0〉|2ρ f ,

and are therefore real numbers. The off-diagonal terms of Γ account for the inter-
ference between the decays of the K0 and K0 components of K(t). Because the two
interference terms are the Hermitian conjugates of each other, Γ12 = Γ

∗
21, and the

matrix Γ is itself Hermitian.
Now consider the mass matrix M. The diagonal elements are the mass terms for

the K0 and K0 flavour eigenstates, with M11 given by (14.20) and

M22 = ms + md + 〈K0|ĤQCD + ĤEM + ĤW |K0〉 +
∑

j

〈K0|ĤW | j〉〈 j|ĤW |K0〉
E j − mK

.

(14.24)
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The off-diagonal terms of M are due to the K0 ↔ K0 mixing diagrams of
Figure 14.7, and can be written

M12 = M∗21 =
∑

j

〈K0|ĤW | j〉〈 j|ĤW |K0〉
E j − mK

.

There is no off-diagonal term of the form 〈K0|ĤW |K0〉 because there is no Feyn-
man diagram for K0 ↔ K0 mixing involving the exchange of a single W boson.
Since M12 = M∗21 and the diagonal terms of M are real, the mass matrix is Her-
mitian. If there were no mixing in the neutral kaon system M12, M21, Γ12 and Γ21

would all be zero, and the time evolution equation of (14.22) would decouple into
two independent equations of the form of (14.19), describing the independent time
evolution of the K0 and K0.

From the required CPT symmetry of the Standard Model, the masses and decay
rates of the flavour states K0 and K0 must be equal, M11 = M22 = M and Γ11 =

Γ22 = Γ. Therefore the effective Hamiltonian of (14.23) can be written as

H =M − i
2Γ =

(
M M12

M∗12 M

)
− i

2

(
Γ Γ12

Γ∗12 Γ

)
. (14.25)

Because the off-diagonal elements of M arise from second-order weak interaction
box diagrams, they are much smaller than the diagonal elements that include the
fermion masses and the strong interaction Hamiltonian. The off-diagonal terms
of Γ, which can be of the same order of magnitude as the diagonal terms, are
either positive or negative. Because of the presence of the non-zero off-diagonal
terms inH , the flavour eigenstates K0 and K0 are no longer the eigenstates of the
Hamiltonian.

The neutral kaon state of (14.21), evolves in time according to
(

M − i
2Γ M12 − i

2Γ12

M∗12 − i
2Γ
∗
12 M − i

2Γ

) (
a(t) |K0〉
b(t) |K0〉

)
= i

∂

∂t

(
a(t) |K0〉
b(t)|K0〉

)
. (14.26)

The eigenstates of this effective Hamiltonian can be found by transforming (14.26)
into the basis where H is diagonal. The required transformation can be found by
first solving the eigenvalue equation

(
M − i

2Γ M12 − i
2Γ12

M∗12 − i
2Γ
∗
12 M − i

2Γ

) (
p
q

)
= λ

(
p
q

)
. (14.27)

The non-trivial solutions to (14.27) can be obtained from the characteristic equa-
tion, det(H − λI) = 0, which gives

(M − i
2Γ − λ)2 − (M∗12 − i

2Γ
∗
12)(M12 − i

2Γ12) = 0.

Solving this quadratic equation for λ gives the two eigenvalues

λ± = M − i
2Γ ±

[
(M∗12 − i

2Γ
∗
12)(M12 − i

2Γ12)
] 1

2 . (14.28)
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The corresponding eigenstates, found by substituting these two eigenvalues back
into (14.27), have

q
p
= ±ξ ≡ ±




M∗12 − i
2Γ
∗
12

M12 − i
2Γ12




1
2

. (14.29)

The normalised eigenstates, here denoted K+ and K−, which ultimately will be
identified as the KS and KL, are therefore

(
|K+〉
|K−〉

)
=

1
√

1 + |ξ|2

(
1 ξ
1 −ξ

) ( |K0〉
|K0〉

)
=

1
√

1 + |ξ|2

(
|K0〉 + ξK0

|K0〉 − ξ|K0〉

)
.

Equation (14.26), which has the formHK = i∂K/∂t, can be written in the diago-
nal basis using the matrix S formed from the eigenvectors of H , such that H ′ =
S−1HS is diagonal,

H ′ = S−1HS =
(
λ+ 0
0 λ−

)
.

In the diagonal basis (14.26) becomes

i
∂

∂t

(
|K+(t)〉
|K−(t)〉

)
=

(
λ+ 0
0 λ−

) (
|K+(t)〉
|K−(t)〉

)
. (14.30)

Hence the states K+ and K− propagate as independent particles and therefore can
be identified as the physical mass eigenstates of the neutral kaon system. The time
dependences of the K+ and K− states are given by the solutions of (14.30),

|K+(t)〉 = 1
√

1 + |ξ|2
(
|K0〉 + ξ|K0〉

)
e−iλ+t

|K−(t)〉 = 1
√

1 + |ξ|2
(
|K0〉 − ξ|K0〉

)
e−iλ−t,

with the real and imaginary parts of λ± determining respectively the masses and
decay rates of the two physical states. From (14.28),

λ+ − λ− = 2
[
(M∗12 − i

2Γ
∗
12)(M12 − i

2Γ12)
] 1

2 , (14.31)

and therefore λ+ and λ− can be written as

λ± = M − i
2Γ ± 1

2 (λ+ − λ−) = M ± Re
(λ+ − λ−

2

)
− i

2 (Γ ∓ Im {λ+ − λ−}) .

It is not a priori clear which of the two eigenvalues, λ+ and λ−, is associated with
the KS and which is associated with the KL, but both can be written in the form

λ = [M ± ∆m/2] − i
2 [Γ ± ∆Γ/2] ,
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with

∆m = |Re (λ+ − λ−)| and ∆Γ = ±|∆Γ| = ±2|Im (λ+ − λ−)|.

Here ∆m is defined to be positive and the sign of ∆Γ depends on the relative signs of
the real and imaginary parts of (14.31), which in turn depends on the off-diagonal
terms of the effective Hamiltonian. For the neutral kaon system it turns out that
∆Γ < 0, and therefore the heavier state has the smaller decay rate. Consequently,
the physical eigenstates of the neutral kaon system consist of a heavier state of
mass M + ∆m/2 that can be identified as the longer-lived KL state and a lighter
state with a larger decay rate and mass M − ∆m/2 that can be identified as the KS ,

λS = mS − i
2ΓS with mS = M − ∆m/2 and ΓS = Γ + |∆Γ|/2,

λL = mL − i
2ΓL with mL = M + ∆m/2 and ΓL = Γ − |∆Γ|/2.

Because the off-diagonal terms in the effective Hamiltonian arise from the weak
interaction alone, ∆m 2 M, and the mass difference between the KL and KS is
very small.

If the CKM matrix were entirely real, which would imply that M12 = M∗12 and
Γ12 = Γ

∗
12, the parameter ξ defined in (14.29) would be unity. In this case, the

physical states would be

KS ≡ K1 =
1√
2

(
K0 + K0

)
and KL ≡ K2 =

1√
2

(
K0 − K0

)
. (14.32)

Hence, if the CKM matrix were entirely real, in which case the weak interactions of
quarks would conserve CP, the physical states of the neutral kaon system would be
the CP eigenstates, K1 and K2. In practice, CP violation is observed in the neutral
kaon system, albeit at a very low level and therefore ξ ! 1.

Because CP-violating effects are observed to be relatively small, it is convenient
to rewrite ξ in terms of the (small) complex parameter ε defined by

ξ =
1 − ε
1 + ε

,

such that the physical KS and KL states are

|KS (t)〉 = 1
√

2(1 + |ε|2)

[
(1 + ε)|K0〉 + (1 − ε)|K0〉

]
e−iλS t, (14.33)

|KL(t)〉 = 1
√

2(1 + |ε|2)

[
(1 + ε)|K0〉 − (1 − ε)|K0〉

]
e−iλLt. (14.34)

Using (14.10), the physical states also can be expressed in terms of the CP eigen-
states K1 and K2,
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|KS (t)〉 = 1
√

1 + |ε|2
[|K1〉 + ε|K2〉] e−iλS t,

|KL(t)〉 = 1
√

1 + |ε|2
[|K2〉 + ε|K1〉] e−iλLt.

(14.35)

(14.36)

14.5 Strangeness oscillations

The previous chapter described how neutrino oscillations arise because neutrinos
are created and interact as weak eigenstates but propagate as mass eigenstates. A
similar phenomenon occurs in the neutral kaon system. The physical mass eigen-
states are the KS and KL. However, the hadronic decays to ππ or πππ have to
be described in terms of the CP eigenstates and the semi-leptonic decays of the
KS and KL have to be described in terms of the flavour eigenstates, K0 and K0.
For example, Figure 14.12 shows the Feynman diagrams for the allowed decays
K0 → π−e+νe and K0 → π+e−νe. There are no corresponding Feynman diagrams
for K0 → π+e−νe and K0 → π−e+νe because the charge of the lepton depends on
whether s→ u or s→ u decay is involved:

K0 → π−e+νe and K0 → π+e−νe,

K0 ! π+e−νe and K0 ! π−e+νe.

Hence neutral kaons are produced and decay as flavour and/or CP eigenstates, but
propagate as the KS and KL mass eigenstates. The result is the phenomenon of
strangeness oscillations, which occurs regardless of whether CP is violated or not.

14.5.1 Strangeness oscillations neglecting CP violation

Consider a neutral kaon that is produced as the flavour eigenstate K0. The time
evolution of the wavefunction is described in terms of the KS and KL mass eigen-
states,

|K(t)〉 = 1√
2

[ θS (t)|KS 〉 + θL(t)|KL〉] , (14.37)
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!Fig. 14.12 The Feynman diagrams for K0 → π−e+νe and K0 → π+e−νe.
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where θS (t) and θL(t) are given by (14.17). In the limit where CP violation is
neglected, in which case KS = K1 and KL = K2, this can be expressed in terms of
the flavour eigenstates using (14.11) and (14.12),

|K(t)〉 ≈ 1
2

(
θS

[
|K0〉 + |K0〉

]
+ θL

[
|K0〉 − |K0〉

])

= 1
2 (θS + θL) |K0〉 + 1

2 (θS − θL) |K0〉.

Because the masses of the KS and KL are slightly different, the oscillatory parts of
θS (t) and θL(t) differ, and the initially pure K0 beam will develop a K0 component.
The corresponding strangeness oscillation probabilities are

P(K0
t=0 → K0) = |〈K0|K(t)〉|2 = 1

4 |θS + θL|2, (14.38)

P(K0
t=0 → K0) = |〈K0|K(t)〉|2 = 1

4 |θS − θL|2. (14.39)

This can be simplified by using the identity, |θS ± θL|2 = |θS |2 + |θL|2 ± 2Re(θS θ∗L),

|θS (t) ± θL(t)|2 = e−ΓS t + e−ΓLt ± 2Re
{
e−imS te−

1
2ΓS t · e+imLte−

1
2ΓLt

}

= e−ΓS t + e−ΓLt ± 2e−
1
2 (ΓS+ΓL)t Re

{
ei(mL−mS )t

}

= e−ΓS t + e−ΓLt ± 2e−
1
2 (ΓS+ΓL)t cos(∆m t),

where ∆m = m(KL) − m(KS ). Substituting the above expression into (14.38) and
(14.39) leads to

P(K0
t=0 → K0) = 1

4

[
e−ΓS t + e−ΓLt + 2e−

1
2 (ΓS+ΓL)t cos(∆m t)

]
, (14.40)

P(K0
t=0 → K0) = 1

4

[
e−ΓS t + e−ΓLt − 2e−

1
2 (ΓS+ΓL)t cos(∆m t)

]
. (14.41)

The above equations are reminiscent of the two-flavour neutrino oscillation proba-
bilities, except here the amplitudes of the oscillations decay at a rate given by the
arithmetic mean of the KS and KL decay rates.

Using the measured value of ∆m (see Section 14.5.2), the corresponding period
of the strangeness oscillations is

Tosc =
2π"
∆m
≈ 1.2 × 10−9 s,

which turns out to be greater than the KS lifetime, τ(KS ) = 0.9 × 10−10 s. Conse-
quently, after one oscillation period, the KS and oscillatory components of (14.40)
and (14.41) will have decayed away leaving an essentially pure KL beam. The
resulting oscillation probabilities are plotted in Figure 14.13. Because of the rela-
tively rapid decay of the KS component, the oscillatory structure is not particularly
pronounced. Nevertheless, the observation of strangeness oscillations provides a
method to measure ∆m.
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!Fig. 14.13 The e+ect of strangeness oscillations, showing the relative K0 and K0 components in a beam that was
produced as a K0 plotted against time.

14.5.2 The CPLEAR experiment

Strangeness oscillations can be studied by using the semi-leptonic decays of the
neutral kaon system. Because the decays K0 → π+,−ν, and K0 → π−,+ν, (, =
e, µ) do not occur, the charge of the observed lepton in the semi-leptonic decays
K0 → π−,+ν, and K0 → π+,−ν, uniquely tags the flavour eigenstate from which
the decay originated.

The CPLEAR experiment, which operated from 1990 to 1996 at CERN, stud-
ied strangeness oscillations and CP violation in the neutral kaon system. It used
a low-energy antiproton beam to produce kaons through the strong interaction
processes

pp→ K−π+K0 and pp→ K+π−K0.

The energy of the beam was sufficiently low that the particles were produced almost
at rest. This enabled the production and decay to be observed in the same detector.
The charge of the observed K±π∓ identifies the flavour state of the neutral kaon
produced in the pp interaction as being either a K0 or K0. The neutral kaon then
propagates at a low velocity as the linear combinations of the KS and KL with
the time dependence given by (14.37). The charge of the observed lepton in the
semi-leptonic decay then identifies the decay as coming from either a K0 or K0,
thus tagging the flavour component of the wavefunction at the time of decay. For
example, Figure 14.14 shows an event in the CPLEAR detector where a K0 is
produced at the origin along with a K−π+, where the K− is distinguished from a π−

by the absence of an associated signal in the Čerenkov detectors used for particle
identification, see Section 1.2.1. The neutral kaon state subsequently decays as a
K0, identified by its leptonic decay K0 → π+e−νe. The relative rates of decays
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e-
K-

p+

p+

!Fig. 14.14 An event in the CPLEAR detector where a K0 is produced in pp → K−π+K0 and decays as K0 → π+e−νe.
The grey boxes indicate signals from relativistic particles in the Čerenkov detectors. Courtesy of the CPLEAR
Collaboration.

from K0 and K0 as a function of the distance between the production point and the
decay vertex, provides a direct measure of the relative K0 and K0 components of
the neutral kaon wavefunction as a function of time.

For a kaon initially produced as a K0, the decay rates to π−e+νe and π+e−νe,
denoted R+ and R− respectively, are given by (14.40) and (14.41),

R+ ∝ P(K0
t=0 → K0) = N 1

4

[
e−ΓS t + e−ΓLt + 2e−(ΓS+ΓL)t/2 cos(∆m t)

]
,

R− ∝ P(K0
t=0 → K0) = N 1

4

[
e−ΓS t + e−ΓLt − 2e−(ΓS+ΓL)t/2 cos(∆m t)

]
,

where N is an overall normalisation factor related to the number of pp interactions.
The corresponding expressions for the decays of neutral kaons that were produced
as the K0 flavour state are

R+ ∝ P(K0
t=0 → K0) = N 1

4

[
e−ΓS t + e−ΓLt − 2e−(ΓS+ΓL)t/2 cos(∆m t)

]
,

R− ∝ P(K0
t=0 → K0) = N 1

4

[
e−ΓS t + e−ΓLt + 2e−(ΓS+ΓL)t/2 cos(∆m t)

]
.

Because the QCD interaction is charge conjugation symmetric, equal numbers of
K0 and K0 are produced in the pp strong interaction and the same normalisa-
tion factor applies to R± and R±. The dependence on the overall normalisation
can be removed by expressing the experimental measurements in terms of the
asymmetry,

A∆m(t) =
(R+ + R−) − (R− + R+)

(R+ + R−) + (R− + R+)
,
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!Fig. 14.15 The CPLEAR measurement of A∆m as a function of time. The curve shows expression of (14.42) for ∆m =
3.485 × 10−15 GeV, modi,ed to include the e+ects of the experimental timing resolution. Adapted from
Angelopoulos et al. (2001).

which has the advantage that a number of potential systematic biases cancel. This
asymmetry can be expressed as a function of time using the above expressions for
R± and R±,

A∆m(t) =
2e−(ΓS+ΓL)t/2 cos(∆mt)

e−ΓS t + e−ΓLt
. (14.42)

The experimental measurements of A∆m(t) from the CPLEAR experiment are
shown in Figure 14.15. The effects of strangeness oscillations are clearly seen and
the position of the minimum provides a precise measurement of ∆m. The com-
bined results from several experiments, including the CPLEAR experiment and the
KTeV experiment at Fermilab, give

∆m = m(KL) − m(KS ) = (3.483 ± 0.006) × 10−15 GeV.

14.5.3 CP violation in the neutral kaon system

CP violation in the neutral kaon system has been studied by a number of experi-
ments, including CPLEAR. If there is CP violation in K0 ↔ K0 mixing process,
the physical states of the neutral hadron system are

|KS 〉 =
1

√
1 + |ε|2

(|K1〉 + ε|K2〉) and |KL〉 =
1

√
1 + |ε|2

(|K2〉 + ε|K1〉) ,

(14.43)
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which can be expressed in terms of the flavour eigenstates as

|KS 〉 =
1

√
2(1 + |ε|2)

[
(1 + ε)|K0〉 + (1 − ε)|K0〉

]
,

|KL〉 =
1

√
2(1 + |ε|2)

[
(1 + ε)|K0〉 − (1 − ε)|K0〉

]
.

The corresponding expressions for the flavour eigenstates in terms of the physical
KS and KL are

|K0〉 = 1
1+ε

√
1+|ε|2

2 (|KS 〉 + |KL〉) and |K0〉 = 1
1−ε

√
1+|ε|2

2 (|KS 〉 − |KL〉) .
Therefore, accounting for the possibility of CP violation in neutral kaon mixing, a
neutral kaon state that was produced as a K0 evolves as

|K(t)〉 = 1
1 + ε

√
1 + |ε|2

2
[θS (t)|KS 〉 + θL(t)|KL〉] , (14.44)

where as before θS (t) and θL(t) are given by (14.17). Direct CP violation in kaon
decay is a relatively small effect (ε′/ε ∼ 10−3) and decays to the ππ final state can
be taken to originate almost exclusively from the CP-even K1 component of the
wavefunction. The time evolution of (14.44) can be expressed in terms of the K1

and K2 states using (14.43)

|K(t)〉 = 1√
2

1
(1 + ε)

[θS (|K1〉 + ε|K2〉) + θL(|K2〉 + ε|K1〉)]

= 1√
2

1
(1 + ε)

[(θS + εθL)|K1〉 + (θL + εθS )|K2〉] .

The decay rate to two pions is therefore given by

Γ(K0
t=0 → ππ) ∝ |〈K1|K(t)〉|2 = 1

2

∣∣∣∣∣
1

1 + ε

∣∣∣∣∣
2
|θS + εθL|2 . (14.45)

Because |ε| 2 1,
∣∣∣∣∣

1
1 + ε

∣∣∣∣∣
2
=

1
(1 + ε∗)(1 + ε)

≈ 1
1 + 2Re{ε} ≈ 1 − 2Re{ε}.

The term |θS +εθL|2 can be simplified using |θS ±εθL|2 = |θS |2+ |θL|2±2Re(θS ε∗θ∗L)
and by writing ε = |ε|eiφ,

|θS + εθL|2 =
∣∣∣e−imS t−ΓS t/2 + |ε|eiφe−imLt−ΓLt/2

∣∣∣2

= e−ΓS t + |ε|2e−ΓLt + 2|ε|e−(ΓS+ΓL)t/2 cos(∆m t − φ).

Therefore (14.45) can be written as

Γ(K0
t=0 → ππ) =

N
2

(1−2Re{ε})
[
e−ΓS t+ |ε|2e−ΓLt+ 2|ε|e−(ΓS+ΓL)t/2 cos(∆m t − φ)

]
,

(14.46)
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!Fig. 14.16 The CPLEAR measurement of A+−. Adapted from Angelopoulos et al. (2000).

where N is a normalisation factor. The first term in the square brackets corresponds
to the contribution from KS decays. The second term is the contribution from KL

decays, which is small since |ε|2 2 1. The final term is the interference between
the KS and KL components of the wavefunction. The corresponding expression for
the decay rate to two pions from a state that was initially a K0 is

Γ(K0
t=0 → ππ) =

N
2

(1 + 2Re{ε})
[
e−ΓS t+ |ε|2e−ΓLt− 2|ε|e−(ΓS+ΓL)t/2 cos(∆m t − φ)

]
.

(14.47)

Here the interference term has the opposite sign to that of (14.46). For t 2 τS

and t . τL the expressions of (14.46) and (14.47) are approximately equal, but at
intermediate times, the interference term results in a significant difference in the ππ
decay rates. Figure 14.16a shows the numbers of K → π+π− decays observed in
the CPLEAR experiment, plotted as a function of the neutral kaon decay time for
events that were initially tagged as either a K0 or K0. The difference in the region
of t ∼ 1 ns is the result of this interference term and the magnitude of the difference
is proportional to |ε|.

In practice, the experimental measurement of ε at CPLEAR was obtained from
the asymmetry A+−, defined as

A+− =
Γ
(
K0

t=0 → π+π−
)
− Γ

(
K0

t=0 → π+π−
)

Γ
(
K0

t=0 → π+π−
)
+ Γ

(
K0

t=0 → π+π−
) . (14.48)

From (14.46) and (14.47), this can be expressed as

A+− =
4Re{ε}

[
e−ΓS t + |ε|2e−ΓLt

]
− 4|ε|e−(ΓL+ΓS )t/2 cos(∆m t − φ)

2
[
e−ΓS t + |ε|2e−ΓLt] − 8Re{ε}|ε|e−(ΓL+ΓS )t/2 cos(∆m t − φ)

.
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Since ε is small, the term in the denominator that is proportional to |ε|Re{ε} can be
neglected at all times, giving

A+− ≈ 2Re{ε} − 2|ε|e−(ΓL+ΓS )t/2 cos(∆m t − φ)
e−ΓS t + |ε|2e−ΓLt

= 2Re{ε} − 2|ε|e(ΓS−ΓL)t/2 cos(∆m t − φ)
1 + |ε|2e(ΓS−ΓL)t . (14.49)

Hence both the phase and magnitude of ε can be cleanly extracted from the exper-
imental measurement of A+−. Figure 14.16b shows the asymmetry A+− obtained
from the CPLEAR data of Figure 14.16a. The measured asymmetry is well
described by (14.49) with the measured parameters

|ε| = (2.264 ± 0.035) × 10−3 and φ = (43.19 ± 0.73)◦. (14.50)

The non-zero value of |ε| provides clear evidence for CP violation in the weak
interaction. Because φ is close to 45◦, the real and imaginary parts of ε are roughly
the same size, Re{ε} ≈ Im{ε}.

14.5.4 CP violation in leptonic decays

We can also observe CP violation in the semi-leptonic decays of the KL from meas-
urements at a large distance from the production of the K0/K0. Since the semi-
leptonic decays occur from a particular kaon flavour eigenstate, the relative decay
rates can be obtained from the KL wavefunction expressed in terms of its K0 and
K0 components,

|KL〉 =
1

√
2(1 + |ε2|)

[
(1 + ε)|K0〉 − (1 − ε)|K0〉

]
.

π+e−νe
π−e+νe!

!

Hence the decay rates are

Γ(KL → π+e−νe) ∝ |〈K0|KL〉|2 ∝ |1 − ε|2 ≈ 1 − 2Re (ε),

Γ(KL → π−e+νe) ∝ |〈K0|KL〉|2 ∝ |1 + ε|2 ≈ 1 + 2Re (ε).

The experimental measurements are conveniently expressed in terms of the charge
asymmetry δ defined as

δ =
Γ(KL → π−e+νe) − Γ(KL → π+e−νe)
Γ(KL → π−e+νe) + Γ(KL → π+e−νe)

≈ 2Re (ε) = 2|ε| cos φ.

Experimentally, the number of observed KL → π−e+νe decays is found to be 0.66%
larger than the number of KL → π+e−νe decays, giving

δ = 0.327 ± 0.012%. (14.51)
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This is consistent with the expectation from the measured values of |ε| and φ given
in (14.50), which predict a charge asymmetry of δ = 0.33%.

Interestingly, the small difference in the KL → π−e+νe and KL → π−e−νe decay
rates can be used to provide an unambiguous definition of what we mean by matter
as opposed to antimatter, which in principle, could be communicated to aliens in
a distant galaxy; the electrons in the atoms in our region of the Universe have the
same charge sign as those emitted least often in the decays of the long-lived neutral
kaons. Interesting, but perhaps of little practical use.

14.5.5 Interpretation of the neutral kaon data

The size of the mass splitting ∆m = m(KL) − m(KS ) and magnitude of the CP
violating parameter ε can be related to the elements of CKM matrix and how they
enter the matrix elements for K0 ↔ K0 mixing. In the box diagrams responsible for
neutral kaon mixing, shown in Figure 14.17, there are nine possible combinations
of u, c and t flavours for the two virtual quarks. The matrix element for each box
diagram has the dependence

Mqq′ ∝ VqdV∗qsV∗q′sVq′d.

For reasons that are explained below, to first order, the value of ε is determined by
the matrix elements for box diagrams involving at least one top quark, whereas the
dominant contributions to the KL and KS mass splitting arises from box diagrams
with combinations of virtual up- and charm quarks. A full treatment of these cal-
culations is beyond the scope of this book, but the essential physical concepts can
be readily understood.

The mass splitting ∆m can be related to the magnitude of the matrix elements for
K0 ↔ K0 mixing. Owing to the smallness of |Vtd| and |Vts|, the diagrams involving
the top quark can, to a first approximation, be neglected (see Problem 14.8). Hence
the overall matrix element for K0 ↔ K0 mixing can be written

M ≈Muu +Muc +Mcu +Mcc.

q q!K0 K0

d ds
Vqd

Vq!d Vq!d

Vqd q
s

q!
d d

V *
q!s

V *
q!sV *

qs

V *
qs

s s

 K
0

 K
0

!Fig. 14.17 The box diagrams for K0 ↔ K0 mixing, where the virtual quarks can be any of the nine combinations
of q, q′ = {u, c, t}.
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The individual matrix elements will be proportional to G2
F and will include propa-

gator terms for the two virtual quarks involved and hence

M ∼ G2
F

[
VudV∗usVudV∗us

(k2 − m2
u)2

+ 2
VudV∗usVcdV∗cs

(k2 − m2
u)(k2 − m2

c)
+

VcdV∗csVcdV∗cs

(k2 − m2
c)2

]
,

where k is the four-momentum appearing in the box of virtual particles. Writing
Vud ≈ Vcs ≈ cos θc and Vus ≈ −Vcd ≈ sin θc, this can be expressed as

M ∼ G2
F

[
sin2 θc cos2 θc

(k2 − m2
u)2

− 2
sin2 θc cos2 θc

(k2 − m2
u)(k2 − m2

c)
+

sin2 θc cos2 θc

(k2 − m2
c)2

]

∼ G2
F sin2 θc cos2 θc

(m2
c − m2

u)2

(k2 − m2
u)2(k2 − m2

c)2
.

If the masses of the up- and charm quarks were identical, this contribution to the
matrix element for K0 ↔ K0 mixing would vanish. The evaluation of the matrix
element, which involves the integration over the four-momentum k, is non-trivial
and the resulting expression for ∆m is simply quoted here

∆m ≈
G2

F

3π2 sin2 θc cos2 θc f 2
KmK

(m2
c − m2

u)2

m2
c

. (14.52)

In this expression fK ∼ 170 MeV is the kaon decay factor, analogous to that intro-
duced in Section 11.6.1 in the context of π± decay. Although the above analysis
is rather simplistic, it gives a reasonable estimate of the magnitude of ∆m. Taking
the charm quark mass to be 1.3 GeV, Equation (14.52) gives the predicted value of
∆m ∼ 5 × 10−15 GeV, which is within a factor of two of the observed value. The
smallness of ∆m is due to the presence of the G2

F term from the two exchanged W
bosons in the box diagram.

The Standard Model interpretation of ε
CP violation in K0 ↔ K0 mixing arises because the matrix element for K0 → K0 is
not the same as that for K0 → K0. For example, the matrix elements for K0 → K0

and K0 → K0, arising from the exchange of a charm and a top quark, shown in
Figure 14.18, are respectively proportional to

c tK0

d d

K0

s
Vcd

Vtd

Vcs

Vts

c t

s

s sd d

 K
0

 K
0

Vts
∗

Vcs
∗ Vcd

∗

Vtd
∗

!Fig. 14.18 The box diagram for K0 → K0 involving virtual c and t quarks and the corresponding diagram for K0 → K0.
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M12 ∝ VcdV∗csVtdV∗ts and M21 ∝ V∗cdVcsV∗tdVts =M∗12.

CP violation in mixing occurs ifM12 !M∗12. It can be shown (see Problem 14.9)
that

|ε| ≈ Im {M12}√
2∆m

.

The imaginary part ofM12 can be expressed in terms of the possible combinations
of exchanged u, c, t quarks in the box diagrams,

Im {M12} =
∑

q,q′
Aqq′ Im (VqdV∗qsVq′dV∗q′s),

where the parameters Aqq′ are constants that depend on the masses of the ex-
changed quarks. In the Wolfenstein parameterisation of the CKM matrix given in
(14.9), the imaginary elements of the CKM matrix are Vtd and Vub. Since Vub is not
relevant for kaon mixing, CP violation in neutral kaon mixing is associated with
box diagrams involving at least one top quark, and therefore

|ε| ∝ Aut Im (VudV∗usVtdV∗ts) +Act Im (VcdV∗csVtdV∗ts) +Att Im (VtdV∗tsVtdV∗ts).
(14.53)

Writing the elements of the CKM matrix in terms of A, λ, ρ and η of the Wolfenstein
parametrisation (14.9), it can be shown that (see Problem 14.10)

|ε| ∝ η(1 − ρ + constant).

Hence the measurement of a non-zero value of |ε| implies that η ! 0 and provides
an experimental constraint on the possible values of the parameters η and ρ.

14.6 B-meson physics

The oscillations of neutral mesons are not confined to kaons, they have also been
observed for the heavy neutral meson systems,

B0(bd)↔ B0(bd), B0
s (bs)↔ B0

s (bs) and D0(cu)↔ D0(cu).

In particular, the results from the studies of the B0(bd) and B0(bd) mesons by
the BaBar and Belle experiments have provided crucial information on the CKM
matrix and CP violation. The mathematical treatment of the oscillations of the
B0(bd) ↔ B0(bd) system follows closely that developed for the neutral kaon sys-
tem. However, because the B0 and B0 are relatively massive, m(B) ∼ 5.3 GeV,
they have a large number of possible decay modes; to date, over 400 have been
observed; see Beringer et al. (2012). Of these decay modes, relatively few are com-
mon to both the B0 and B0. Consequently, the interference between the decays of
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the B0 and B0 is small. Because of this, it can be shown (see the following starred
section) that B0 ↔ B0 oscillations can be described by a single angle β and that the
physical eigenstates of the neutral B-meson system are

|BL〉 =
1√
2

[
|B0〉 + e−i2β|B0〉

]
and |BH〉 =

1√
2

[
|B0〉 − e−i2β|B0〉

]
. (14.54)

The BL and BH are respectively a lighter and heavier state with almost identical
lifetimes; again the mass difference m(BL) − m(BH) is very small.

14.6.1 *B-meson mixing

The treatment of B-mixing given here, makes a number of approximations to sim-
plify the discussion in order to focus on the main physical concepts. The physical
neutral B-meson states are the eigenstates of the overall Hamiltonian of the B0 and
B0 system, analogous to the kaon states discussed in Section 14.4.3. There are a
large number of B-meson decay modes, of which only a few are common to both
the B0 and B0, and the contribution to the effective Hamiltonian of (14.25) from the
interference between the decays of the B0 and B0 can be neglected, Γ12 = Γ

∗
21 ≈ 0.

In this case

H ≈



M − i
2Γ M12

M∗12 M − i
2Γ


 , (14.55)

where M12 is due to the box diagrams for B0 ↔ B0 mixing. The eigenvalues of
(14.55), which determine the masses and lifetimes of the physical states, are

λH = mH +
1
2 iΓH ≈ M + |M12| − 1

2 iΓ,

λL = mL +
1
2 iΓL ≈ M − |M12| − 1

2 iΓ.

leading to a heavier state BH and a lighter state BL with masses

mH = M + |M12| and mL = M − |M12|. (14.56)

Because the interference term Γ12 is sufficiently small that it can be neglected, the
imaginary parts of λH and λL are the same. Consequently, the BH and BL have
approximately the same lifetime, which is measured to be

ΓH ≈ ΓL ≈ Γ ≈ 4.3 × 10−13 GeV.

The corresponding physical eigenstates of the effective Hamiltonian are

|BL〉 =
1

√
1 + |ξ|2

(|B0〉 + ξ|B0〉) and |BH〉 =
1

√
1 + |ξ|2

(|B0〉 − ξ|B0〉), (14.57)
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!Fig. 14.19 The dominant box diagrams for B0 ↔ B0 mixing.

where ξ is given by (14.29),

ξ =




M∗12 − i
2Γ
∗
12

M12 − i
2Γ12




1
2

≈
M∗12

|M12|
, (14.58)

from which it follows that |ξ| ≈ 1.
In K0 ↔ K0 mixing, the contributions from different flavours of virtual quarks in

the box diagrams are of a similar order of magnitude. Here, because |Vtb| . |Vts| >
|Vtd|, only the box diagrams involving two top quarks, shown in Figure 14.19, con-
tribute significantly to the mixing process and

M∗12 ∝ (VtdV∗tb)2.

In the Wolfenstein parametrisation of the CKM matrix (14.9), Vtb is real and thus

ξ =
M∗12

|M12|
=

(VtdV∗tb)2

|(VtdV∗tb)2| =
V2

td

|V2
td|
. (14.59)

By writing Vtd as

Vtd = |Vtd|e−iβ,

the expression for ξ given in (14.59) is simply

ξ = e−i2β.

Hence, the physical neutral B-meson states of (14.57) are

|BL〉 = 1√
2

(
|B0〉 + e−i2β|B0〉

)
and |BH〉 = 1√

2

(
|B0〉 − e−i2β|B0〉

)
. (14.60)

From (14.56), it can be seen that the mass difference

∆md = m(BH) − m(BL) = 2|M12| ∝ |(VtdV∗tb)2|. (14.61)

Because Vtb ≈ 1, it follows that the BH −BL mass difference is proportional to |V2
td|.

Consequently, the measurement of∆md in B0↔B0 mixing provides a way of deter-
mining |Vtd|.
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14.6.2 Neutral B-meson oscillations

The mathematical description of the phenomenon of B-meson oscillations follows
that developed for the kaon system. Suppose a B0(bd) is produced at a time t = 0,
such that |B(0)〉 = |B0〉. Then from (14.60), the flavour state B0 can be expressed
in terms of the physical BH and BL mass eigenstates

|B0〉 = 1√
2

(|BL〉 + |BH〉) .

The wavefunction evolves according to the time dependence of the physical states,

|B(t)〉 = 1√
2

[θL(t)|BL〉 + θH(t)|BH〉] , (14.62)

where the time dependencies of the physical states are

θL = e−Γt/2e−imLt and θH = e−Γt/2e−imHt.

Equation (14.62) can be expressed in terms of the flavour eigenstates using (14.60),

|B(t)〉 = 1
2

[
(θL + θH)|B0〉 + e−i2β(θL − θH)|B0〉

]
= 1

2

[
θ+|B0〉 + ξθ−|B0〉

]
, (14.63)

where θ± = θL ± θH and ξ = e−2iβ. By writing mL = M − ∆md/2 and mH =

M + ∆md/2,

θ±(t) = e−Γt/2e−iMt ×
[
ei∆mdt/2 ± e−i∆mdt/2

]
, (14.64)

from which it follows that θ+ and θ− are given by

θ+ = 2e−Γt/2e−iMt cos
(
∆mdt

2

)
and θ− = 2ie−Γt/2e−iMt sin

(
∆mdt

2

)
.

The probabilities of the state decaying as a |B0〉 or a |B0〉 are therefore

P(B0
t=0 → B0) = |〈B(t)|B0〉|2 = 1

4 e−Γt|θ+|2 = e−Γt cos2
(

1
2∆mdt

)
,

P(B0
t=0 → B0) = |〈B(t)|B0〉|2 = 1

4 e−Γt|ξθ−|2 = |ξ|2e−Γt sin2
(

1
2∆mdt

)
. (14.65)

The corresponding expressions for a state that was produced as a B0 are

P(B0
t=0 → B0) = e−Γt cos2

(
1
2∆mdt

)
and P(B0

t=0 → B0) =
∣∣∣∣∣
1
ξ

∣∣∣∣∣
2
e−Γt sin2

(
1
2∆mdt

)
.

Because the contribution to the effective Hamiltonian for the neutral B-meson
system from the interference between B0 and B0 decays can be neglected, |ξ| =
|e−i2β| = 1 and therefore

P(B0
t=0 → B0) ≈ P(B0

t=0 → B0) and P(B0
t=0 → B0) ≈ P(B0

t=0 → B0).

Consequently, it is very hard to observe CP violation in neutral B-meson mixing.
Nevertheless, B0 ↔ B0 oscillations can be utilised to measure ∆md, which from
(14.61) provides a measurement of |Vtd|.
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14.6.3 The BaBar and Belle experiments

The BaBar (1999–2008) and Belle (1999–2010) experiments were designed to pro-
vide precise measurements of CP violation in the neutral B-meson system. The
experiments utilised the high-luminosity PEP2 and KEKB e+e− colliders at SLAC
in California and KEK in Japan. To produce very large numbers of B0B0 pairs, the
colliders operated at a centre-of-mass energy of 10.58 GeV, which corresponds to
the mass of the Υ(4S ) bb resonance. The Υ(4S ) predominantly decays by either
Υ(4S ) → B+B− or Υ(4S ) → B0B0, with roughly equal branching ratios. The
masses of the charged and neutral B-mesons are 5.279 GeV, and therefore they are
produced almost at rest in the centre-of-mass frame of the Υ(4S ). Because the life-
times of the neutral B-mesons are short (τ = 1.519×10−12 s) and they are produced
with relatively low velocities, they travel only a short distance in the centre-of-mass
frame before decaying. Consequently, in the centre-of-mass frame it would be hard
to separate the decays of two B-mesons produced in e+e− → Υ(4S ) → B0B0.
For this reason, the PEP2 and KEKB colliders operated as asymmetric b-factories,
where the electron beam energy was higher than that of the positron beam. For
example, PEP2 collided a 9 GeV electron beam with a 3.1 GeV positron beam.
Owing to the asymmetric beam energies, the Υ(4S ) is boosted along the beam
axis; at the PEP2 collider the Υ(4S ) is produced with βγ = 0.56. As a result of
this boost, the mean distance between the two B-meson decay vertices in the beam
direction is increased to ∆z ∼ 200 µm. This separation is large enough for the
two B-meson decay vertices to be resolved using a high-precision silicon vertex
detector, as described in Section 1.3.1.

The oscillations of B-mesons can be studied through their leptonic decays,

B0(bd)→ D−(cd) µ+ νµ and B0(bd)→ D+(cd) µ− νµ.

The sign of the lepton identifies the B-meson flavour state, since the decays B0 →
D+µ−νµ and B0 → D−µ+νµ do not occur. After production in e+e− → B0B0, the
two B-mesons propagate as a coherent state. When one of the B-mesons decays
into a particular flavour eigenstate, the overall wavefunction collapses, fixing the
flavour state of the other B-meson. For example, Figure 14.20 illustrates the case
where at t = 0 one of the B-mesons is observed to decay to D+µ−νµ, tagging it as
a B0. At this instant in time, the second B-meson corresponds to a pure B0 state,
|B(0)〉 = |B0〉. The wavefunction of the second B-meson then evolves according to
(14.63). When the second B-meson decays ∆t later, the charge sign of the observed
lepton tags the flavour eigenstate in which the decay occurred. Thus B0 ↔ B0

oscillations can be studied by measuring the rates where the two B-meson decays
are the same flavour, B0B0 and B0B0, or are of opposite flavour, B0B0. The same
flavour (SF) decays give like-sign leptons, µ+µ+ or µ−µ−, and the opposite flavour
(OF) decays give opposite-sign leptons, µ+µ−. The relative rates depend on the
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!Fig. 14.20 The process e+e− → B0B0 followed by two same--avour (SF) leptonic B0 decays, following B0 → B0

oscillation.

time between the two decays ∆t. Because the B-mesons are produced almost at
rest in the centre-of-mass frame, the proper time between the two decays is given
by ∆t = ∆z/βγc, where β and γ are determined from the known velocity of the Υ.

The mass difference ∆md =m(BH)−m(BL) is determined from the lepton flavour
asymmetry A(∆t) defined as

A(∆t) =
NOF − NS F

NS F + NOF
,

where NOF is the number of observed opposite flavour decays and NS F is the
corresponding number of same flavour decays. The observed asymmetry can be
expressed in terms of the oscillation probabilities as

A(∆t) =
[P(B0

t=0→B0) + P(B0
t=0→B0)] − [P(B0

t=0→B0) + P(B0
t=0→B0)]

[P(B0
t=0→B0) + P(B0

t=0→B0)] + [P(B0
t=0→B0) + P(B0

t=0→B0)]
,

which, using (14.65) and the subsequent relations, gives

A(∆t) = cos2
(

1
2∆mdt

)
− sin2

(
1
2∆mdt

)
= cos (∆mdt) . (14.66)

Figure 14.21 shows the measurement of A(∆t) from the Belle experiment. The
data do not follow the pure cosine form of (14.66) due to a number of experimental
effects, including the presence of background, the misidentification of the lepton
charge and the experimental ∆t resolution. Nevertheless, the effects of B0 ↔ B0

oscillations are clearly observed. When combined, the results from the BaBar and
Belle experiments give

∆md = (0.507 ± 0.005) ps−1 ≡ (3.34 ± 0.03) × 10−13 GeV.

From (14.61) and the knowledge that Vtb ≈ 1, the measured value of ∆md can be
interpreted as a measurement of

|Vtd| = (8.4 ± 0.6) × 10−3.
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In a similar manner, |Vts| can be extracted from the measurements of oscilla-
tions in the B0

s (bs) ↔ B0
s (bs) system from the CDF and LHCb experiments, see

Abulencia et al. (2006) and Aaij et al. (2012). When the results from these two
experiments are averaged they give ∆ms = 17.72 ± 0.04 ps−1. Taking Vtb ≈ 1 this
result leads to

|Vts| = (4.3 ± 0.3) × 10−2.

14.6.4 CP violation in the B-meson system

In general, CP violation can be observed as three distinct effects:

(i) direct CP violation in decay such that Γ(A → X) ! Γ(A → X), as parame-
terised by ε′ in the neutral kaon system;

(ii) CP violation in the mixing of neutral mesons as parameterised by ε in the
kaon system;

(iii) CP violation in the interference between decays to a common final state f
with and without mixing, for example B0 → f and B0 → B0 → f .

In the Standard Model, the effects of CP violation in B0 ↔ B0 mixing is small.
Nevertheless, CP-violating effects in the interference between decays B0 → f and
B0 → B0 → f can be relatively large and have been studied extensively by the
BaBar and Belle experiments in a number of final states; here the decay B →
J/ψKS is used to illustrate the main ideas. To simplify the notation, the J/ψ meson
is written simply as ψ.

The ψ charmonium (cc) state has JP = 1− and is a CP eigenstate with CP = +1.
Neglecting CP violation in neutral kaon mixing, the KS is to a good approximation,
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the CP = +1 eigenstate of the neutral kaon system with JP = 0−. Since the B0 and
B0 are spin-0 mesons, the decays B0 → ψKS and B0 → ψKS must result in an
, = 1 orbital angular momentum state. Therefore the CP state of the combined
ψKS system is

CP(ψKS ) = CP(ψ) ×CP(KS ) × (−1), = (+1)(+1)(−1) = −1.

Similarly, the decay B→ ψKL occurs in a CP-even state, CP(ψKL) = +1.
Figure 14.22 shows the topology of a typical neutral B-meson decay to ψKS . In

this example, the charge of the muon in the leptonic B0 → D+µ−νµ decay tags it as
B0 and hence at time t = 0, the other B-meson is in a B0 flavour state, |B(0)〉 = |B0〉.
The decay to ψKS can either occur directly by B0 → ψKS or after mixing, B0 →
B0 → ψKS . It is the interference between the two amplitudes for these processes,
which have different phases, that provides the sensitivity to the CP violating angle
β. The B → ψKS decays can be identified from the clear experimental signatures,
for example ψ→ µ+µ− and KS → π+π−.

The B0/B0 → ψKS decays proceed in two stages. First the B0/B0 decays to
the corresponding flavour eigenstate, B0 → ψK0 and B0 → ψK0, as shown in
Figure 14.23. Subsequently, the neutral kaon system evolves as as a linear combi-
nation of the physical KS and KL states and then decays to the CP states KSψ and
KLψ. CP violation in the interference between B0 → ψKS and B0 → B0 → ψKS

is measurable through the asymmetry,
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AKS
CP =

Γ(B0
t=0 → ψKS ) − Γ(B0

t=0 → ψKS )

Γ(B0
t=0 → ψKS ) + Γ(B0

t=0 → ψKS )
= sin(∆mdt) sin(2β). (14.67)

Figure 14.24 shows the experimental data from the BaBar experiment. The left-
hand plot shows the raw numbers of observed decays to ψKS , from both events
that were tagged as B0 or B0, plotted as a function of ∆t. Here ∆t is the differ-
ence in the proper time of the tagged B0/B0 semi-leptonic decay and the observed
B → ψKS decay. The curves show the expected distributions including a sym-
metric background contribution from other B-meson decays. The right-hand plot
of Figure 14.24 shows the raw asymmetry obtained from these data. This has the
expected sinusoidal form of (14.67) and the amplitude provides a measurement of
sin(2β),

sin(2β) = 0.685 ± 0.032.

This observation of a non-zero value of sin(2β) is a direct manifestation of CP
violation in the B-meson system. The Belle experiment (see Adachi et al. (2012))
measured sin(2β) = 0.670 ± 0.032.

14.7 CP violation in the Standard Model

There is now a wealth of experimental data on CP violation associated with the
weak interactions of quarks. This chapter has focussed on the observations of CP
violation in K0 − K0 mixing and in the interference between the amplitudes for
B0 → J/ψKS and B0 → B0 → J/ψKS decays. Direct CP violation in the decays of
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kaons and B-mesons has also been observed, for example, as a difference between
the rates Γ(B0 → K−π+) and Γ(B0 → K+π−).

In the Standard Model, CP violation in the weak interactions of hadrons is
described by the single irreducible complex phase in the CKM matrix. In the
Wolfenstein parametrisation of (14.9), CP violation is associated with the parame-
ter η. To O(λ4), the parameter η appears only in Vub and Vtd, with

Vub ≈ Aλ3(ρ − iη) and Vtd ≈ Aλ3(1 − ρ − iη).

The measurements of non-zero values of |ε| and sin(2β) separately imply that η ! 0.
However, it is only when the experimental measurements are combined, that the
values of ρ and η can be determined.

In the Standard Model, the CKM matrix is unitary, V†V = I. This property
places constraints on the possible values of the different elements of the CKM
matrix. These constraints are usually expressed in terms of unitarity triangles. For
example, the unitarity of the CKM matrix implies that

VudV∗ub + VcdV∗cb + VtdV∗tb = 0. (14.68)

In the Wolfenstein parametrisation, of these six CKM matrix elements, Vud, Vtb,
Vcd and Vcb are all real and only Vcd is negative. Hence (14.68) can be divided by
VcdVcb to give

1 − |Vud|
|Vcd||Vcb|

V∗ub −
|Vtb|
|Vcd||Vcb|

Vtd = 0. (14.69)

Since V∗ub and Vtd are complex, V∗ub = Aλ3(ρ + iη) and Vtd = Aλ3(1 − ρ − iη), the
unitarity relation of (14.69) is a vector equation in the complex ρ–η plane, with the
three vectors forming the closed triangle, as shown in Figure 14.25a.

From Vtd = |Vtd|e−iβ = Aλ3(1 − ρ − iη), it can be seen that

β = arg (1 − ρ + iη) or equivalently tan β =
η

1 − ρ .

Consequently, the angle β corresponds to the internal angle of the unitarity tri-
angle shown in Figure 14.25a. Therefore, the measurement of sin(2β) described
previously constrains the angle between two of the sides of the unitarity triangle as
shown in Figure 14.25b, which also shows the constraint in the ρ–η plane obtained
from the measurement of |ε| in neutral kaon mixing,

|ε| ∝ η(1 − ρ + constant).

The measurement of ∆md determines |Vtd|. When this is combined with the knowl-
edge that |Vtb| ≈ 1 and the measurements of |Vcd| and |Vcb| described in Sec-
tion 14.3, it constrains of the length of the upper side of the unitarity triangle,
as shown in Figure 14.25b.
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The experimental constraints from the measurements of |ε|, sin(2β) and ∆md

are consistent with a common point in the ρ–η plane, as indicated by the ellipse
in Figure 14.25b, thus providing experimental confirmation of the unitarity rela-
tion VudV∗ub + VcdV∗cb + VtdV∗tb = 0. From a global fit to these and other results
(see Beringer et al. (2012)) the Wolfenstein parameters are determined to be

λ = 0.2253 ± 0.0007, A = 0.811+0.022
−0.012, ρ = 0.13 ± 0.02, η = 0.345 ± 0.014.

The experimental measurements described in this chapter provide a strong test of
the Standard Model prediction that the unitarity triangle of (14.69) is closed. Any
deviation from this prediction would indicate physics beyond the Standard Model.
To date, all measurements in the quark flavour sector are consistent a unitary
CKM matrix, where the observed CP violation is described by a single complex
phase.

Whilst the Standard Model provides an explanation of the observed CP violation
in the quark sector, this is not sufficient to explain the matter–antimatter asymme-
try in the Universe. There are suggestions that CP violation in the lepton sector
during the early evolution of the Universe might account for the observed matter-
antimatter asymmetry. However, it is also possible that there are as yet undiscov-
ered CP violating processes beyond the Standard Model. In the coming years the
LHCb experiment at the LHC and the Belle II experiment at KEK will probe CP
violation in the quark sector with ever increasing precision and may shed further
light on this important question.
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Summary

CP violation is an essential part of our understanding of particle physics. In the
Standard Model it can be accommodated in the irreducible complex phases in
the PMNS and CKM matrices. In the decays of hadrons, CP violation has been
observed in three ways: (i) direct CP violation in decay; (ii) indirect CP violation
in the mixing of neutral mesons; and (iii) CP violation in the interference between
decays with and without oscillations.

This chapter concentrated on the measurements of oscillations and CP violation
in the neutral kaon and neutral B-meson systems. Many of the effects arise from the
distinction between the different neutral meson states. For example, neutral kaons
are produced in the strong interaction as the flavour eigenstates, K0(sd) and K0(sd),
but the physical particles with definite masses and lifetimes are the eigenstates of
the overall Hamiltonian of the K0–K0 system are

|KS 〉 ∝ (1 + ε)|K0〉 + (1 − ε)|K0〉 and |KL〉 ∝ (1 + ε)|K0〉 − (1 − ε)|K0〉,

where the parameter ε is non-zero only if CP is violated. If CP were conserved in
the weak interaction, the physical states would correspond to the CP eigenstates

|KS 〉 ∝ |K0〉 + |K0〉 and |KL〉 ∝ |K0〉 − |K0〉.

Oscillations arise because neutral mesons are produced as flavour eigenstates and
decay as either flavour or CP eigenstates, but propagate as the physical mass
eigenstates.

The studies of the neutral mesons and their oscillations, provide constraints on
the values of the elements of the CKM matrix and allow CP violation to be studied
in the quark sector. To date, all such experimental measurements are consistent
with the Standard Model predictions from the single complex phase in the unitary
CKM matrix.

Problems

14.1 Draw the lowest-order Feynman diagrams for the decays

K0 → π+π−, K0 → π0 π0, K0 → π+π− and K0 → π0 π0,

and state how the corresponding matrix elements depend on the Cabibbo angle θc .



406 CP violation and weak hadronic interactions

14.2 Draw the lowest-order Feynman diagrams for the decays

B0 → D− π+, B0 → π+ π− and B0 → J/ψ K0,

and place them in order of decreasing decay rate.

The -avour content of the above mesons is B0(db), D−(dc), J/ψ(cc) and K0(ds).

14.3 Draw the lowest-order Feynman diagrams for the weak decays

D0(cu)→ K−(su) + π+(ud) and D0(cu)→ K+(us) + π−(du),

and explain the observation that

Γ(D0 → K+π−)
Γ(D0 → K−π+)

≈ 4 × 10−3.

14.4 A hypothetical T0(tu) meson decays by the weak charged-current decay chain,

T0 → Wπ→ (Xπ)π → (Yπ)ππ→ (Zπ)πππ.

Suggest the most likely identi,cation of the W, X , Y and Z mesons and state why this decay chain would be
preferred over the direct decay T0 → Z π.

14.5 For the cases of two, three and four generations, state:

(a) the number of free parameters in the corresponding n × n unitary matrix relating the quark -avour and
weak states;

(b) how many of these parameters are real and how many are complex phases;
(c) how many of the complex phases can be absorbed into the de,nitions of phases of the fermions without

any physical consequences;
(d) whether CP violation can be accommodated in quark mixing.

14.6 Draw the lowest-order Feynman diagrams for the strong interaction processes

pp→ K−π+K0 and pp→ K+π−K0.

14.7 In the neutral kaon system, time-reversal violation can be expressed in terms of the asymmetry

AT =
Γ(K0 → K0) − Γ(K0 → K0)

Γ(K0 → K0) + Γ(K0 → K0)
.

Show that this is equivalent to

AT =
Γ(K0

t=0 → π−e+νe) − Γ(K0
t=0 → π+e−νe)

Γ(K0
t=0 → π−e+νe) + Γ(K0

t=0 → π+e−νe)
,

and therefore

AT ≈ 4|ε| cos φ.

14.8 The KS – KL mass di+erence can be expressed as

∆m = m(KL) − m(KS) ≈
∑

q,q′

G2
F

3π2 f 2
K mK|VqdV∗qsVq′dV∗q′s|mqmq′ ,
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where q and q′ are the quark -avours appearing in the box diagram. Using the values for the CKM matrix
elements given in (14.8), obtain expressions for the relative contributions to∆m arising from the di+erent com-
binations of quarks in the box diagrams.

14.9 Indirect CP violation in the neutral kaon system is expressed in terms of ε = |ε|eiφ. Writing

ξ =
1 − ε
1 + ε

≈ 1 − 2ε =



M∗12 − i
2Γ
∗
12

M12 − i
2Γ12




1
2

,

show that

ε ≈ 1
2
×




(Im {M12} − i
2 Im {Γ12})

M12 − i
2Γ12




1
2

≈ Im {M12} − i Im {Γ12/2}
∆m − i∆Γ/2

.

Using the knowledge that φ ≈ 45◦ and the measurements of ∆m and ∆Γ, deduce that Im {M12}.
Im {Γ12} and therefore

|ε| ∼ 1√
2

Im {M12}
∆m

.

14.10 Using (14.53) and the explicit form of Wolfenstein parametrisation of the CKM matrix, show that

|ε| ∝ η(1 − ρ + constant).

14.11 Show that the B0 – B0 mass di+erence is dominated by the exchange of two top quarks in the box diagram.

14.12 Calculate the velocities of the B-mesons produced in the decay at rest of theΥ(4S)→ B0B0.

14.13 Given the lifetimes of the neutral B-mesons are τ = 1.53 ps, calculate the mean distance they travel when
produced at the KEKB collider in collisions of 8 GeV electrons and 3.5 GeV positrons.

14.14 From the measured values

|Vud| = 0.974 25 ± 0.000 22 and |Vub| = (4.15 ± 0.49) × 10−3,

|Vcd| = 0.230 ± 0.011 and |Vcb| = 0.041 ± 0.001,

calculate the length of the corresponding side of the unitarity triangle in Figure 14.25 and its uncertainty. By
sketching this constraint and that from the measured value of β, obtain approximate constraints on the values
of ρ and η.


