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CP violation and weak hadronic interactions

4 CP violation is an essential part of our understanding of both particle physics )

and the evolution of the early Universe. It is required to explain the observed
dominance of matter over antimatter in the Universe. In the Standard Model,
the only place where CP violating effects can be accommodated is in the weak
interactions of quarks and leptons. This chapter describes the weak charged-
current interactions of the quarks and concentrates on the observations of CP
violation in the neutral kaon and B-meson systems. This is not an easy topic
and it is developed in several distinct stages. The detailed quantum mechani-
cal derivations of the mixing of neutral meson states are given in two starred
\ sections. Y,

14.1 (P violation in the early Universe
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The atoms in our local region of the Universe are formed from electrons, protons
and neutrons rather than their equivalent antiparticles. The possibility that there are
galaxies and/or regions of space dominated by antimatter can be excluded by the
astronomical searches for photons from the e*e™ annihilation process that would
occur at the interfaces between matter and antimatter dominated regions of the Uni-
verse. The predominance of matter is believed to have arisen in the early evolution
of the Universe.

In the early Universe, when the thermal energy kg7 was large compared to the
masses of the hadrons, there were an equal number of baryons and antibaryons.
The baryons and antibaryons were initially in thermal equilibrium with the soup of
relatively high-energy photons that pervaded the early Universe, through processes
such as

Y+y=p+p. (14.1)

As the Universe expanded, its temperature decreased as did the mean energy of
the photons. At some point, the forward reaction of (14.1) effectively ceased. Fur-
thermore, with the expansion, the number density of baryons and antibaryons also
decreased and eventually became sufficiently low that annihilation processes such
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as the backward reaction of (14.1) became very rare. At this point in time, the num-
ber of baryons and antibaryons in the Universe was effectively fixed. This process
is known as Big Bang baryogenesis. The calculations of the thermal freeze out of
the baryons without CP violation predict equal number densities of baryons and
antibaryons, ng = ng, and a baryon to photon number density ratio of

VlB = n§ ~ 10_18,1\/.

This prediction is in contradiction with the observed matter-dominated Universe,
where the baryon—antibaryon asymmetry, which can be inferred from the relative
abundances of light isotopes formed in the process of Big Bang nucleosynthesis, is
T
Ny
Broadly speaking, to generate this asymmetry, for every 10° antibaryons in the
early Universe there must have been 10° + 1 baryons, which annihilated to give
0(10°) photons, leaving 1 baryon.

To explain the observed matter—antimatter asymmetry in the Universe, three con-
ditions, originally formulated by Sakharov (1967), must be satisfied. In the early
Universe there must have been: (i) baryon number violation such that ng —ng is not
constant; (ii) C and CP violation, because if CP is conserved, for every reaction that
creates a net number of baryons over antibaryons there would be a CP conjugate
reaction generating a net number of antibaryons over baryons; and (iii) departure
from thermal equilibrium, since in thermal equilibrium any baryon number vio-
lating process will be balanced by the inverse reaction. The Standard Model of
particle physics provides the possibility of CP violation in the weak interactions of
quarks and leptons. To date, CP violation has only been observed in the quark sec-
tor, where many detailed measurements have been made. Despite the clear observa-
tions of CP violating effects in the weak interactions of quarks, this is not sufficient
to explain the matter—antimatter asymmetry in the Universe and ultimately another
source needs to be identified.

14.2 The weak interactions of quarks
I

In Section 12.1, it was shown that there is a universal coupling strength of the
weak interaction to charged leptons and the corresponding neutrino weak eigen-
states; G;e) = G(F“) = G;T ). The strength of the weak interaction for quarks can
be determined from the study of nuclear 3-decay, where |M|? « Gif )GF(B ) and GF(ﬂ )
gives the coupling at the weak interaction vertex of the quarks in Figure 14.1. From
the observed [3-decay rates for superallowed nuclear transitions, the strength of the
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The lowest-order Feynman diagrams for w™-decay and the underlying quark-level process in nuclear
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The weak interaction couplings of the d, s, u and cin terms of the Cabibbo angle, 6,.

coupling at the ud quark weak interaction vertex is found to be 5% smaller than
that at the u~v,, vertex,

G = (1.166 3787 = 0.000 0006) x 107> GeV 2,
GP = (1.1066 + 0.0011) x 107 GeV 2.

Furthermore, different coupling strengths are found for the ud and us weak charged-
current vertices. For example, the measured decay rate for K™ (us) — u™v, com-
pared to that of 7t~ (ud) — w~v, is approximately a factor 20 smaller than would
be expected for a universal weak coupling to the quarks. These observations were
originally explained by the Cabibbo hypothesis. In the Cabibbo hypothesis, the
weak interactions of quarks have the same strength as the leptons, but the weak
eigenstates of quarks differ from the mass eigenstates. The weak eigenstates,
labelled d” and s’, are related to the mass eigenstates, d and s, by the unitary matrix,

(d:):( C(.)SQC siné?c][d)’ (142)
S —sinf. cosf. J\| s
where 6. is known as the Cabibbo angle. This idea is very similar to the two-flavour
mixing of the neutrino mass and weak eigenstates encountered in Section 13.4. In
the Cabibbo model, the weak interactions of quarks are described by ud’ and cs’
couplings, shown in Figure 14.2.

Nuclear (3-decay involves the weak coupling between u and d quarks. There-

fore, with the Cabibbo hypothesis, 3-decay matrix elements are proportional to
gw cos 6. and decay rates are proportional to Gpcos? 6. Similarly, the matrix
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The main decay modes of the st~ and K™
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Two box diagrams for the decay K, — ¥~ The distinction between the K; and the K? is described in
Section 14.4.

elements for the decays K~ — u™v, and &~ — u7v,, shown in Figure 14.3,
respectively include factors of cosf. and siné,.. Consequently, after accounting
for the difference in phase space, the K~ decay rate is suppressed by a factor of
tan’ 6, relative to that for the ™. The observed -decay rates and the measured
ratio of ['(K™(us) — u™v,) toI'(w~(ud) — w™v,) can be explained by the Cabibbo
hypothesis with 6, ~ 13°.

When the Cabibbo mechanism was first proposed, the charm quark had not been
discovered. Since the Cabibbo mechanism allows for ud and us couplings, the
flavour changing neutral-current (FCNC) decay of the neutral kaon K; — p*u”
can occur via the exchange of a virtual up-quark, as shown in the first box diagram
of Figure 14.4. However, the observed branching ratio,

BR(K; — p'u™) = (6.84 £0.11) x 107,

is much smaller than expected from this diagram alone. This observation was
explained by the GIM mechanism; see Glashow, Iliopoulos and Maiani (1970).
In the GIM mechanism, which was formulated before the discovery of the charm
quark, a postulated fourth quark coupled to the s” weak eigenstate. In this case, the
decay K; — w*u~ can also proceed via the exchange of a virtual charm quark, as
shown in the second box diagram of Figure 14.4. The matrix elements for the two
K, — u"u~ box diagrams are respectively

M, « gév cosf.sinf, and M, oc —ng cos 6, sin 6.
Because both diagrams give the same final state, the amplitudes must be summed

IMP = M, + MJ* ~ 0.



368

(P violation and weak hadronic interactions

The GIM mechanism therefore explains the smallness of the observed K, — pu*u~
branching ratio. The cancellation is not exact because of the different masses of the
up and charm quarks.

14.3 The CKM matrix

The Cabibbo mechanism is naturally extended to the three generations of the Stan-
dard Model, where the weak interactions of quarks are described in terms of the
unitary Cabibbo—Kobayashi-Maskawa (CKM) matrix. The weak eigenstates are
related to the mass eigenstates by

d’ Vud Vus Vub d
SI = Vcd VCS Vcb S o (14.3)
b’ Via Vis Vin J\ b

Consequently, the weak charged-current vertices involving quarks are given by

gw _ Vud Vus Vub d
_iT(ﬁ’ S OY*IA =9 Vea Vs Ven || s |
2 Via Vis Vi J\b

where, for example, d is a down-quark spinor and u is the adjoint spinor for an
up-quark. The relative strength of the interaction is defined by the relevant element
of the CKM matrix. For example, the weak charged-current associated with the
duW vertex shown in the top left plot of Figure 14.5 is

A

Jh = =125 Vaa iy 3(1 - y°)d.

d vud% u U vud% d u
T

w w d

U Vel o d d Ve’ U u
T %

w w d

The charged-current weak interaction vertices involving u and d quarks.
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The CKM matrix is defined such that the associated vertex factor contains Vq
when the charge —% quark enters the weak current as the spinor. If the charge —%
quark is represented by an adjoint spinor, d = d¥?, the vertex factor from the CKM
matrix is V. For example, the current associated with the vertex in the bottom left
plot of Figure 14.5 is
= —i% Vi dy* L -y

The CKM matrix, which is the analogous to the PMNS matrix for the weak
interactions of leptons, is unitary and can be described by three rotation angles and
a complex phase,

Vud Vus Vb I 0 0 ci3 0 s;3e™® cr2 s12 0

Vekm = | Ved Ves Ve | =0 23 23 [ X 0 1 0 x| =s12 c12 01,
Via Vis Vi 0 —s523 23 —s13¢® 0 c13 0 01

(14.4)

where s;; = sin¢;; and c;; = cos ¢;;.

Whilst the structure of the weak interactions of quarks and leptons is the same,
the phenomenology is very different. Quarks do not propagate as free particles,
but hadronise on a length scale of 10~1> m. Consequently, the final states of weak
interactions involving quarks have to be described in terms of mesons or baryons.
The observed hadronic states are composed of particular quark flavours and, there-
fore, it is the quark mass (flavour) eigenstates that form the observable quantities
in hadronic weak interactions. Consequently, the nine individual elements of the
CKM matrix can be measured separately. For example, V4 is determined from
superallowed nuclear 3-decays,

|Vl = cos 6, = 0.974 25(22).

The weak coupling between the u and s quarks can be determined from the mea-
sured branching ratio of the KY — n~e*v, decay shown in Figure 14.6a,

Vsl = 0.225 2(9).

The Feynman diagrams fora) K — st™e*ve, b) B® — s e*veand ) v, d — pc.
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The large numbers of BO(dB) and Eo(ba) mesons produced at the BaBar and Belle
experiments, described in Section 14.6.3, allow precise measurements of the
branching ratios for decays such as B — m~e*v,, shown in Figure 14.6b. The mea-
surements of the inclusive and exclusive branching ratios of the B-mesons imply

[Vl = (4.15 + 0.49) x 1073,

The CKM matrix element V., can be determined from the leptonic decays of
the DY (us) meson, for example DY — u*v,, and V,; can be determined from the
semi-leptonic decay modes of B-mesons to final states with charm quarks, giving

[Ves] = 1.006 +0.023 and |V = (40.9 + 1.1) x 1072,

The CKM matrix element V4 1s most precisely measured in neutrino—nucleon scat-
tering, vyd — u~c, shown in Figure 14.6¢. The final-state charm quark can be
identified from its semi-leptonic decay ¢ — su*v,, which gives an experimental
signature of a pair of oppositely charged muons, one from the charm production
process and one from its decay. The observed production rate of opposite sign
muons in neutrino deep inelastic scattering gives

[Veal = 0.230(11).

The experimental situation for the CKM matrix elements involving top quarks
is somewhat less clear. The observations of B < B? oscillations, described in
Section 14.6, can be interpreted in the Standard Model as measurements of

Vil = (84 £0.6)x 107> and [Vi| = (42.9 £2.6) x 1072.

From the observed decay modes of the top quark at CDF and DO, it is known that
the top quark decays predominantly viat — bW and therefore |Vy,| is close to unity,
although the current experimental error is at the 10% level.

In the Standard Model, the CKM matrix is unitary, Viv=r , which implies that

Vadl* + Vs + [Vao* = 1, (14.5)
Veal® + Vs + [Veo* = 1, (14.6)
[Vial? + Vil + [Vio* = 1. (14.7)

The measurements of the individual CKM matrix elements, described above, are
consistent with these three unitarity relations. Assuming unitarity, further con-
straints can be placed on the less precisely determined CKM matrix elements, for
example [Vp> = 1 — |Vi|?> = [Vip|*, which implies that [Vip| = 0.999. With the
unitarity constraints from (14.5)—(14.7), the experimental measurements can be
interpreted as

IVadl Vas| Vel 0.974 0.225 0.004
IVedl IVesl Vel | 2| 0.225 0.973 0.041 |. (14.8)
Vil Vil Vil 0.009 0.040 0.999
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Unlike the PMNS matrix of the lepton flavour sector, the off-diagonal terms in
the CKM matrix are relatively small. This implies that the rotation angles between
the quark mass and weak eigenstates in (14.4) are also small, ¢15 = 13°, ¢p3 = 2.3°
and ¢13 = 0.2°. The smallness of these angles leads to the near diagonal form
of the CKM matrix. Consequently, the weak interactions of quarks of different
generations are suppressed relative to those of the same generation, ud, cs and
tb. The suppression is largest for the couplings between first and third generation
quarks, ub and td.

Because of the near diagonal nature of the CKM matrix, it is convenient to
express it as an expansion in the relatively small parameter 4 = sinf,. = 0.225.
In the widely used Wolfenstein parameterisation, the CKM matrix is written in
terms of four real parameters, 4, A, p and 5. To O(1*) the CKM matrix then can be
parameterised as

Viud Vs Vb 1-A%/2 1 AX¥(p-in
Ved Ves Vep | = — 1-2%2/2  AX? +0Y. (149
Via Vis Vi A/13(1 —p—in) —AA? 1

In the Wolfenstein parameterisation, the complex components of the CKM matrix
reside only in Vy, and Vi (although if higher-order terms are included, V4 and Vg
also have a small complex components that are proportional to A°). For CP to be
violated in the quark sector, the CKM matrix must contain an irreducible complex
phase and this corresponds to 77 being non-zero. The experimental measurements of
branching ratios only constrain the magnitudes of the individual CKM matrix ele-
ments, and do not provide any information about this complex phase. To constrain
n and p separately, measurements that are sensitive to the amplitudes, rather than
amplitudes squared are required. Such measurements can be made in the neutral
kaon and neutral B-mesons systems.

14.4 The neutral kaon system
|

The first experimental observation of CP violation was made in the neutral kaon
system. The K°(ds) and K°(sd) are the lightest mesons containing strange quarks.
They are produced copiously in strong interactions, for example in processes

717 (dU) + p(uud) — A(uds) + K°(ds),
p(uud) + p@ud) — K*(us) + K%(sd) + n~(du).
The K and K° are the eigenstates of the strong interaction and are referred to as

the flavour states. Since they are the lightest hadrons containing strange quarks,
the K® and K° can decay only by the weak interaction. Because the neutral kaons
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Two box diagrams for K < K° mixing. There are corresponding diagrams involving all nine combinations
of virtual up, charm and top quarks.

are relatively light, m(K) = 498 MeV, only decays to final states with either lep-
tons (e/w) or pions are kinematically allowed. The weak interaction also provides a
mechanism whereby the neutral kaons can mix through the K & K° box diagrams
shown in Figure 14.7.

In quantum mechanics, the physical states are the eigenstates of the free-particle
Hamiltonian. These are the stationary states introduced in Section 2.3.3. Until now,
independent stationary states have been used to describe each type of particle. Here
however, because of the K < K mixing process, a neutral kaon that is produced
as a K° will develop a K° component. For this reason, the K°-K° system has to
be considered as a whole. The physical neutral kaon states are the stationary states
of the combined Hamiltonian of the KK system, including the weak interaction
mixing Hamiltonian. Consequently, the neutral kaons propagate as linear combi-
nations of the K° and K°. These physical states are known as the K-short (Ky)
and the K-long (K;). The Kg and K are observed to have very similar masses,
m(Kyg) =~ m(Kp) =~ 498 MeV, but quite different lifetimes,

7(Kg) =09x107%s and 7(K;)=0.5%x107"s.

If CP were an exact symmetry of the weak interaction, the Kg and K; would
be equivalent to the CP eigenstates of the neutral kaon system (the proof of this
statement is given in Section 14.4.3). The CP states can be identified by considering
the action of the parity and charge conjugation operators on the neutral kaons. The
flavour eigenstates, K(ds) and K°(sd), have spin-parity J* = 0~ and therefore

PK% =K% and P[K° =-[K°).

The K° and K° are not eigenstates of the charge conjugation operator C that has
the effect of replacing particles with antiparticles and vice versa. However, since
they are neutral particles with opposite flavour content, one can write

CIK(ds)) = €“|K%ds)) and CJK%(ds)) = e “|K (ds)),
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where ¢ is an unobservable phase factor, which is conventionally' chosen to be
{ = m such that

CIK%ds)) = —[K%ds)) and CIK°(ds)) = —[K°(ds)).

With this choice, the combined action of CP on the neutral kaon flavour eigen-
states are

CPK’ = +K% and CPK®) = +|KY).
Consequently, the orthogonal linear combinations
_ 1 w0, %0 _ 1 0 10
K; = \/E(K +K") and K; = \/Z(K K"), (14.10)
are CP eigenstates with
CPK;) = +[K;) and CPK;) = —|Ky).

If CP were conserved in the weak interaction, these states would correspond to the
physical Kg and K particles. In practice, CP is observed to be violated but at a
relatively low level, and to a reasonable approximation it is found that

Ks) =~ [Ky) and  [Kz) = [Ky).

14.4.1 Kaon decays to pions

Neutral kaons propagate as the physical particles Kg and K;, which have well-
defined masses and lifetimes. The Kg and K; mainly decay to hadronic final states
of either two/three pions or to semi-leptonic final states with electrons or muons.
For the hadronic decays, the Kg decays mostly to stz final states, whereas the main
hadronic decays of the K; are to stm final states,

I'Ksg —» i) > I'(Kg » aimwr) and I'(K; — zam) > I'(Kp — 7).

The differences in the lifetimes of the Ky and K;, can be attributed to the different
hadronic decay modes that are a consequence of the (near) conservation of CP in
kaon decays, as discussed below

First consider the decays to two pions. The two pions can be produced with
relative orbital angular momentum ¢, as indicated in Figure 14.8a. Because kaons
and pions both have J¥ = 07, the pions produced in the decay K — n°7® must be
in an ¢ = O state in order to conserve angular momentum. The overall parity of the
n'n® system, which is given by the symmetry of the spatial wavefunction and the
intrinsic parity of the pion, is therefore

P(r’n®) = (=D POP(Y) = (+1) X (=1) x (=1) = +1.

! Sometimes, the convention ¢ = 0 is used, leading to a different definition of the K; and K, in
terms of the flavour eigenstates. However, provided this weak phase is treated consistently, there
are no physical consequences in the choice.
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The effect of the parity and charge conjugation operations on the st st~ system in an £ = 0 angular
momentum state.

The flavour wavefunction of the n° is
n%) = J5(ull — dd),
and consequently the ni” is an eigenstate of C with eigenvalue +1. Therefore
C(77°) = c(x")C ) = +1,
and since P(n°7%) = +1, the n%x° system must be produced in a CP-even state,
CP(’n%) = +1.

The angular momentum arguments given above apply equally to the ¥~ system,
and therefore P(*nt™) = +1. The effect of the parity operation on the w* 7t~ system
is to swap the positions of the two particles, with no change in sign. Because the
charge conjugation operation turns a 7" into a 7w~ and vice versa, the effect of the
charge conjugation on the ™t~ system is also to swap the positions of the particles,
with no change in sign. Hence, here the parity and charge conjugation operations
have the same effect, as shown in Figure 14.9, and thus C(nt* ™) = P(t*nt™) = +1.
Therefore, the decay of a neutral kaon into two pions always produces a CP-even
final state,

CP°n’) = +1 and CP(*n7) = +1.

If CP is conserved in kaon decay (which it is to a very good approximation), the
decay K — szt can only occur if the neutral kaon state has CP = +1.

The corresponding arguments for the decays K — n%7%n® and K — n*n~n are
slightly more involved. Here, the orbital angular momentum has to be decomposed

into two components; the relative angular momentum of the first two particles, L,
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and the relative angular momentum of the third with respect to the centre of mass
of the first two, L, as indicated in Figure 14.8b. Because both kaons and pions are
spin-0 particles, the total orbital angular momentum in the decay K — szt must
be zero, L = L; + L, = 0. This only can be the case if {; = {, = ¢. The overall
parity of the final state in a K — sttt decay is therefore

P(rmn) = (-1 (=D)2(P()* = (=1 (=1)’ = -1.
For the n%nn® final state, the effect of the charge conjugation operator is
C(@7°7%) = c(@) @) C@°) = (+1)° = +1,

and therefore CP(n’n’n’) = —1. The effect of the charge conjugation operator on
the t* 7w~ n° system follows from the arguments given previously,

Cn*n n’) = Crntn)C(@°) = +C(ntn7) = P(ntn”) = (-1,

where again the effect of C(n* ™) is the same as that of P(w*nt™). Because m(K) —
3m(w) ~ 80 MeV, the kinetic energy of the three-pion system is relatively small,
and the decays where ¢; = ¢, > 0 are suppressed to the point where the contribution
is negligible. For this reason ¢; can be taken to be zero and thus

CP’°n’n%) = -1 and CP(r*n n®) =-1.

Therefore, the K — mztm decay modes of neutral kaons always result in a CP-odd
final state.

If CP were conserved in the decays of neutral kaons, the hadronic decays of the
CP-eigenstates |K;) and |[K;) would be exclusively Ky — niw and K; — mwmo.
Because the phase space available for decays to two and three pions is very differ-
ent, m(K) — 2m(w) = 220 MeV compared to m(K) — 3m(wt) ~ 80 MeV, the decay
rate to two pions is much larger than that to three pions. Hence, the short-lived Kg,
which decays mostly to two pions, can be identified as being a close approximation
to the CP-even state

Ks ~K; = %(KO + K9, (14.11)
and the longer lived Ky, as
K; ~K, = \LE(KO - X°). (14.12)

If CP were exactly conserved in the weak interaction, then Kg = K; and K; = Ko.

CP violation in hadronic kaon decays

The decays of neutral kaons have been extensively studied using kaon beams pro-
duced from hadronic interactions. If a neutral kaon is produced in the strong
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interaction pp — K a*K?, at the time of production, the kaon is the flavour
eigenstate,

IK(0)) = [K°).

In the absence of CP violation, where Ky = K; and K; = K, the |K°) flavour state
can be written in terms of the CP eigenstates using (14.11) and (14.12),

K(0) = [K”) = 5[ IK1) + [K2)] = -5 [[Ks) + [Kp)]. (14.13)

The subsequent time evolution is described in terms of the Kg and Ky, which are
the observed physical neutral kaons with well-defined masses and lifetimes. In the
rest frame of the kaon, the time-evolution of the Kg and K, states are given by

IKs (?)) = |Kg)exp [—imst —I'st/2], (14.14)
IKz(®)) = |[Kp)exp [—impt —T'1t/2], (14.15)

where the exp [-I'7/2] terms ensure that the probability densities decay exponen-
tially. For example

(Ks(OIKs () oc 7" = 775,
Hence the time evolution of the state of (14.13) is
|K(t)> — % [|KS >e—(im5+l"5 /2)2‘ + |KL>e—(imL+rL/2)t] ,
which can be written as
|K()) = % [0s (DIKs) + 0L(DK ], (14.16)
with
Os(t) = exp[—(ims +'s/2)t] and 6p(t) =exp[—(my +1./2)t]. (14.17)

The decay rate to the CP-even two-pion final state is proportional to the K; com-
ponent of the wavefunction, which in the limit where CP is conserved is equivalent
to the Kg component. Therefore, if CP is conserved, the decay rate to two pions
from a beam that was initially in a pure |K°) state is

T(K%, — am) o KKs KO oc [Bs (D = eT5" = e7/75
and similarly
T(KY, — mu) o KK L)) o e,

If a kaon beam, which originally consisted of K°(ds), propagates over a large dis-
tance (L > cty), the Kg component will decay away leaving a pure K; beam, as
indicated in Figure 14.10. The same would be true for an initial K° beam.

If CP were conserved in the weak interactions of quarks, the K; would corre-
spond exactly to the CP-odd K, state and at large distances from the production
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Table 14.1 The main decay modes of the Ks and K; .

Ky Decays BR K Decays BR
Ky —» ntm™ 69.2% K, » wnta 0.20%
Ky — n%q° 30.7% K, — n°x° 0.09%
Ks » nta ~3x107% K, » atnnd 12.5%
Ky — nn’xn° = K; — %m0 19.5%
Kg —» me'v, 0.03% K, —» wefv, 20.3%
Ky — tte v, 0.03% K; —» nte v, 20.3%
Ks = mufv, 0.02% Ky = npty, 13.5%
Ky — wttu v, 0.02% K, — afpv, 13.5%
A
Ks — TTTT
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Expected decay rates to pions from an initially pure K beam, assuming no CP violation.

of a kaon beam, the hadronic decays to two pions would never be detected. The
first experimental evidence for CP violation was the observation of 45 K; — w¥m™
decays out of a total of 22 700 K decays at a large distance from the production of
the neutral kaon beam; see Christenson e al. (1964). This provided the first direct
evidence for CP violation in the neutral kaon system, albeit only at the level of
0.2%, for which Cronin and Fitch were awarded the Nobel prize.

The branching ratios for the main decay modes of the Kg and K are listed in
Table 14.1, including the relatively rare CP violating hadronic decays. The small-
ness of the semi-leptonic branching ratios of the Kg compared to the K;, reflects
the relatively large K¢ — 7w decay rate; the semi-leptonic partial decay rates of
the Kg and K are almost identical (see Section 14.5.4).

14.4.2 The origin of CP violation

There are two main ways of introducing CP violation into the neutral kaon system.
If CP is violated in the K® < K° mixing process (see Section 14.4.3), then the
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Ks and K; will not correspond to the CP eigenstates, K; and K;. Given that the
observed level of CP violation is relatively small, the Kg and K; can be related to
the CP eigenstates by the small (complex) parameter &,

1 1
Ks) = ———= (K +€lKy)) and [K.) = ———=(IKy) + ¢[Ky)),
V1 + lef? V1 + lef?
such that Ky ~ K; and K; = K5. In this case, the observed K; — mm decays are
accounted for by

Kz) = (IK2) + £[Ky))

1
2
V1 + g L ot

JTITTT

and the relative rate of decays to two pions will be depend on &.
The second possibility is that CP is violated directly in the decay of a CP eigen-
state,

IKz) = K2)
\—> JTTT

JTITTT

The relative strength of this direct CP violation in neutral kaon decay is parame-
terised by &’ with I'(K, — muw)/T'(Ky — mmw) = &' Experimentally, it is known
that CP is violated in both mixing and directly in the decay. The results of the
NA48 experiment at CERN and the KTeV experiment at Fermilab, demonstrate
that direct CP violation is a relatively small effect,

g -3

Re|—|=(1.65+0.26) x 1077,

£
and ¢ is already a small parameter. Therefore, the main contribution to CP violation
in the neutral kaon system is from K® < K° mixing. The quantum mechanics of

mixing in the neutral kaon system is described in detail in the following starred
section.

14.4.3 *The quantum mechanics of kaon mixing

To fully understand the physics of the neutral kaon system, it is necessary to con-
sider the quantum mechanical time evolution of the combined K°—K° system. This
is not an easy topic, but the results are important.

In the absence of neutral kaon mixing, the time dependence of the wavefunction
of the K® would be

K1) = [KOye 11/2emimt, (14.18)
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Two box diagrams for K% < K°. There are corresponding diagrams involving all nine combinations of virtual
up, charm and top quarks.

where m is the mass of the particle and the term I' = 1/7 ensures the probability
density decays away exponentially. The time-dependent wavefunction of (14.18)
clearly satisfies the differential equation

. -
i= K1) = (m = sDIK(),
and therefore the effective Hamiltonian H can be identified as

HIK’(1) = (m — LD)K (1)) (14.19)

Because of the inclusion of the exponential decay term in the wavefunction, the
effective Hamiltonian is not Hermitian and also the expectation values of opera-
tors corresponding to physical observable will not be constant. The mass m in the
effective Hamiltonian of (14.19) includes contributions from the masses of the con-
stituent quarks and from the potential energy of the system. The potential energy
includes contributions from the strong interaction potential (which is the dominant
term), the coulomb interaction and the weak interaction. The interaction terms can
be expressed as expectation values of the corresponding interaction Hamiltonians.
Therefore the mass of the KO, when taken in isolation, can be written as

Awlj){jlHwlIK®)
Ej — MK

. . . K°
m = mg + ms + (K|Hocp + Hey + HwlK®) + Z (K . (14.20)
j

The last term in this expression comes from the small second-order O(G%) con-
tribution to the weak interaction potential from the K® < K° box diagrams of
Figure 14.11. The decay rate I that appears in (14.19) is given by Fermi’s golden
rule

T =2r ) KfAHWIK") oy,
f

where the sum is taken over all possible final states, labelled f, and p  is the density
of states for that decay mode.

Up to this point, the K® has been considered in isolation. However, a K° will
develop a K component through the K & K° mixing diagrams of Figure 14.7.
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Consequently, the time evolution of a neutral kaon state must include both K° and
K components,

IK()) = a(®)|K®) + b(1)|K?), (14.21)

yhere the coefficients a(f) and b(f) are the amplitudes and phases of the K° and
KO components of the state at a time 7. The time evolution of |K(#)), analogous to
(14.19), now has to be written as the coupled equations

My — 4Ty Mo - él“u)[a(t) |KO>] _ iﬁ ((l(f) |KO>) (14.22)
Moy = 421 My = 400 JL b K )~ 0t \ b)) K% )°
and the effective Hamiltonian becomes
- My Mip (T T2
H=M-iT = — L ) 14.23
2 ( M21 M22 ) 2 ( 1—‘21 1—‘22 ) ( )

It is important to understand the physical meaning of the terms in (14.23). First
consider the decay matrix I' that accounts for the decay of the state |[K(#)). Here the
total decay rate is given by Fermi’s golden rule, which to lowest order is

=27 (fAWIKO) s = 21 Y KOEwLARWIK) by
f f

By writing |[K(r)) in terms of K and K°, the matrix element squared for the decay
to a final state f becomes

KAHWIKEDE = la@®P KW KO + 161 [(fFIAwK)?
+a(t)b(®)* (K Hwl ) FIHwIK®) + a(t)*b(t) (KO Hyw £ ) f1Hw K°).

The diagonal elements of I' are therefore given by the decay rates

Tin=27 ) KARWKO p; and Ty =27 > KfIAWK)py,
f f

and are therefore real numbers. The off-diagonal terms of I account for the inter-
ference between the decays of the K® and K° components of K(r). Because the two
interference terms are the Hermitian conjugates of each other, I'j; = I';,, and the
matrix I is itself Hermitian.

Now consider the mass matrix M. The diagonal elements are the mass terms for
the K° and K° flavour eigenstates, with M1 given by (14.20) and

Hy | j) AWK
Ej — MK '

. . N — K°
My, = mg +mz + (K°\Hocp + Hpy + Hy|K®) +Z (&
J

(14.24)
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The off-diagonal terms of M are due to the K° < K° mixing diagrams of
Figure 14.7, and can be written

71 VRl
i =ty = 3 KIS,
j jm K

There is no off-diagonal term of the form (K| Aw|K®) because there is no Feyn-
man diagram for K < K° mixing involving the exchange of a single W boson.
Since M2 = Mj, and the diagonal terms of M are real, the mass matrix is Her-
mitian. If there were no mixing in the neutral kaon system M, M>1, I'17 and '
would all be zero, and the time evolution equation of (14.22) would decouple into
two independent equations of the form of (14.19), describing the independent time
evolution of the K and K°.

From the required CPT symmetry of the Standard Model, the masses and decay
rates of the flavour states K® and K° must be equal, M;; = My, = M and T’y =
I'5, = I'. Therefore the effective Hamiltonian of (14.23) can be written as

M Mu)_i( r ru)

. 5 s (14.25)
M, M 2\1r}, T

Hes- -
Because the off-diagonal elements of M arise from second-order weak interaction
box diagrams, they are much smaller than the diagonal elements that include the
fermion masses and the strong interaction Hamiltonian. The off-diagonal terms
of I', which can be of the same order of magnitude as the diagonal terms, are
either positive or negative. Because of the presence of the non-zero off-diagonal
terms in FH, the flavour eigenstates K® and K° are no longer the eigenstates of the
Hamiltonian.

The neutral kaon state of (14.21), evolves in time according to

( M- iT M12—%F12)(a(t)|K0>) .8(a(t)|K°>)_

M, —irn M-It [\ bR )~ "o\ bo)K) (14.26)

= l—
2112 ot

The eigenstates of this effective Hamiltonian can be found by transforming (14.26)
into the basis where H is diagonal. The required transformation can be found by
first solving the eigenvalue equation

M- ir M12_£r12)(p) (P)
M-l 2 (7). (14.27)
(Mlz_%rlz M - 5T q q

The non-trivial solutions to (14.27) can be obtained from the characteristic equa-
tion, det(H — AI) = 0, which gives

(M — AT = )* = (M}, — £T)(My2 — £T15) = 0.
Solving this quadratic equation for A gives the two eigenvalues

. . . 1
Ade=M-il+ [(M;‘2 — AT (M1 — grlz)]z . (14.28)
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The corresponding eigenstates, found by substituting these two eigenvalues back
into (14.27), have

gztf +

P

. 1
M: — i )2
[M) . (14.29)

My, — 4Ty,
The normalised eigenstates, here denoted K; and K_, which ultimately will be
identified as the Kg and K, are therefore

(|K+>)_ 1 (1 f)(|1<°>)_ 1 (|K°>+§K°)
Ko ) JTrep\ =€ JVKD ) e VIKY - &K )
Equation (14.26), which has the form HK = idK/dt, can be written in the diago-

nal basis using the matrix S formed from the eigenvectors of H, such that H’ =
S~!HS is diagonal,

AR I P |
wosus= (s 0)

In the diagonal basis (14.26) becomes

3 (IKe@) ) _ (A 0 \[IK:(®)
IE(IK-(I»)_( 0 /1_)(|K_(t)>)' (14.30)

Hence the states K, and K_ propagate as independent particles and therefore can
be identified as the physical mass eigenstates of the neutral kaon system. The time
dependences of the K, and K_ states are given by the solutions of (14.30),

1 — .
K (1) = ——= (IK°) + £IK")) e ™!
V1 +I€P ( )
1 — A
K_(1)) = ——== (IK* - &K")) e,

VI +[€P

with the real and imaginary parts of 1. determining respectively the masses and
decay rates of the two physical states. From (14.28),

. . 1
Ay = A =2|(M}, = 4T )My — iT)|* (14.31)

and therefore A, and A_ can be written as

. Adp— A\
/L_,zM—%Fi%(/Lr—/L):MiiRe( i ) '

— LT FIm{A, - ).

It is not a priori clear which of the two eigenvalues, 4, and A_, is associated with
the Kg and which is associated with the K;, but both can be written in the form

A=[M+£Am/2] - L[ £ Al/2],
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with
Am =|Re(Ay —A)| and ATl = £|AT] = £2|3m (A, — A)|.

Here Am is defined to be positive and the sign of Al depends on the relative signs of
the real and imaginary parts of (14.31), which in turn depends on the oftf-diagonal
terms of the effective Hamiltonian. For the neutral kaon system it turns out that
AI' < 0, and therefore the heavier state has the smaller decay rate. Consequently,
the physical eigenstates of the neutral kaon system consist of a heavier state of
mass M + Am/2 that can be identified as the longer-lived K state and a lighter
state with a larger decay rate and mass M — Am/2 that can be identified as the Kg,

As =mg —ils  with mg =M —Am/2 and Ts =T +|All/2,
Ap=mp— L0, with my=M+Am/2 and Tp=T-]Al/2.

Because the off-diagonal terms in the effective Hamiltonian arise from the weak
interaction alone, Am < M, and the mass difference between the K; and Kg is
very small.

If the CKM matrix were entirely real, which would imply that M, = M ’1"2 and
[ = I'},, the parameter & defined in (14.29) would be unity. In this case, the
physical states would be

Ks =Ky = L (K° +E°) and K, =K, =L (KO —KO). (14.32)

gl
V2 V2
Hence, if the CKM matrix were entirely real, in which case the weak interactions of
quarks would conserve CP, the physical states of the neutral kaon system would be
the CP eigenstates, K; and Kj. In practice, CP violation is observed in the neutral
kaon system, albeit at a very low level and therefore & # 1.

Because CP-violating effects are observed to be relatively small, it is convenient
to rewrite £ in terms of the (small) complex parameter ¢ defined by

_1—8
T l+éE

3

such that the physical Kg and K states are

1 o1
Ks () = ————{(1 + &)K") + (1 — &)[K*)| e, 14.33
Ks (1)) 2(1+|8|2)[( +2)K% + (1 - £)K%| e (14.33)
Kp()) = ——— |1+ &K — (1 - &)[K] e, (14.34)

V2(1 + [el?)

Using (14.10), the physical states also can be expressed in terms of the CP eigen-
states K; and K5,
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_ 1 —idgt

IKs () = W = (K1) + e[Ka)] e, (14.35)
_ 1 —iArt

KL0) = e ) + ol )] e (14.36)

14.5 Strangeness oscillations
|

The previous chapter described how neutrino oscillations arise because neutrinos
are created and interact as weak eigenstates but propagate as mass eigenstates. A
similar phenomenon occurs in the neutral kaon system. The physical mass eigen-
states are the Kg and K;. However, the hadronic decays to s or st have to
be described in terms of the CP eigenstates and the semi-leptonic decays of the
Ks and K; have to be described in terms of the flavour eigenstates, K° and K.
For example, Figure 14.12 shows the Feynman diagrams for the allowed decays
K’ — i e*v, and K® — m*e V.. There are no corresponding Feynman diagrams
for K — n*e v, and K — m-e*v, because the charge of the lepton depends on
whether s — u or s — u decay is involved:

K> ne*ve and K° > mtev,,
K’ » nte Ve and K° -» metve.

Hence neutral kaons are produced and decay as flavour and/or CP eigenstates, but
propagate as the Kg and K; mass eigenstates. The result is the phenomenon of
strangeness oscillations, which occurs regardless of whether CP is violated or not.

14.5.1 Strangeness oscillations neglecting CP violation

Consider a neutral kaon that is produced as the flavour eigenstate K. The time
evolution of the wavefunction is described in terms of the K¢ and K; mass eigen-
states,

K1) = 5 [s(DIKs) + 6.(OIK )], (14.37)
d > d _, d - d
KO T KO il
s u s u
Ve Ve
e* e

The Feynman diagrams for K — st=e* v, and K — mt+e ™.
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where 6g(7) and 67(r) are given by (14.17). In the limit where CP violation is
neglected, in which case Kg = K; and K; = K3, this can be expressed in terms of
the flavour eigenstates using (14.11) and (14.12),

K() ~ % (05 | K% + K% + 6. [[K®) - [K])
= 3 (05 + ) IK") + 5 (65 — ) IK”).
Because the masses of the Ky and K, are slightly different, the oscillatory parts of
05 (1) and 6, (¢) differ, and the initially pure K beam will develop a K® component.
The corresponding strangeness oscillation probabilities are
P(K;Ly — K°) = KK’ K@) = 1165 +6.F, (14.38)
P(KY, — K% = (K K@)I* = 1165 - 6. (14.39)

This can be simplified by using the identity, |05 + 67> = |05 |* + |0 + 2 Re(bs 0)),

~ _ » 1 i -1
105 (1) + QL(I)|2 —e I'st t+e It +2Re {e unst , sLst | etimit, ert}
— o Tst 4 o Tut 26_%(FS e {ei(mL—ms )t}
B _ -1
= ¢ Ts? 4 ¢t 4 20720+l cos(Am ),

where Am = m(Ky) — m(Kg). Substituting the above expression into (14.38) and
(14.39) leads to

P(K?:O — KO) = ‘l‘ [e—rst + e—FLt + 26_%(1"5+FL)I cos(Am t)] ’ (14.40)
P(K?=0 — KO) = ‘l‘ [e—FSt e Tut 26—%(FS+FL)t cos(Am t)] _ (14.41)

The above equations are reminiscent of the two-flavour neutrino oscillation proba-
bilities, except here the amplitudes of the oscillations decay at a rate given by the
arithmetic mean of the Ky and K; decay rates.

Using the measured value of Am (see Section 14.5.2), the corresponding period
of the strangeness oscillations is

- -9
Ty = A > 1.2x 107" s,
which turns out to be greater than the Ky lifetime, 7(Kg) = 0.9 X 107195, Conse-
quently, after one oscillation period, the Kg and oscillatory components of (14.40)
and (14.41) will have decayed away leaving an essentially pure K; beam. The
resulting oscillation probabilities are plotted in Figure 14.13. Because of the rela-
tively rapid decay of the Kg component, the oscillatory structure is not particularly
pronounced. Nevertheless, the observation of strangeness oscillations provides a
method to measure Am.
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The effect of strangeness oscillations, showing the relative K® and K° components in a beam that was
produced as a K° plotted against time.

14.5.2 The CPLEAR experiment

Strangeness oscillations can be studied by using the semi-leptonic decays of the
neutral kaon system. Because the decays K — "¢V, and K® — 7t ¢*v, (€ =
e, ) do not occur, the charge of the observed lepton in the semi-leptonic decays
K® — 7 ¢*vp and K® — mt+€~v, uniquely tags the flavour eigenstate from which
the decay originated.

The CPLEAR experiment, which operated from 1990 to 1996 at CERN, stud-
ied strangeness oscillations and CP violation in the neutral kaon system. It used
a low-energy antiproton beam to produce kaons through the strong interaction
processes

pp—» K 7K’ and pp — K'n K’

The energy of the beam was sufficiently low that the particles were produced almost
at rest. This enabled the production and decay to be observed in the same detector.
The charge of the observed K*n* identifies the flavour state of the neutral kaon
produced in the pp interaction as being either a K or K. The neutral kaon then
propagates at a low velocity as the linear combinations of the Kg and K; with
the time dependence given by (14.37). The charge of the observed lepton in the
semi-leptonic decay then identifies the decay as coming from either a K or K°,
thus tagging the flavour component of the wavefunction at the time of decay. For
example, Figure 14.14 shows an event in the CPLEAR detector where a KO is
produced at the origin along with a K~ s, where the K™ is distinguished from a 5t~
by the absence of an associated signal in the Cerenkov detectors used for particle
identification, see Section 1.2.1. The neutral kaon state subsequently decays as a
K, identified by its leptonic decay K — m*e V.. The relative rates of decays
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An event in the CPLEAR detector where a K is produced in pp — K~7t*K? and decays as K° — st*e .
The grey boxes indicate signals from relativistic particles in the Cerenkov detectors. Courtesy of the CPLEAR
Collaboration.

from K° and K° as a function of the distance between the production point and the
decay vertex, provides a direct measure of the relative K and K° components of
the neutral kaon wavefunction as a function of time.

For a kaon initially produced as a K°, the decay rates to m~e*v, and m*e Ve,
denoted R, and R_ respectively, are given by (14.40) and (14.41),

Ry o P(KL) — K%)= N1 [e75" 4 &8 4 2e~ TS+ T012 o Am 1)

R PK.L,—»K)=N : [e‘rs ty ettt — 2=+ o5 (Am t)] ,

where N is an overall normalisation factor related to the number of pp interactions.
The corresponding expressions for the decays of neutral kaons that were produced
as the K" flavour state are

R, P(K?ZO >K»=N i [e‘rs Ly e Tt — 0 Ws*T2 oog(Am t)] ,

R- o« P(KY, - K% = N1 [e-st +e Tt 4 2o TsH T2 o5 A t)] .

Because the QCD interaction is charge conjugation symmetric, equal numbers of
K and K° are produced in the pp strong interaction and the same normalisa-
tion factor applies to R, and R.. The dependence on the overall normalisation
can be removed by expressing the experimental measurements in terms of the
asymmetry,

(Ry +R_)— (R_+Ry)

Apm(t) = = —,
Ry +R)+(R_+R,)
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t/ns

The CPLEAR measurement of Aa,, as a function of time. The curve shows expression of (14.42) for Am =
3.485 x 107" GeV, modified to include the effects of the experimental timing resolution. Adapted from
Angelopoulos et al. (2001).

which has the advantage that a number of potential systematic biases cancel. This
asymmetry can be expressed as a function of time using the above expressions for
R. and R.,

2e~TsHTDI2 cos(Ami)

Apam(t) =
Am( ) e_rSt + e_rLt

(14.42)

The experimental measurements of Aa,(f) from the CPLEAR experiment are
shown in Figure 14.15. The effects of strangeness oscillations are clearly seen and
the position of the minimum provides a precise measurement of Am. The com-
bined results from several experiments, including the CPLEAR experiment and the
KTeV experiment at Fermilab, give

Am = m(Kp) — m(Ks) = (3.483 + 0.006) x 107'° GeV.

14.5.3 (P violation in the neutral kaon system

CP violation in the neutral kaon system has been studied by a number of experi-
ments, including CPLEAR. If there is CP violation in K® < K° mixing process,
the physical states of the neutral hadron system are

1 1
Ks) = \/?lslz (IKi) +€lKy))  and [Kp) = \/?lslz (IK2) + €lKy)),

(14.43)
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which can be expressed in terms of the flavour eigenstates as

Ks) = (1+2)K% + (1 - oK%,

1
x/2(1+|s|2)[
1 _
K;)) = —— (1 + &)K) = (1 — &) KV|.
9% Jra [0 KD~ (-2l

The corresponding expressions for the flavour eigenstates in terms of the physical
Ky and K, are

£ — 2
K% = t& B (Ks) +[Kz)  and K% = 1 /2 (Ks) - [KL)).

l+e

Therefore, accounting for the possibility of CP violation in neutral kaon mixing, a
neutral kaon state that was produced as a K° evolves as

1
K@) = 12

where as before s (7) and 7(¢) are given by (14.17). Direct CP violation in kaon
decay is a relatively small effect (¢’ /& ~ 1073) and decays to the 7 final state can
be taken to originate almost exclusively from the CP-even K; component of the
wavefunction. The time evolution of (14.44) can be expressed in terms of the K;
and K states using (14.43)

[6s (1)IKs) + 0K, (14.44)

1
IK() = % T+0 [05 (IK1) + €[K2)) + OL(K2) + £]K )]

1
= g (O +eO0IK) + (61 + e65)IK)]

The decay rate to two pions is therefore given by

2
T(KY ) — aum) oc (K KO = 3 Toa| 105+ e0Lf* . (14.45)
Because |¢] < 1,
1 P 1 1
= ~ ~ 1 —2Refe}.
‘1 el  U+en(+e)  1+2Reld) (el

The term |65 +£6,|* can be simplified using |05 + &6, * = [0 [* +]0.1> £2 Re(@s £*6;)
and by writing & = |g|e’?,

—imgt-T'st/2

+ |ele’® e—imLt—FLt/2|2

|9§ + 89L|2 = |€
= eI 4 |ePe T 4 20ele™ T2 cos(Amt — ).
Therefore (14.45) can be written as
N
P(K[y = wm) = = (1-2Refe)) 75"+ elPe ™+ 2lele™ T2 cos(Am t - ¢)]
(14.46)
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The CPLEAR measurement of A.._. Adapted from Angelopoulos et al. (2000).

where N is a normalisation factor. The first term in the square brackets corresponds
to the contribution from Ky decays. The second term is the contribution from K,
decays, which is small since |[> < 1. The final term is the interference between
the K and K; components of the wavefunction. The corresponding expression for
the decay rate to two pions from a state that was initially a K is

— N
F(RYy = 7o) = (1 +2%ele)) o5 + lelPe ™ = 2lele™ STV cos(Am t - ¢)].
(14.47)

Here the interference term has the opposite sign to that of (14.46). For t < 7g
and ¢t > 7 the expressions of (14.46) and (14.47) are approximately equal, but at
intermediate times, the interference term results in a significant difference in the st
decay rates. Figure 14.16a shows the numbers of K — nt*zt™ decays observed in
the CPLEAR experiment, plotted as a function of the neutral kaon decay time for
events that were initially tagged as either a K or K. The difference in the region
of t ~ 1 ns is the result of this interference term and the magnitude of the difference
is proportional to |g].

In practice, the experimental measurement of € at CPLEAR was obtained from
the asymmetry A, _, defined as

F(K?:O - J'IZ+TE_) - F(K?ZO - n+n_)

Ai_ = (14.48)

F(K?ZO — n+n—) + F(K?ZO - n+n‘).
From (14.46) and (14.47), this can be expressed as

4Rels) [e—st + Islze_r”] — dgle=TLrTsN/2 cos(Am t — ¢)

© 2[eTst + |gPeTe!] — 8 Refel|ele~TLtTs)/2 cos(Amt — ¢)

+—
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Since ¢ is small, the term in the denominator that is proportional to |g| Re{e} can be
neglected at all times, giving

2lele”T*T)2 cos(Amt — ¢)
e—l"st + |8|2e_FL’

2leleTs T2 cos(Amt — @)
- 1 + |g]PeTs—To)

A+_ ~ ZERQ{S} -

= 2 Re{e}

(14.49)

Hence both the phase and magnitude of & can be cleanly extracted from the exper-
imental measurement of A,_. Figure 14.16b shows the asymmetry A,_ obtained
from the CPLEAR data of Figure 14.16a. The measured asymmetry is well
described by (14.49) with the measured parameters

lel = (2.264 +0.035)x 107> and ¢ = (43.19 = 0.73)°. (14.50)

The non-zero value of |e| provides clear evidence for CP violation in the weak
interaction. Because ¢ is close to 45°, the real and imaginary parts of & are roughly
the same size, Re{e} ~ Im{el.

14.5.4 (P violation in leptonic decays

We can also observe CP violation in the semi-leptonic decays of the K; from meas-
urements at a large distance from the production of the K%K". Since the semi-
leptonic decays occur from a particular kaon flavour eigenstate, the relative decay
rates can be obtained from the K; wavefunction expressed in terms of its K and
KO components,

1 —
Ki) = s |1+ 2)K® - (1 - )K"
Tl L. nte v,
L» netve

Hence the decay rates are

[(Kp, — weVe) o KKK oc |1 - & ~ 1 = 2%e (e),

[(K; = netve) o KKOKDP o |1+ &> ~ 1 +2Re (s).
The experimental measurements are conveniently expressed in terms of the charge
asymmetry ¢ defined as

_I(Kp » neve) —T'(Kp — n'e™Ve)

0= —
I'K;, - metve) + 'K, — wre™Vve)

~ 2Re (&) = 2|g| cos ¢.

Experimentally, the number of observed K; — m~e*v, decays is found to be 0.66%
larger than the number of K; — mt*e™V, decays, giving

0 =0.327 £ 0.012%. (14.51)



392

(P violation and weak hadronic interactions

This is consistent with the expectation from the measured values of || and ¢ given
in (14.50), which predict a charge asymmetry of 6 = 0.33%.

Interestingly, the small difference in the K;, — n"e*v, and K; — n eV, decay
rates can be used to provide an unambiguous definition of what we mean by matter
as opposed to antimatter, which in principle, could be communicated to aliens in
a distant galaxy; the electrons in the atoms in our region of the Universe have the
same charge sign as those emitted least often in the decays of the long-lived neutral
kaons. Interesting, but perhaps of little practical use.

14.5.5 Interpretation of the neutral kaon data

The size of the mass splitting Am = m(K;) — m(Kg) and magnitude of the CP
violating parameter € can be related to the elements of CKM matrix and how they
enter the matrix elements for K « K° mixing. In the box diagrams responsible for
neutral kaon mixing, shown in Figure 14.17, there are nine possible combinations
of u, ¢ and t flavours for the two virtual quarks. The matrix element for each box
diagram has the dependence

qu’ oc qu VE;S Vgi(’ S Vq’d .

For reasons that are explained below, to first order, the value of & is determined by
the matrix elements for box diagrams involving at least one top quark, whereas the
dominant contributions to the K; and Kg mass splitting arises from box diagrams
with combinations of virtual up- and charm quarks. A full treatment of these cal-
culations is beyond the scope of this book, but the essential physical concepts can
be readily understood.

The mass splitting Am can be related to the magnitude of the matrix elements for
K & K° mixing. Owing to the smallness of |Vi4| and |Vj|, the diagrams involving
the top quark can, to a first approximation, be neglected (see Problem 14.8). Hence
the overall matrix element for K & K mixing can be written

M= Myy + Mye + Mey + M.

Vaa Va's Vao a9 Vgs
d S d s
KO q q’ K° KO K°
3 d 3 d
Vq*s Vq’d VJ«S a Vq’d

The box diagrams for K <> K° mixing, where the virtual quarks can be any of the nine combinations
ofg,q" = {u, ¢ t}.
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The individual matrix elements will be proportional to G12: and will include propa-
gator terms for the two virtual quarks involved and hence
Vud VLTS VudVSs ) Vud Vﬁks Ved V(i,ks " Ved Vc*s Vcdvc*s]

(k2 — mg)? (K2 —m)(2 —m) (R —m3? |’
where k is the four-momentum appearing in the box of virtual particles. Writing
Viud = Vs = cos 0. and Vs = —Vq = sinf,, this can be expressed as

M~G§[

M~ G2 [sin2 6, cos? 6, 5 sin” 6, cos? 6, . sin” 6, cos? GC]
L @-—md TR -md i —md) (k- md)
(m3 —m})?

~ G2 sin% 6. cos? 6 .
T N - mb2 (k2 - md)?

If the masses of the up- and charm quarks were identical, this contribution to the

matrix element for K® < K° mixing would vanish. The evaluation of the matrix

element, which involves the integration over the four-momentum %, is non-trivial

and the resulting expression for Am is simply quoted here

G2 2 92
Am ~ 3—F2 sin’ 0, cos? 6, fémKM (14.52)
T m

C

In this expression fgx ~ 170 MeV is the kaon decay factor, analogous to that intro-
duced in Section 11.6.1 in the context of t* decay. Although the above analysis
is rather simplistic, it gives a reasonable estimate of the magnitude of Am. Taking
the charm quark mass to be 1.3 GeV, Equation (14.52) gives the predicted value of
Am ~ 5 x 10713 GeV, which is within a factor of two of the observed value. The
smallness of Am is due to the presence of the GI% term from the two exchanged W
bosons in the box diagram.

The Standard Model interpretation of &

CP violation in K® « K° mixing arises because the matrix element for KO — K is
not the same as that for K — KO. For example, the matrix elements for K0 — KY
and K® — KO, arising from the exchange of a charm and a top quark, shown in
Figure 14.18, are respectively proportional to

Vcd Vé Vcs Vtﬁi
d s S d
KO c t K° K° c t KO
5 d d _ 5
VE s th Vcd VtS

The box diagram for K — K® involving virtual c and t quarks and the corresponding diagram for K> — K°.
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Mz o VegVesViaVis and - My o< VigVesViaVis = My,.
CP violation in mixing occurs if M, # Mj,. It can be shown (see Problem 14.9)
that
el ~ Im Mo}
V2 Am

The imaginary part of M, can be expressed in terms of the possible combinations
of exchanged u, ¢, t quarks in the box diagrams,

.9

where the parameters Ayy are constants that depend on the masses of the ex-
changed quarks. In the Wolfenstein parameterisation of the CKM matrix given in
(14.9), the imaginary elements of the CKM matrix are Vig and V. Since Vy, is not
relevant for kaon mixing, CP violation in neutral kaon mixing is associated with
box diagrams involving at least one top quark, and therefore

le| oc Aye IM (Vya Vas Via Vis) + Act Im (VeaVisViaVis) + A Im (Vig Vis Via Vis)-
(14.53)

Writing the elements of the CKM matrix in terms of A, A, p and 7 of the Wolfenstein
parametrisation (14.9), it can be shown that (see Problem 14.10)

le] o< n(1 — p + constant).

Hence the measurement of a non-zero value of |e| implies that n # 0 and provides
an experimental constraint on the possible values of the parameters 7 and p.

14.6 B-meson physics

The oscillations of neutral mesons are not confined to kaons, they have also been
observed for the heavy neutral meson systems,

B%(bd) <> B%bd), B(bs) & BY(bs) and D°(cu) < D(cu).

In particular, the results from the studies of the BO(Bd) and §0(b5) mesons by
the BaBar and Belle experiments have provided crucial information on the CKM
matrix and CP violation. The mathematical treatment of the oscillations of the
BY(bd) < B(bd) system follows closely that developed for the neutral kaon sys-
tem. However, because the BY and B° are relatively massive, m(B) ~ 5.3 GeV,
they have a large number of possible decay modes; to date, over 400 have been
observed; see Beringer ef al. (2012). Of these decay modes, relatively few are com-
mon to both the B® and B°. Consequently, the interference between the decays of



395

14.6 B-meson physics

the B® and BC is sm_all. Because of this, it can be shown (see the following starred
section) that B® « B oscillations can be described by a single angle 8 and that the
physical eigenstates of the neutral B-meson system are

BL) = % IB%) + e #B%| and [B)= % IB%) — e [B%)]. (14.54)

The By and By are respectively a lighter and heavier state with almost identical
lifetimes; again the mass difference m(By) — m(Bp) is very small.

14.6.1 *B-meson mixing

The treatment of B-mixing given here, makes a number of approximations to sim-
plify the discussion in order to focus on the main physical concepts. The physical
neutral B-meson states are the eigenstates of the overall Hamiltonian of the B® and
B system, analogous to the kaon states discussed in Section 14.4.3. There are a
large number of B-meson decay modes, of which only a few are common to both
the BY and B, and the contribution to the effective Hamiltonian of (14.25) from the
interference between the decays of the B? and B° can be neglected, I'1 =T ;1 ~ 0.
In this case

(14.55)

71{N[M—%r My, )

M7, M-I

where M), is due to the box diagrams for B < B° mixing. The eigenvalues of
(14.55), which determine the masses and lifetimes of the physical states, are

Ay =my + 3Ty ~ M+ |Myp| — 31T,

AL =my + 3T ~ M — [Mys| - 4iT.
leading to a heavier state By and a lighter state By with masses
myg =M+ |Myp| and myp =M —|Mi,|. (1456)

Because the interference term I'y; is sufficiently small that it can be neglected, the
imaginary parts of Ay and Ay are the same. Consequently, the By and B; have
approximately the same lifetime, which is measured to be

Iy ~T, ~T~43%x10783GeV.

The corresponding physical eigenstates of the effective Hamiltonian are

1 — 1 _
IBL) = ———(B% +&B%) and [By) = ———(1B®) - £B)), (14.57)

N V1+&7?
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Vid Vio Vg t Vo

BO t t B

Tl
o
Tl
o

i Y Vi

—]

Vig

The dominant box diagrams for B <> B mixing.

where £ is given by (14.29),

(14.58)

. 1
£ = (MTz B %rlsz - My,

M, - 4T1n M1l
from which it follows that |£] =~ 1.

In K® « K° mixing, the contributions from different flavours of virtual quarks in
the box diagrams are of a similar order of magnitude. Here, because |Vi,| > |Vis| >

|Vial, only the box diagrams involving two top quarks, shown in Figure 14.19, con-
tribute significantly to the mixing process and

M7, o (ViaVib)*.
In the Wolfenstein parametrisation of the CKM matrix (14.9), Vy, is real and thus

M, (VaVe)? Ve

Ml VeV VAL

(14.59)

By writing Vi4 as
Via = [Viale™®,
the expression for & given in (14.59) is simply
£=eP,
Hence, the physical neutral B-meson states of (14.57) are
Br) = 55 (B +¢[B%) and [By)= 5 (B - ¥B").  (14.60)
From (14.56), it can be seen that the mass difference

Amg = m(Bp) — m(BL) = 2IM1a] o< [(ViaVi)’). (14.61)

Because Vi, ~ 1, it follows that the By — B, mass difference is proportional to IV%I.

Consequently, the measurement of Amg in B® <> B mixing provides a way of deter-
mining |Vyql.
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14.6.2 Neutral B-meson oscillations

The mathematical description of the phenomenon of B-meson oscillations follows
that developed for the kaon system. Suppose a B’(bd) is produced at a time ¢ = 0,
such that [B(0)) = [BY). Then from (14.60), the flavour state B® can be expressed
in terms of the physical By and By mass eigenstates

B = ~5 (IBL) +[Bm)).
The wavefunction evolves according to the time dependence of the physical states,
IB(®)) = ‘/% [OL(DBL) + O(®IBm)], (14.62)
where the time dependencies of the physical states are
0, = e 1127l and Gy = e T2 emimn!,
Equation (14.62) can be expressed in terms of the flavour eigenstates using (14.60),
B()) = § (@1 +0m)IB®) + e 2P0, — 0)B%)| = §|041B%) + £6_B%)|, (14.63)

where 0, = 0, + 0y and & = e %#. By writing m; = M — Amg/2 and my =
M+ Amy/2,

0+(t) — e—Ft/Ze—iMz X [eiAmdz/Z + e—iAmdt/Z:I , (14.64)
from which it follows that 6, and 6_ are given by

Amgt )

0, = 2e 127 Mt ¢og (—

. Amgt
and 6_ = 2ie 127 iM! sin(ﬂ).

The probabilities of the state decaying as a IBY) or a [B?) are therefore

P(BY_, — B%) = KB(OIB") = fe™"10, 1" = e™" cos” ($Amat),

P(BY, — B") = (BWIB") = fel0_|” = |¢le ™ sin> (JAmar).  (14.65)
The corresponding expressions for a state that was produced as a BY are

_ _ - 17
P(BY, — B?) = ¢ cos? (%Amdt) and P(B), — B’) = ‘E e sin? (%Amdt).

Because the contribution to the effective Hamiltonian for the neutral B-meson
system from the interference between B? and B? decays can be neglected, |£| =
le72A| = 1 and therefore

PBY, - B% ~PBY,—B% and PB",— B~ PB", - B).

Consequently, it is very hard to observe CP violation in neutral B-meson mixing.
Nevertheless, B « B oscillations can be utilised to measure Amg, which from
(14.61) provides a measurement of |Vq].
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14.6.3 The BaBar and Belle experiments

The BaBar (1999-2008) and Belle (1999-2010) experiments were designed to pro-
vide precise measurements of CP violation in the neutral B-meson system. The
experiments utilised the high-luminosity PEP2 and KEKB e*e™ colliders at SLAC
in California and KEK in Japan. To produce very large numbers of B’B pairs, the
colliders operated at a centre-of-mass energy of 10.58 GeV, which corresponds to
the mass of the Y(4S) bb resonance. The T(4S) predominantly decays by either
Y(4S) — B*B~ or T(4S) — BB, with roughly equal branching ratios. The
masses of the charged and neutral B-mesons are 5.279 GeV, and therefore they are
produced almost at rest in the centre-of-mass frame of the Y'(4S ). Because the life-
times of the neutral B-mesons are short (r = 1.519x 107!2 s) and they are produced
with relatively low velocities, they travel only a short distance in the centre-of-mass
frame before decaying. Consequently, in the centre-of-mass frame it would be hard
to separate the decays of two B-mesons produced in ete™ — T(4S) — BUBC.
For this reason, the PEP2 and KEKB colliders operated as asymmetric b-factories,
where the electron beam energy was higher than that of the positron beam. For
example, PEP2 collided a 9 GeV electron beam with a 3.1 GeV positron beam.
Owing to the asymmetric beam energies, the Y(4S) is boosted along the beam
axis; at the PEP2 collider the T(4S) is produced with Sy = 0.56. As a result of
this boost, the mean distance between the two B-meson decay vertices in the beam
direction is increased to Az ~ 200 um. This separation is large enough for the
two B-meson decay vertices to be resolved using a high-precision silicon vertex
detector, as described in Section 1.3.1.
The oscillations of B-mesons can be studied through their leptonic decays,

B(bd) » D" (@d)u* v, and B°(bd) —» D*(cd)p” V.

The sign of the lepton identifies the B-meson flavour state, since the decays B —
D*u~v, and B’ —» D~u"v, do not occur. After production in e*e” — BUBY, the
two B-mesons propagate as a coherent state. When one of the B-mesons decays
into a particular flavour eigenstate, the overall wavefunction collapses, fixing the
flavour state of the other B-meson. For example, Figure 14.20 illustrates the case
where at £ = 0 one of the B-mesons is observed to decay to D*u™v,,, tagging it as
a BY. At this instant in time, the second B-meson corresponds to a pure BY state,
IB(0)) = |B?). The wavefunction of the second B-meson then evolves according to
(14.63). When the second B-meson decays At later, the charge sign of the observed
lepton tags the flavour eigenstate in which the decay occurred. Thus B® < B
oscillations can be studied by measuring the rates where the two B-meson decays
are the same flavour, B°B® and BB, or are of opposite flavour, BB, The same
flavour (SF) decays give like-sign leptons, u*u* or u~u~, and the opposite flavour
(OF) decays give opposite-sign leptons, u*u~. The relative rates depend on the
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The process ete™ — BB? followed by two same-flavour (SF) leptonic B® decays, following B® — B°
oscillation.

time between the two decays Ar. Because the B-mesons are produced almost at
rest in the centre-of-mass frame, the proper time between the two decays is given
by At = Az/Byc, where 8 and vy are determined from the known velocity of the Y.

The mass difference Amg = m(By) — m(Bp) is determined from the lepton flavour
asymmetry A(Ar) defined as

A(AT) = Nor — NsF
Nsr + Nor’

where Nor is the number of observed opposite flavour decays and Ngp is the
corresponding number of same flavour decays. The observed asymmetry can be
expressed in terms of the oscillation probabilities as

[P(BY,—B° + PB",—»B%] - [PB",—B% + PBY,—>B)]
[P(B",—B) + P(B" ,—BY)] + [P(B", —B?) + P(B" ,—~BO)|

A(AF) =

which, using (14.65) and the subsequent relations, gives
A(Ar) = cos® (3 Amgt) — sin® (3 Amgt) = cos (Amgt) (14.66)

Figure 14.21 shows the measurement of A(Af) from the Belle experiment. The
data do not follow the pure cosine form of (14.66) due to a number of experimental
effects, including the presence of background, the misidentification of the lepton
charge and the experimental A resolution. Nevertheless, the effects of B & B
oscillations are clearly observed. When combined, the results from the BaBar and
Belle experiments give

Amg = (0.507 + 0.005) ps~! = (3.34 £ 0.03) x 10713 GeV.

From (14.61) and the knowledge that Vi, =~ 1, the measured value of Amqg can be
interpreted as a measurement of

Vil = (8.4 +0.6) x 107°.
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The Belle measurement of Aa;. The line represents a fit to the data including contributions from background
and the effects of experimental resolution. Adapted from Abe et al. (2005).

In a similar rllanner,_thsl can be extracted from the measurements of oscilla-
tions in the Bg(bs) “ Bg(b§) system from the CDF and LHCDb experiments, see
Abulencia er al. (2006) and Aaij et al. (2012). When the results from these two

experiments are averaged they give Amg = 17.72 + 0.04 ps~!. Taking Vi, ~ 1 this
result leads to

[Vis| = (4.3 £0.3) x 1072,

14.6.4 (P violation in the B-meson system

In general, CP violation can be observed as three distinct effects:

(1) direct CP violation in decay such that (A — X) # T’ (A = X), as parame-
terised by &’ in the neutral kaon system;
(i1) CP violation in the mixing of neutral mesons as parameterised by ¢ in the
kaon system;
(iii) CP violation in the interference between decays to a common final state f
with and without mixing, for example B® — f and B — B — f.

In the Standard Model, the effects of CP violation in B® < B° mixing is small.
Nevertheless, CP-violating effects in the interference between decays B — f and
BY — BY — f can be relatively large and have been studied extensively by the
BaBar and Belle experiments in a number of final states; here the decay B —
J/v Ky is used to illustrate the main ideas. To simplify the notation, the J/y meson
is written simply as .

The y charmonium (cC) state has J” = 1~ and is a CP eigenstate with CP = +1.
Neglecting CP violation in neutral kaon mixing, the Ky is to a good approximation,
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The process e*e~ — BYBY where the leptonic decay tags the flavour of the other B-meson as being a B®
that subsequently decays to a y K. In this illustrative example, v — pu*u~andKs — mt* o,

The Feynman diagrams for B — y K’ and B® — K.

the CP = +1 eigenstate of the neutral kaon system with J© = 0~. Since the B® and
B? are spin-0 mesons, the decays B? - v Ky and B? - v Kg must result in an
¢ = 1 orbital angular momentum state. Therefore the CP state of the combined
y Ky system is

CP(yKs) = CP(y) X CP(Ks) X (=1)" = (+)(+1)(~1) = —1.

Similarly, the decay B — y K, occurs in a CP-even state, CP(y K) = +1.

Figure 14.22 shows the topology of a typical neutral B-meson decay to y K. In
this example, the charge of the muon in the leptonic B® — D*u~v, decay tags it as
B and hence at time ¢ = 0, the other B-meson is in a BY flavour state, IB(0)) = |BY).
The decay to y Ky can either occur directly by B — y Ky or after mixing, B —
B — yKjs. It is the interference between the two amplitudes for these processes,
which have different phases, that provides the sensitivity to the CP violating angle
B. The B — y Ky decays can be identified from the clear experimental signatures,
for example y — u"u” and Kg — wtrm™.

The BY/B? — yKg decays proceed in two stages. First the BY/B? decays to
the corresponding flavour eigenstate, B — K and B® — K, as shown in
Figure 14.23. Subsequently, the neutral kaon system evolves as as a linear combi-
nation of the physical Kg and K states and then decays to the CP states K¢y and
K, y. CP violation in the interference between B — y Ky and B — B? — yKg
is measurable through the asymmetry,
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The raw data and distribution ofA?f, from the BaBar experiment based on a sample of 4108 Y'(45) — BB
decays. In the left-hand plot, the small symmetric contribution arises from the background. The lines show
the best fit to the data. Adapted from Aubert et al. (2007).

8%, - yKs)-TB", - yKjy)
B, - vKs)+T(BY, - yKs)

Ks _
ACP -

= sin(Amgt) sin(2p). (14.67)

Figure 14.24 shows the experimental data from the BaBar experiment. The left-
hand plot shows the raw numbers of observed decays to y Ky, from both events
that were tagged as BY or B, plotted as a function of Ar. Here At is the differ-
ence in the proper time of the tagged B®/B° semi-leptonic decay and the observed
B — y K decay. The curves show the expected distributions including a sym-
metric background contribution from other B-meson decays. The right-hand plot
of Figure 14.24 shows the raw asymmetry obtained from these data. This has the

expected sinusoidal form of (14.67) and the amplitude provides a measurement of
sin(2p),
sin(2B) = 0.685 + 0.032.

This observation of a non-zero value of sin(28) is a direct manifestation of CP
violation in the B-meson system. The Belle experiment (see Adachi e al. (2012))
measured sin(28) = 0.670 = 0.032.

14.7 (P violation in the Standard Model

There is now a wealth of experimental data on CP violation associated with the
weak interactions of quarks. This chapter has focussed on the observations of CP
violation in K® — K° mixing and in the interference between the amplitudes for
BY — J/yKs and B — BY — J/y K decays. Direct CP violation in the decays of
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kaons and B-mesons has also been observed, for example, as a difference between
the rates (B —» K~ 7*) and [(B? — K*7™).

In the Standard Model, CP violation in the weak interactions of hadrons is
described by the single irreducible complex phase in the CKM matrix. In the
Wolfenstein parametrisation of (14.9), CP violation is associated with the parame-
ter 17. To O(A%), the parameter 1 appears only in Vy, and Vi4, with

Vab ~ AL(p—in) and Vg~ AL —-p—in).

The measurements of non-zero values of |g| and sin(23) separately imply that 7 # 0.
However, it is only when the experimental measurements are combined, that the
values of p and 77 can be determined.

In the Standard Model, the CKM matrix is unitary, V'V = I. This property
places constraints on the possible values of the different elements of the CKM
matrix. These constraints are usually expressed in terms of unitarity triangles. For
example, the unitarity of the CKM matrix implies that

VudVJ‘b + VCch*b + thV;f) =0. (14.68)

In the Wolfenstein parametrisation, of these six CKM matrix elements, Vyq, Vip,
Veq and V, are all real and only V4 is negative. Hence (14.68) can be divided by
VeaVep to give

[Vudl v [Vio|

- - =0. (14.69)
WVeallVeol ™ VeallVe

Since Vi and Vi are complex, Vi, = A/l3(p +in)and V4 = AP - p —in), the
unitarity relation of (14.69) is a vector equation in the complex p—n plane, with the
three vectors forming the closed triangle, as shown in Figure 14.25a.

From Vg = |Vigle™® = AA3(1 — p — in), it can be seen that

B=arg(l —p+in) orequivalently tang = 1L

-p
Consequently, the angle 8 corresponds to the internal angle of the unitarity tri-
angle shown in Figure 14.25a. Therefore, the measurement of sin(23) described
previously constrains the angle between two of the sides of the unitarity triangle as
shown in Figure 14.25b, which also shows the constraint in the p—n plane obtained

from the measurement of |¢| in neutral kaon mixing,
lg] o< (1 — p + constant).

The measurement of Amg determines |Vi4|. When this is combined with the knowl-
edge that |Viy| = 1 and the measurements of |V 4| and |V,| described in Sec-
tion 14.3, it constrains of the length of the upper side of the unitarity triangle,
as shown in Figure 14.25b.
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(a) The unitarity relation, VyqVih + VegVib + ViaVih = 0, shown in the p—1 plane. (b) The constraints from
the measurements of ||, Amg and sin 283. The shaded ellipse shows the combination of these constraints
that give a measurement of 77 and p.

The experimental constraints from the measurements of |g|, sin(283) and Amyqy
are consistent with a common point in the p—n plane, as indicated by the ellipse
in Figure 14.25b, thus providing experimental confirmation of the unitarity rela-
tion Vyg Vi, + VeaVis + ViaVib = 0. From a global fit to these and other results
(see Beringer er al. (2012)) the Wolfenstein parameters are determined to be

A=0.2253 £ 0.0007, A = 0.81173022 p = 0.13 + 0.02, 57 = 0.345 + 0.014.

The experimental measurements described in this chapter provide a strong test of
the Standard Model prediction that the unitarity triangle of (14.69) is closed. Any
deviation from this prediction would indicate physics beyond the Standard Model.
To date, all measurements in the quark flavour sector are consistent a unitary
CKM matrix, where the observed CP violation is described by a single complex
phase.

Whilst the Standard Model provides an explanation of the observed CP violation
in the quark sector, this is not sufficient to explain the matter—antimatter asymme-
try in the Universe. There are suggestions that CP violation in the lepton sector
during the early evolution of the Universe might account for the observed matter-
antimatter asymmetry. However, it is also possible that there are as yet undiscov-
ered CP violating processes beyond the Standard Model. In the coming years the
LHCb experiment at the LHC and the Belle II experiment at KEK will probe CP
violation in the quark sector with ever increasing precision and may shed further
light on this important question.
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Summary
|

CP violation is an essential part of our understanding of particle physics. In the
Standard Model it can be accommodated in the irreducible complex phases in
the PMNS and CKM matrices. In the decays of hadrons, CP violation has been
observed in three ways: (i) direct CP violation in decay; (ii) indirect CP violation
in the mixing of neutral mesons; and (iii) CP violation in the interference between
decays with and without oscillations.

This chapter concentrated on the measurements of oscillations and CP violation
in the neutral kaon and neutral B-meson systems. Many of the effects arise from the
distinction between the different neutral meson states. For example, neutral kaons
are produced in the strong interaction as the flavour eigenstates, K(sd) and Ko(sa),
but the physical particles with definite masses and lifetimes are the eigenstates of
the overall Hamiltonian of the K’-K° system are

Ks) o« (1+&)K% + (1 -&)K% and [Kp) o (1+&)K” - (1-e)K’),

where the parameter ¢ is non-zero only if CP is violated. If CP were conserved in
the weak interaction, the physical states would correspond to the CP eigenstates

Ks)oc K% + K% and [Kp) o K% — [K?).

Oscillations arise because neutral mesons are produced as flavour eigenstates and
decay as either flavour or CP eigenstates, but propagate as the physical mass
eigenstates.

The studies of the neutral mesons and their oscillations, provide constraints on
the values of the elements of the CKM matrix and allow CP violation to be studied
in the quark sector. To date, all such experimental measurements are consistent
with the Standard Model predictions from the single complex phase in the unitary
CKM matrix.

Problems
|

@ 14.1  Draw the lowest-order Feynman diagrams for the decays

K-natn, Ko7, Kozan ad K-,

and state how the corresponding matrix elements depend on the Cabibbo angle 6.
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Draw the lowest-order Feynman diagrams for the decays
B D xn*t, B -aa and B —J/ykK,
and place them in order of decreasing decay rate.
The flavour content of the above mesons is B°(d5), D=(dc), J/w(cc) and K°(ds).
Draw the lowest-order Feynman diagrams for the weak decays
D°(cl) — K~(sU) + ™ (ud) and D°(cl) — K*(u5) + 7w (du),
and explain the observation that

T — K*)

— T ax107,
T = K-7t)

A hypothetical T°(tu) meson decays by the weak charged-current decay chain,
= Wr - Km)ym —» (Ym)mw — (Zn) .

Suggest the most likely identiﬁ_cation of the W, X, Y and Z mesons and state why this decay chain would be
preferred over the direct decay T — 7 .

For the cases of two, three and four generations, state:

(@) the number of free parameters in the corresponding n X n unitary matrix relating the quark flavour and
weak states;

(b) how many of these parameters are real and how many are complex phases;

(c) how many of the complex phases can be absorbed into the definitions of phases of the fermions without
any physical consequences;

(d) whether CP violation can be accommodated in quark mixing.

Draw the lowest-order Feynman diagrams for the strong interaction processes
pp— KK and pp — K K.
In the neutral kaon system, time-reversal violation can be expressed in terms of the asymmetry

A LK — K — T(K* — K
T= ——= —.
(K — K0) + [(K° — K?)

Show that this is equivalent to
T(K_, — metve) —T(KL, — e Ve)

T = — —_
LK, — metve) + T(K_, — e Ve)

and therefore
Ar = 4lgl cos ¢.

The Ks — K; mass difference can be expressed as

GE 2 * *
Am = m(K) = m(Ks) ~ ) S femlVaaVigV iy mme.
9.0
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14.9
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141
14.12
14.13

14.14

where q and q” are the quark flavours appearing in the box diagram. Using the values for the CKM matrix
elements given in (14.8), obtain expressions for the relative contributions to Am arising from the different com-
binations of quarks in the box diagrams.

Indirect CP violation in the neutral kaon system is expressed in terms of £ = |[e®. Writing
. 1
T-¢ _(MI*Z_ %Ffz)z

E=——=x1-2 -
T+e My — 5Ty

show that

. 1
T SmiMyp} =3I ) Im My} — i Im{Ty/2)
EXR - - I~
2 M12 - %F]z Am — IAF/Z

Using the knowledge that ¢ =~ 45° and the measurements of Am and AL, deduce that Im {My,} >
JIm {I'p} and therefore

Using (14.53) and the explicit form of Wolfenstein parametrisation of the CKM matrix, show that

lg] oc n(1 — p + constant).
Show that the B? — BY mass difference is dominated by the exchange of two top quarks in the box diagram.
Calculate the velocities of the B-mesons produced in the decay at rest of the Y'(45) — BB’

Given the lifetimes of the neutral B-mesons are 7 = 1.53 ps, calculate the mean distance they travel when
produced at the KEKB collider in collisions of 8 GeV electrons and 3.5 GeV positrons.

From the measured values

Vgl = 0.97425 £0.00022 and  |Vyp| = (4.15 £ 0.49) x 103,
Vgl = 0.230 £ 0.011 and |V, = 0.041 + 0.001,
calculate the length of the corresponding side of the unitarity triangle in Figure 14.25 and its uncertainty. By

sketching this constraint and that from the measured value of 3, obtain approximate constraints on the values
of pand 7.



