
13 Neutrinos and neutrino oscillations

This chapter focusses on the properties of neutrinos and in particular the phe-
nomenon of neutrino oscillations, whereby neutrinos undergo flavour tran-
sitions as they propagate over large distances. Neutrino oscillations are a
quantum-mechanical phenomenon and can be described in terms of the rela-
tionship between the eigenstates of the weak interaction νe, νµ and ντ, and the
eigenstates of the free-particle Hamiltonian, known as the mass eigenstates,
ν1, ν2 and ν3. The mathematical description of neutrino oscillations is first
introduced for two flavours and then extended to three flavours. The predic-
tions are compared to the recent experimental data from reactor and long-
baseline neutrino oscillation experiments.

13.1 Neutrino #avours

Unlike the charged leptons, which can be detected from the continuous track
defined by the ionisation of atoms as they traverse matter, neutrinos are never
directly observed; they are only detected through their weak interactions. Different
neutrino flavours can only be distinguished by the flavours of charged lepton pro-
duced in charged-current weak interactions. Consequently, the electron neutrino
νe, is defined as the neutrino state produced in a charged-current weak interaction
along with an electron. Similarly, by definition, the weak charged-current interac-
tions of a νe will produce an electron. For many years it was assumed that the νe, νµ
and ντ were massless fundamental particles. This assumption was based, at least in
part, on experimental evidence. For example, it was observed that the interactions
of the neutrino/antineutrino produced along with a positron/electron in a nuclear
β-decay, would produce an electron/positron as indicated in Figure 13.1. This nat-
urally led to the idea that the electron neutrino carried some property related to
the electron that is conserved in weak interactions, which was referred to as elec-
tron number. Similarly, in beam neutrino experiments, such as those described in
Chapter 12, it was observed that the neutrinos produced from π+ → µ+νµ decays
always produced a muon in charged-current weak interactions.
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Further evidence for the distinct nature of the electron and muon neutrinos was
provided by the non-observation of the decay µ− → e−γ, which is known to have a
very small branching ratio,

BR(µ− → e−γ) < 10−11.

In principle, this decay could occur via the Feynman diagram shown in Figure 13.2.
The absence of the decay suggests that the neutrino associated with Wµ−ν vertex
is distinct from the neutrino associated with the We−ν vertex.

Until the late 1990s, relatively little was known about neutrinos beyond that there
are three distinct flavours and that they are extremely light (and possibly massless).
However, even at that time several experiments had reported possible anomalies
in the observed interaction rates of atmospheric and solar neutrinos. This picture
changed with the publication of the solar and atmospheric neutrino data from the
Super-Kamiokande detector, which provided compelling experimental evidence
for the phenomenon of neutrino flavour oscillations over very large distances. The
subsequent study of neutrino oscillations has been one of the highlights of particle
physics in recent years.

13.2 Solar neutrinos

Nuclear fusion in the Sun produces a large flux of electron neutrinos, 2× 1038 νe s−1.
Despite the smallness of neutrino interaction cross sections and the large distance
to the Sun, solar neutrinos can be observed with a sufficiently massive detector.
Nuclear fusion in the Sun proceeds through a number of distinct processes, each of
which has several stages. The resulting solar neutrino energy spectrum is shown in
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!Fig. 13.3 The &ux of solar neutrinos from the main processes in the Sun. The two 7Be lines are from the electron capture
reactions 7Be + e− → 7Li + νe. The pep line is from p + e− + p→ 2H + νe. Adapted from Bahcall and
Pinsonneault (2004).

Figure 13.3. The main hydrogen burning process, known as the pp cycle, proceeds
through three steps:

p + p→ D + e+ + νe,

D + p→ 3
2He + γ,

3
2He + 3

2He→ 4
2He + p + p.

Because the binding energy of the deuteron 2
1D is only 2.2 MeV, the neutrinos pro-

duced in the process p+p→ D+ e+ + νe have low energies, Eν < 0.5 MeV. Conse-
quently, they are difficult to detect. For this reason, the majority of experiments
have focussed on the detection of the higher-energy solar neutrinos from rarer
fusion processes. The highest energy solar neutrinos originate from the β-decay
of boron-8 (8B) that is produced from the fusion of two helium nuclei,

4
2He + 3

2He→ 7
4Be + γ,

7
4Be + p→ 8

5B + γ,

with the subsequent β-decay,

8
5B→8

4 Be∗ + e+ + νe,

giving neutrinos with energies up to 15 MeV.
A number of experimental techniques have been used to detect solar neutrinos.

The earliest experiment, based in the Homestake Mine in South Dakota, USA,
used a radiochemical technique to measure the flux of solar neutrinos. It consisted
of a tank of 615 tons of dry-cleaning fluid, C2Cl4. The solar neutrino flux was
measured by counting the number of 37Ar atoms produced in the inverse β-decay
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process, νe +
37
17Cl→ 37

18Ar+ e−. The 37Ar atoms where extracted from the tank and
counted through their radioactive decays. Despite the huge flux of neutrinos, only
1.7 interactions per day were expected. The observed rate was only 0.48 ± 0.04
neutrino interactions per day; see Cleveland et al. (1998). This apparent deficit
of solar neutrinos became known as the solar neutrino problem. The Homestake
experiment was sensitive to the relatively high-energy 8B neutrinos. Subsequently,
the SAGE and GALLEX radiochemical experiments used gallium as a target, and
were sensitive to the low-energy neutrinos from the first step of the pp chain. These
experiments also observed a deficit of solar neutrinos.

Radiochemical experiments played an important role in demonstrating the exis-
tence of the solar neutrino deficit; Ray Davis, who conceived the Homestake exper-
iment, was awarded the Nobel prize for its discovery. However, it was the results
from the large water Čerenkov detectors that firmly established the origin of the
deficit of solar neutrinos.

13.2.1 The Super-Kamiokande experiment

The 50 000 ton Super-Kamiokande water Čerenkov detector, shown schematically
in Figure 13.4a, was designed to detect Čerenkov radiation (see Section 1.2.1)
from relativistic particles produced within the volume of the detector. In essence,
Super-Kamiokande is a large vessel of water surrounded by photo-multiplier tubes
(PMTs) that are capable of detecting single photons.

νe
e-

(a) (b)

36
 m

34 m!Fig. 13.4 (a) The Super-Kamiokande experiment comprising a tank of 50 000 tons of water viewed by 11 146 PMTs.
(b) A neutrino interaction in the Super-Kamiokande experiment showing the ring of Čerenkov light produced
by the relativistic e− with v > c/n as detected as signals in the PMTs on the walls of the detector. Left-hand
diagram courtesy of the Super-Kamiokande collaboration.
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Because oxygen is a particularly stable nucleus, the charged-current process
νe +

16
8 O → 16

9 F + e− is kinematically forbidden for the neutrino energies being
considered here. Consequently, solar neutrinos are detected by the elastic scatter-
ing process νee− → νee−, shown in Figure 13.5. The final-state electron is relativis-
tic and can be detected from the Čerenkov radiation photons that are emitted at a
fixed angle to its direction of motion as it travels through water. The photons form
a ring of hits in the PMTs on the sides of the detector, as shown in Figure 13.4b.
The number of detected photons provides a measure of the neutrino energy and the
direction of the electron can be determined from the orientation of the Čerenkov
ring. In this way, Super-Kamiokande is able to detect electron neutrino elastic scat-
tering interactions down to neutrino energies of about 5 MeV. Below this energy,
background from the β-decays of radioisotopes dominates. Because of this effec-
tive threshold, the Super-Kamiokande detector is sensitive primarily to the flux of
8B neutrinos.

The angular distribution of the scattered electron with respect to the incom-
ing neutrino direction is isotropic in the centre-of-mass frame, as was the case
for neutrino–quark scattering cross section of (12.13). Because the centre-of-mass
frame is boosted in the direction of the neutrino, in the laboratory frame the scat-
tered electron tends to follow the direction of the solar neutrino. Consequently, the
directional correlation with the Sun is retained.

Figure 13.6 shows the reconstructed electron direction with respect to the direc-
tion of the Sun for neutrino interactions with Eν ! 5 MeV. The peak towards
cos θsun =1 provides clear evidence for a flux of neutrinos from the Sun. The flat
background arises from the β-decay of radioisotopes. Whilst Super-Kamiokande
observes clear evidence of solar neutrinos from the Sun, the flux of electron neu-
trinos is measured to be about half that expected.

13.2.2 The SNO experiment

Results from Super-Kamiokande and other solar neutrino experiments demonstra-
ted a clear deficit of electron neutrinos from the Sun. The Sudbury Neutrino Obser-
vatory (SNO) experiment in Canada was designed to measure both the νe and total
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!Fig. 13.7 The νe charged-current (CC) and neutral-current (NC) weak interactions with the deuteron.

neutrino flux from the Sun. SNO consisted of 1000 tons of heavy water, D2O, inside
a 12 m diameter vessel, viewed by 9,600 PMTs. Heavy water was used because the
deuteron, the bound state of a proton and a neutron, has a binding energy of just
2.2 MeV, which is relatively small compared to the energies of the 8B solar neutri-
nos. For this reason, solar neutrinos can be detected in SNO through three different
physical processes. Crucially, the different processes have different sensitivities to
the fluxes of electron, muon and tau neutrinos, φ(νe), φ(νµ) and φ(ντ).

Because of the low binding energy of the deuteron, the charged-current (CC)
interaction of electron neutrinos, νe +D→ e+ p+ p, shown in Figure 13.7 (left), is
kinematically allowed. The final-state electron can be detected from the resulting
Čerenkov ring. From the discussion of Section 12.2.2, it can be appreciated that
in the centre-of-mass frame the angular distribution of the electron relative to the
incoming neutrino is almost isotropic. Because Eν % mD, the laboratory frame
is almost equivalent to the centre-of-mass frame and therefore the final-state elec-
tron does not correlate strongly with the direction of the Sun. The charged-current
interaction with the deuteron is only sensitive to the νe flux and therefore

CC rate ∝ φ(νe). (13.1)



335 13.2 Solar neutrinos

All flavours of neutrinos can interact with the deuteron via the neutral-current
(NC) interaction of Figure 13.7 (right), where the momentum imparted to the
deuteron is sufficient to break up this loosely bound state. The neutron produced
in the final state will (eventually) be captured in the reaction n + 2

1H → 3
1H + γ,

releasing a 6.25 MeV photon. Through its subsequent interactions, this photon will
produce relativistic electrons that give a detectable Čerenkov signal. The neutral-
current process is equally sensitive to all neutrino flavours, thus

NC rate ∝ φ(νe) + φ(νµ) + φ(ντ). (13.2)

Finally, neutrinos can interact with the atomic electrons through the elastic scat-
tering (ES) processes of Figure 13.5. For electron neutrinos, both the charged-
current process and the neutral-current process contribute to the cross section,
whereas for νµ and ντ only the neutral-current process, which has a smaller cross
section, contributes. The observed elastic scattering rate is therefore sensitive to all
flavours of neutrinos but has greater sensitivity to νe,

ES rate ∝ φ(νe) + 0.154
[
φ(νµ) + φ(ντ)

]
. (13.3)

The electrons from the ES scattering process point back to the Sun and can there-
fore be distinguished from those from the CC process.

The different angular and energy distributions of the Čerenkov rings from CC,
NC and ES interactions allows the rates for each individual process to be deter-
mined separately. Using the knowledge of the interaction cross sections, the mea-
sured rates can be interpreted in terms of the neutrino fluxes using (13.1)–(13.3),
with the CC process providing a measure of the νe flux and the NC process pro-
viding a measure of the total neutrino flux (νe + νµ + ντ). The observed CC rate
was consistent with a flux of νe of 1.8 × 10−6 cm−2 s−1 and the observed NC rate
was consistent with a total neutrino flux of 5.1 × 10−6 cm−2 s−1, providing clear
evidence for an unexpected νµ/ντ flux from the Sun.

The observed neutrino rates in SNO from the CC, NC and ES processes can be
combined to place constraints on the separate νe and νµ + ντ fluxes, as shown in
Figure 13.8, giving the overall result

φ(νe) = (1.76 ± 0.10) × 10−6 cm−2 s−1,

φ(νµ) + φ(ντ) = (3.41 ± 0.63) × 10−6 cm−2 s−1.

The total neutrino flux, obtained from the NC process is consistent with the expec-
tation from theoretical modelling of the Sun that predicts a νe flux of

φ(νe)pred = (5.1 ± 0.9) × 10−6 cm−2 s−1.

The SNO data therefore demonstrate that the total flux of neutrinos from the Sun
is consistent with the theoretical expectation, but rather than consisting of only
νe, there is a large νµ and/or ντ component. Since νµ/ντ cannot be produced in
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the fusion processes in the Sun, SNO provides clear evidence of neutrino flavour
transformations over large distances.

13.3 Mass and weak eigenstates

The neutrino flavour transformations observed by SNO and other experiments can
be explained by the phenomenon of neutrino oscillations. The physical states of
particle physics, termed the mass eigenstates, are the stationary states of the free-
particle Hamiltonian and satisfy

Ĥψ = i
∂ψ

∂t
= Eψ.

The time evolution of a mass eigenstate takes the form of (2.25),

ψ(x, t) = φ(x)e−iEt.

The neutrino mass eigenstates (the fundamental particles) are labelled ν1, ν2 and
ν3. There is no reason to believe that the mass eigenstates should correspond to
the weak eigenstates, νe, νµ and ντ, which are produced along with the respective
flavour of charged lepton in a weak interaction. This important distinction between
mass and weak eigenstates is illustrated in Figure 13.9. Here any one of the three
mass eigenstates can be produced in conjunction with the electron in the initial
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weak interaction. Since it is not possible to know which mass eigenstate was pro-
duced, the system has to be described by a coherent linear superposition of ν1, ν2

and ν3 states. In quantum mechanics, the basis of weak eigenstates can be related
to the basis of mass eigenstates by a unitary matrix U,




νe

νµ
ντ


 =




Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3
Uτ1 Uτ2 Uτ3







ν1

ν2

ν3


 . (13.4)

Hence the electron neutrino, which is the quantum state produced along with a
positron in a charged-current weak interaction, is the linear combination of the
mass eigenstates defined by the relative charged-current weak interaction couplings
of the ν1, ν2 and ν3 at the W+ → e+ν vertex

|ψ〉 = U∗e1|ν1〉 + U∗e2|ν2〉 + U∗e3|ν3〉. (13.5)

The neutrino state subsequently propagates as a coherent linear superposition of
the three mass eigenstates until it interacts and the wavefunction collapses into a
weak eigenstate, producing an observable charged lepton of a particular flavour. If
the masses of the ν1, ν2 and ν3 are not the same, phase differences arise between
the different components of the wavefunction and the phenomenon of neutrino
oscillations occurs. In this way, a neutrino produced along with one flavour of
charged lepton can interact to produce a charged lepton of a different flavour.

13.3.1 The leptonic charged-current vertex revisited

In Chapter 12, the charged-current interaction between a charged lepton and a neu-
trino was described in terms of the neutrino weak eigenstates. For example, the
weak charged-current vertex has the form
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−i gW√
2
eγ µ 1

2 (1 − γ5)νe,

where here νe and e denote the electron neutrino spinor and the electron adjoint
spinor. In terms of the neutrino mass eigenstates, the weak charged-current for a
lepton of flavour α = e, µ, τ and a neutrino of type k = 1, 2, 3 takes the form

−i gW√
2
(αγ

µ 1
2 (1 − γ5)Uαkνk.

Defining the neutrino state produced in a weak interaction using the matrix U of
(13.4) implies that, when the neutrino appears as the adjoint spinor, the factor U∗αk
appears in the weak interaction vertex. Consequently, the couplings between neu-
trinos or antineutrinos and the charged leptons are those shown in Figure 13.10.

13.4 Neutrino oscillations of two #avours

The full treatment of neutrino oscillations for three flavours is developed in
Section 13.5. However, the main features can be readily understood by consider-
ing just two flavours. For example, consider the weak eigenstates νe and νµ, which
here are taken to be coherent linear superpositions of the mass eigenstates ν1 and
ν2. The mass eigenstates propagate as plane waves of the form

|ν1(t)〉 = |ν1〉ei(p1·x−E1t) = e−ip1·x,

|ν2(t)〉 = |ν2〉ei(p2·x−E2t) = e−ip2·x,

where (E1,p1) and (E2,p2) are the respective energy and three-momenta of the ν1

and ν2, and p · x = Et − p · x is the (Lorentz-invariant) phase. In the two-flavour
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treatment of neutrino oscillations, the weak eigenstates are related to the mass
eigenstates by a 2 × 2 unitary matrix that can be expressed in terms of a single
mixing angle θ,

(
νe

νµ

)
=




cos θ sin θ

− sin θ cos θ






ν1

ν2


 . (13.6)

Now suppose at time t = 0, a neutrino is produced in the process u → de+νe,
as shown in Figure 13.11. The wavefunction at time t = 0 is the coherent linear
superposition of ν1 and ν2, corresponding to the νe state

|ψ(0)〉 = |νe〉 ≡ cos θ |ν1〉 + sin θ |ν2〉.
The state subsequently evolves according to the time dependence of the mass
eigenstates

|ψ(x, t)〉 = cos θ |ν1〉e−ip1·x + sin θ |ν2〉e−ip2·x,

where p1 and p2 are the four-momenta associated with the mass eigenstates ν1 and
ν2. If the neutrino then interacts at a time T and at a distance L along its direction
of flight, the neutrino state at this space-time point is

|ψ(L,T )〉 = cos θ |ν1〉e−iφ1 + sin θ |ν2〉e−iφ2 , (13.7)

where the phases of the two mass eigenstates are written as

φi = pi ·x = EiT − piL.

Equation (13.7) can be written in terms of the weak eigenstates using the inverse
of (13.6),

(
ν1

ν2

)
=




cos θ − sin θ

sin θ cos θ






νe

νµ


 ,

leading to

|ψ(L,T )〉 = cos θ
(
cos θ |νe〉 − sin θ |νµ〉

)
e−iφ1+sin θ

(
sin θ |νe〉 + cos θ |νµ〉

)
e−iφ2

= (e−iφ1 cos2 θ + e−iφ2 sin2 θ) |νe〉 − (e−iφ1 − e−iφ2 ) cos θ sin θ |νµ〉
= e−iφ1

[
(cos2 θ + ei∆φ12 sin2 θ) |νe〉 − (1 − ei∆φ12 ) cos θ sin θ |νµ〉

]
, (13.8)



340 Neutrinos and neutrino oscillations

with

∆φ12 = φ1 − φ2 = (E1 − E2)T − (p1 − p2)L. (13.9)

If the phase difference ∆φ12 = 0, the neutrino remains in a pure electron neutrino
state and will produce an electron in a subsequent weak charged-current interac-
tion. However, if ∆φ12 ! 0, there is now a muon neutrino component to the wave-
function. The relative sizes of the electron and muon neutrino components of the
wavefunction can be obtained by writing (13.8) as

|ψ(L,T )〉 = ce|νe〉 + cµ|νµ〉,
where ce = 〈νe|ψ〉 and cµ = 〈νµ|ψ〉. The probability that the neutrino, which was
produced as a νe, will interact to produce a muon is P(νe → νµ) = cµc∗µ. Compari-
son with (13.8) gives

P(νe → νµ) = cµc∗µ = (1 − ei∆φ12 )(1 − e−i∆φ12 ) cos2 θ sin2 θ

= 1
4 (2 − 2 cos∆φ12) sin2(2θ)

= sin2(2θ) sin2
(
∆φ12

2

)
. (13.10)

Hence, the νe → νµ oscillation probability depends on the mixing angle θ and the
phase difference between the mass eigenstates, ∆φ12. The derivation of the phase
difference, ∆φ12 = (E1 − E2)T − (p1 − p2)L, in terms of the masses of ν1 and ν2

requires care. One could assume, without any real justification, that the momenta
of the two mass eigenstates are equal, p1 = p2 = p, in which case

∆φ12 = (E1 − E2)T =



p

1 +

m2
1

p2




1
2
− p


1 +

m2
2

p2




1
2



T. (13.11)

Because m % E, the square roots in (13.11) are approximately,

(
1 +

m2

p2

) 1
2
≈ 1 +

m2

2p2 ,

and therefore

∆φ12 ≈
m2

1 − m2
2

2p
L , (13.12)

where it has been assumed that T ≈ L (in natural units), which follows since the
neutrino velocity β ≈ 1. At first sight, this treatment appears perfectly reasonable.
However, it overlooks that fact that the different mass eigenstates will propagate
with different velocities, and therefore will travel the distance L in different times.
This objection only can be overcome with a proper wave-packet treatment of the
propagation of the coherent state, which yields the same expression as given in
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(13.12). However, it is worth noting that the expression of (13.12), which was
obtained assuming p1 = p2, also can be obtained by assuming either E1 = E2

or β1 = β2. This can be seen by writing the phase difference of (13.9) as

∆φ12 = (E1 − E2)T −



p2
1 − p2

2

p1 + p2


 L

= (E1 − E2)T −



E2
1 − m2

1 − E2
2 + m2

2

p1 + p2


 L

= (E1 − E2)
[
T −

(
E1 + E2

p1 + p1

)
L
]
+




m2
1 − m2

2

p1 + p2


 L. (13.13)

The first term on the RHS of (13.13) clearly vanishes if it is assumed that E1 =

E2. This term also vanishes if a common velocity is assumed, β1 = β2 = β (see
Problem 13.1). Hence, although a wave-packet treatment of the neutrino oscillation
phenomenon is desirable, it is comforting to see that the same result for the phase
difference ∆φ is obtained from the assumption of either p1 = p2, E1 = E2 or
β1 = β2.

Combining the results of (13.10) and (13.12) and writing p = Eν, gives the
two-flavour neutrino oscillation probability

P(νe → νµ) = sin2(2θ) sin2



(m2
1 − m2

2)L

4Eν


 . (13.14)

It is convenient to express the oscillation probability in units more suited to the
length and energy scales encountered in practice. Writing L in km, ∆m2 in eV2 and
the neutrino energy in GeV, (13.14) can be written

P(νe → νµ) = sin2(2θ) sin2
(
1.27
∆m2[eV2]L[km]

Eν[GeV]

)
. (13.15)

The corresponding electron neutrino survival probability, P(νe → νe), either can
be obtained from c∗ece or from the conservation of probability, P(νe → νe) = 1 −
P(νe → νµ),

P(νe → νe) = 1 − sin2(2θ) sin2



(m2
1 − m2

2)L

4Eν


 . (13.16)

Figure 13.12 shows an illustrative example of the oscillation probability as function
of distance for Eν = 1 GeV, ∆m2 = 0.002 eV2 and sin2(2θ) = 0.8. The wavelength
of the oscillations is given by

λosc[km] =
πEν[GeV]

1.27∆m2[eV2]
.
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!Fig. 13.12 The two-&avour oscillation probability P(νe → νµ) and the survival probability P(νe → νe) plotted as
function of L for Eν = 1 GeV,∆m2 = 0.002 eV2 and sin2(2θ) = 0.8.

For small values of ∆m2, neutrino flavour oscillations only develop over very large
distances. This explains why neutrino flavour appeared to be conserved in earlier
neutrino experiments. Finally, it should be noted that the amplitude of the oscil-
lations is determined by sin2(2θ), with sin2(2θ) = 1 corresponding to maximal
mixing.

13.5 Neutrino oscillations of three #avours

The derivation of the neutrino oscillation probability for two flavours contains
nearly all of the essential physics, namely the relationship between the weak and
mass eigenstates and that the oscillations originate from the phase difference
between the mass eigenstates in the time-dependent wavefunction. The full three-
flavour derivation of the neutrino oscillation probabilities follows closely the steps
above, although the algebra is more involved.

In the three-flavour treatment of neutrino oscillations, the three weak eigen-
states are related to the mass eigenstates by the 3 × 3 unitary Pontecorvo–Maki–
Nakagawa–Sakata (PMNS) matrix,




νe

νµ
ντ


 =




Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3
Uτ1 Uτ2 Uτ3







ν1

ν2

ν3


 . (13.17)

The elements of the PMNS matrix are fundamental parameters of the lepton flavour
sector of the Standard Model. The mass eigenstates can be expressed in terms of
the weak eigenstates using the unitarity of the PMNS matrix that implies U−1 =

U† ≡ (U∗)T and hence
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


ν1

ν2

ν3



=




U∗e1 U∗µ1 U∗τ1
U∗e2 U∗µ2 U∗τ2
U∗e3 U∗µ3 U∗τ3







νe

νµ
ντ



.

The unitarity condition, UU† = I, also implies that



Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3
Uτ1 Uτ2 Uτ3







U∗e1 U∗µ1 U∗τ1
U∗e2 U∗µ2 U∗τ2
U∗e3 U∗µ3 U∗τ3



=




1 0 0
0 1 0
0 0 1



,

which gives nine relations between the elements of the PMNS matrix, for example

Ue1U∗e1 + Ue2U∗e2 + Ue3U∗e3 = 1, (13.18)

Ue1U∗µ1 + Ue2U∗µ2 + Ue3U∗µ3 = 0. (13.19)

Now consider the neutrino state that is produced in a charged-current weak inter-
action along with an electron, as indicated in Figure 13.13. The neutrino, which
enters the weak interaction vertex as the adjoint spinor, corresponds to a coherent
linear superposition of mass eigenstates with a wavefunction at time t = 0 of

|ψ(0)〉 = |νe〉 ≡ U∗e1|ν1〉 + U∗e2|ν2〉 + U∗e3|ν3〉.

The time evolution of the wavefunction is determined by the time evolution of the
mass eigenstates and can be written as

|ψ(x, t)〉 = U∗e1|ν1〉e−iφ1 + U∗e2|ν2〉e−iφ2 + U∗e3|ν3〉e−iφ3 ,

where as before φi = pi·xi = (Eit−pi·x) is the phase of the plane wave representing
each mass eigenstate. The subsequent charged-current weak interactions of the
neutrino can be described in terms of its weak eigenstates by writing

|ψ(x, t)〉 = U∗e1(Ue1|νe〉 + Uµ1|νµ〉 + Uτ1|ντ〉)e−iφ1

+ U∗e2(Ue2|νe〉 + Uµ2|νµ〉 + Uτ2|ντ〉)e−iφ2

+ U∗e3(Ue3|νe〉 + Uµ3|νµ〉 + Uτ3|ντ〉)e−iφ3 . (13.20)

Because the neutrino appears as the spinor in the weak interaction vertex producing
a charged lepton, the mass eigenstates are expressed in terms of the elements of the
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!Fig. 13.14 The processes and elements of the PMNS that contribute to νe → νµ oscillations.

PMNS matrix and not its complex conjugate. It should be noted that the weak
states (νe, νµ and ντ) in (13.20) really refer to the flavour of the lepton produced
in a subsequent charged-current weak interaction of the neutrino. Gathering up the
terms for each weak eigenstate, Equation (13.20) can be written

|ψ(x, t)〉 = (U∗e1Ue1e−iφ1 + U∗e2Ue2e−iφ2 + U∗e3Ue3e−iφ3 )|νe〉
(U∗e1Uµ1e−iφ1 + U∗e2Uµ2e−iφ2 + U∗e3Uµ3e−iφ3 )|νµ〉
(U∗e1Uτ1e−iφ1 + U∗e2Uτ2e−iφ2 + U∗e3Uτ3e−iφ3 )|ντ〉. (13.21)

This can be expressed in the form |ψ(x, t)〉 = ce|νe〉 + cµ|νµ〉 + cτ|ντ〉, from which
the oscillation probabilities can be obtained, for example

P(νe → νµ) = |〈νµ|ψ(x, t)〉|2 = cµc∗µ
= |U∗e1Uµ1e−iφ1 + U∗e2Uµ2e−iφ2 + U∗e3Uµ3e−iφ3 |2. (13.22)

This expression can be understood as the magnitude squared of the sum of the
diagrams shown in Figure 13.14, taking into account the relative phase differences
that develop over the propagation distance. The oscillation probabilities are defined
in terms of the flavours of the charged leptons produced in the weak interactions
and the relevant PMNS matrix elements. If the phases were all the same, then the
complex conjugate of the unitarity relation of (13.19), U∗e1Uµ1+U∗e2Uµ2+U∗e3Uµ3 =
0, would imply P(νe → νµ) = 0 and, as before, neutrino flavour oscillations only
occur if the neutrinos have mass, and the masses are not all the same.

Equation (13.22) can be simplified using the complex number identity,

|z1 + z2 + z3|2 ≡ |z1|2 + |z2|2 + |z3|2 + 2Re{z1z∗2 + z1z∗3 + z2z∗3}, (13.23)
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giving

P(νe → νµ) = |U∗e1Uµ1|2 + |U∗e2Uµ2|2 + |U∗e3Uµ3|2 + 2Re{U∗e1Uµ1Ue2U∗µ2e−i(φ1−φ2)}
+ 2Re{U∗e1Uµ1Ue3U∗µ3e−i(φ1−φ3)} + 2Re{U∗e2Uµ2Ue3U∗µ3e−i(φ2−φ3)}.

(13.24)

This can be simplified further by applying the identity (13.23) to the modulus
squared of the complex conjugate of the unitarity relation of (13.19), which gives

|U∗e1Uµ1|2 + |U∗e2Uµ2|2 + |U∗e3Uµ3|2+
2Re{U∗e1Uµ1Ue2U∗µ2 + U∗e1Uµ1Ue3U∗µ3 + U∗e2Uµ2Ue3U∗µ3} = 0,

and thus, (13.24) can be written as

P(νe → νµ) = 2Re{U∗e1Uµ1Ue2U∗µ2[ei(φ2−φ1) − 1]}
2Re{U∗e1Uµ1Ue3U∗µ3[ei(φ3−φ1) − 1]}
2Re{U∗e2Uµ2Ue3U∗µ3[ei(φ3−φ2) − 1]}. (13.25)

The electron neutrino survival probability P(νe → νe) can be obtained in a similar
manner starting from (13.24) and using the unitarity relation of (13.18). In this
case, each element of the PMNS matrix is paired with the corresponding complex
conjugate, e.g. Ue1U∗e1, and the combinations of PMNS matrix elements give real
numbers. Therefore, the electron neutrino survival probability is

P(νe → νe) = 1 + 2|Ue1|2|Ue2|2Re{[ei(φ2−φ1) − 1]}
+ 2|Ue1|2|Ue3|2Re{[ei(φ3−φ1) − 1]}
+ 2|Ue2|2|Ue3|2Re{[ei(φ3−φ2) − 1]}. (13.26)

Equation (13.26) can be simplified by noting

Re{ei(φ j−φi) − 1} = cos(φ j − φi) − 1 = −2 sin2
(
φ j − φi

2

)
= −2 sin2 ∆ ji,

where ∆ ji is defined as

∆ ji =
φ j − φi

2
=

(m2
j − m2

i )L

4Eν
.

Hence, (13.26) can be written

P(νe → νe) = 1 − 4|Ue1|2|Ue2|2 sin2 ∆21

− 4|Ue1|2|Ue3|2 sin2 ∆31 − 4|Ue2|2|Ue3|2 sin2 ∆32. (13.27)
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The electron neutrino survival probability depends on three differences of
squared masses, ∆m2

21 = m2
2 −m2

1, ∆m2
31 = m2

3 −m2
1 and ∆m2

32 = m2
3 −m2

2. Only two
of these differences are independent and ∆31 can be expressed as

∆31 = ∆32 + ∆21. (13.28)

Before using the above formulae to describe the experimental data, it is worth dis-
cussing the current knowledge of neutrino masses, the nature of the PMNS matrix
and the discrete symmetries related to the neutrino oscillation phenomena, includ-
ing the possibility of CP violation.

13.5.1 Neutrino masses and the neutrino mass hierarchy

Since the neutrino oscillation probabilities depend on differences of the squared
neutrino masses, the experimental measurements of neutrino oscillations do not
constrain the overall neutrino mass scale. To date, there are no direct measure-
ments of neutrino masses, only upper limits. From studies of the end point of the
electron energy distribution in the nuclear β-decay of tritium, it is known that the
mass of the lightest neutrino is " 2 eV. Tighter, albeit model-dependent, limits can
be obtained from cosmology. The density of low-energy relic neutrinos from the
Big Bang is large, O(100) cm−3 for each flavour. Consequently, neutrino masses
potentially impact the evolution of the Universe. From recent cosmological mea-
surements of the large-scale structure of the Universe, it can be deduced that

3∑

i=1

mνi " 1 eV.

Whilst the neutrino masses are not known, it is clear that they are much smaller
than those of either the charged leptons or the quarks. Even with neutrino masses
at the eV scale, they are smaller by a factor of at least 106 than the mass of the
electron and smaller by a factor of at least 109 than the mass of the tau-lepton. The
current hypothesis for this large difference, known as the seesaw mechanism, is
discussed in Chapter 17.

The results of recent neutrino oscillation experiments, which are described in
Sections 13.7 and 13.8, provide determinations of differences of the squares of the
neutrino masses

∆m2
21 = m2

2 − m2
1 ≈ 8 × 10−5 eV2,

|∆m2
32| = |m2

3 − m2
2| ≈ 2 × 10−3 eV2.

Regardless of the absolute mass scale of the lightest neutrino, there are two possible
hierarchies for the neutrino masses, shown in Figure 13.15. In the normal hierar-
chy m3 > m2 and in the inverted mass hierarchy m3 < m2. Current experiments
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are not sensitive enough to distinguish between these two possibilities. However,
regardless of the hierarchy, because ∆m2

21 % |∆m2
32| in most circumstances it is

reasonable to make the approximation

|∆m2
31| ≈ |∆m2

32|.

13.5.2 CP violation in neutrino oscillations

The V − A chiral structure of the weak charged-current implies that parity is max-
imally violated. It also implies that charge-conjugation symmetry is maximally
violated. This can be seen by considering the weak decay π− → µ−νµ. Because
neutrino masses are extremely small compared to the energies involved, the antineu-
trino is effectively always emitted in a RH helicity state, as shown in Figure 13.16a.
The effect of the parity operator, shown in Figure 13.16b, is to reverse the parti-
cle momenta leaving the particle spins (axial-vectors) unchanged. The result of the
parity transformation is a final state with a LH antineutrino, for which the weak
charged-current matrix element is zero.

The effect of the charge conjugation operator Ĉ is to replace particles by their
antiparticles and vice versa, is shown in Figure 13.16c. Charge conjugation results
in a RH neutrino in the final state. Since only LH particle states participate in the
weak interaction, the matrix element for this process is also zero. Thus the weak
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interaction maximally violates charge-conjugation symmetry. The combined effect
of C and P, shown in Figure 13.16d, results in a valid weak decay involving a
LH neutrino. For this reason it is plausible that the weak interaction respects the
combined CP symmetry.

It is known that CP violation is needed to account for the excess of matter over
antimatter in the Universe today (see Chapter 14). Since the QED and QCD inter-
actions conserve C and P separately, and therefore conserve CP, the only possible
place in the Standard Model where CP-violating effects can occur is in the weak
interaction.

Time reversal symmetry and CPT
Parity is a discrete symmetry operation corresponding to x → −x. Similarly, time
reversal is a discrete symmetry operation that has the effect t → −t. Following the
arguments of Chapter 11, it should be clear that the vector nature of the QED
and QCD interactions, implies that the matrix elements of QED and QCD are
invariant under time reversal. More generally, all local Lorentz-invariant Quantum
Field Theories can be shown to be invariant under the combined operation of C, P
and T. One consequence of this CPT symmetry is that particles and antiparticles
have identical masses, magnetic moments, etc. The best experimental limit on CPT
invariance comes from the equality of the masses of the flavour eigenstates of the
neutral kaons, K0(ds) and K0(sd), where

|m(K0) − m(K0)|
m(K0)

< 10−18.

CPT is believed to be an exact symmetry of the Universe. This implies that, if
physics is unchanged by the combined operation of C and P, then time reversal
symmetry also holds. The corollary is that CP violation implies that T reversal
symmetry is also violated and vice versa.

CP and T violation in neutrino oscillations
It is instructive to consider the effects of the discrete symmetry transformations,
CP, T and CPT, in the context of neutrino oscillations. If time reversal symmetry
applies, then the oscillation probability for P(νe → νµ) will be equal to P(νµ → νe).
The oscillation probability P(νe → νµ) is given by (13.25)

P(νe → νµ) = 2Re{U∗e1Uµ1Ue2U∗µ2[ei(φ2−φ1) − 1]} + · · · . (13.29)

The corresponding expression for the oscillation probability P(νµ → νe) is obtained
by swapping the e and µ labels

P(νµ → νe) = 2Re{U∗µ1Ue1Uµ2U∗e2[ei(φ2−φ1) − 1]} + · · · .
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The elements of the PMNS matrix that appear in the expression for P(νµ → νe) are
the complex conjugates of those in the expression for P(νe → νµ). Hence, unless
all elements Uei and Uµ j are real, time reversal symmetry does not necessarily hold
in neutrino oscillations, which in turn implies the possibility of CP violation.

The effect of the CP operation on νe → νµ flavour transformations is

νe → νµ
ĈP̂−→ νe → νµ,

where C transforms particles in to antiparticles and P ensures that the LH neutri-
nos transform to RH antineutrinos. The oscillation probability P(νe → νµ) can be
obtained from that for P(νe → νµ) by noting that whether the element of the PMNS
matrix appears as U or U∗ depends on whether the neutrino appears as the spinor
or adjoint spinor in the weak interaction vertex (see Section 13.3.1). Consequently

P(νe → νµ) = 2Re{Ue1U∗µ1U∗e2Uµ2[ei(φ2−φ1) − 1]} + · · · .
Again, unless all the elements Uei and Uµ j are real, P(νe → νµ) ! P(νe → νµ), and
CP can be violated in neutrino oscillations. Finally, consider the combined CPT
operation

νe → νµ
ĈP̂T̂−→ νµ → νe,

where the effect of time reversal swaps the e and µ labels and the effect CP is to
exchange U ↔ U∗ and therefore

P(νµ → νe) = 2Re{Uµ1U∗e1U∗µ2Ue2[ei(φ2−φ1) − 1]} + · · · = P(νe → νµ).

As expected, neutrino oscillations are invariant under the combined action of CPT.
The imaginary components of the PMNS matrix, provide a possible source of

CP violation in the Standard Model. The relative magnitude of the CP violation in
neutrino oscillations is given by P(νe → νµ) − P(νe → νµ). This can be shown to
be (see Problem 13.4)

P(νe → νµ) − P(νe → νµ) = 16Im{U∗e1Uµ1Ue2U∗µ2} sin∆12 sin∆13 sin∆23.

(13.30)

With the current experimental knowledge of the PMNS matrix elements, it is known
that the difference P(νe → νµ) − P(νe → νµ) is at most a few percent. CP violat-
ing effects in neutrino oscillations are small and are beyond the sensitivity of the
current generation of experiments.

The PMNS matrix
In the Standard Model, the unitarity PMNS matrix can be described in terms of
three real parameters and a single phase. The reasoning is subtle. A general 3 × 3
matrix can be described by nine complex numbers. The unitarity of the PMNS
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matrix, UU† = I, provides nine constraints, leaving nine independent parameters.
If the PMNS matrix were real, it would be correspond to the orthogonal rotation
matrix R and could be described by three rotation angles, θ12, θ13 and θ23

R =




1 0 0
0 c23 s23

0 −s23 c23


 ×




c13 0 s13

0 1 0
−s13 0 c13


 ×




c12 s12 0
−s12 c12 0

0 0 1


 , (13.31)

where si j = sin θi j and ci j = cos θi j. In this form θ12 is the angle of rotation about
the three-axis, θ13 is the angle of rotation about the new two-axis, and θ23 is a
rotation about the resulting one-axis.

Since the PMNS matrix is unitary, not real, there are six additional degrees of
freedom that appear as complex phases of the form exp (iδ). It turns out that not all
of these phases are physically relevant. This can be seen by writing the currents for
the possible leptonic weak interaction charged-current vertices as

−i gW√
2

( e, µ, τ ) γ µ 1
2 (1 − γ5)




Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3
Uτ1 Uτ2 Uτ3







ν1

ν2

ν3


 .

These four-vector currents are unchanged by the transformation,

(α → (αeiθα , νk → νkeiθk and Uαk → Uαkei(θα−θk), (13.32)

where (α is the charged lepton of type α = e, µ, τ. Hence, it might appear that the
six complex phases in the PMNS matrix can be absorbed into the definitions of
the phases of the neutrino and charged leptons without any physical consequences.
This is not the case because an overall phase factor in the PMNS matrix multiplying
all elements has no physical consequence. For this reason, it is possible to pull out
a common phase U → Ueiθ. In this way all phases can be defined relative to,
for example, the phase of the electron θe such that θk = θe + θ′k. In this case the
transformation of (13.32) becomes

(α → (αei(θe+θ′α), νk → νkei(θe+θ′k) and Uαk → Uαkei(θ′α−θ′k),

from which it can be seen that only five phases of the PMNS matrix can be absorbed
into the definition of the particles since θ′e = 0 and the common phase eiθe has no
physical consequences. Hence the PMNS matrix can be expressed in terms of three
mixing angles, θ12, θ23 and θ13 and a single complex phase δ.

The PMNS matrix is usually written as

UPMNS =




Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3
Uτ1 Uτ2 Uτ3


 =




1 0 0
0 c23 s23

0 −s23 c23







c13 0 s13e−iδ

0 1 0
−s13eiδ 0 c13







c12 s12 0
−s12 c12 0

0 0 1


 .
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This form is particularly convenient because θ13 is known to be relatively small and
thus the central matrix is almost diagonal. The individual elements of the PMNS
matrix, obtained from the matrix multiplication, are




Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3
Uτ1 Uτ2 Uτ3


 =




c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13


 .

(13.33)

It is worth noting that, in the two-flavour treatment of neutrino oscillations, the
general form of the unitary transformation between weak and mass eigenstates has
four parameters, a rotation angle and three complex phases. But, all three com-
plex phases can be absorbed into the definitions of the particles, and the resulting
matrix depends on a single angle, as assumed in (13.6). In this case the matrix is
entirely real and therefore cannot accommodate the CP violation. Hence CP viola-
tion originating from the PMNS matrix occurs only for three or more generations
of leptons.

13.6 Neutrino oscillation experiments

Early experimental results on neutrino oscillations were obtained from studies of
solar neutrinos and the neutrinos produced in cosmic-ray-induced cascades in the
atmosphere. More recent results have been obtained from long-baseline neutrino
oscillation beam experiments and from the study of electron antineutrinos from
nuclear fission reactors. There are two possible signatures for neutrino oscilla-
tions. Firstly neutrino oscillations can result in the appearance of “wrong” flavour
charged leptons, for example the observation of e− and/or τ− from an initially pure
beam of νµ. Alternatively, neutrino oscillations can be observed as the disappear-
ance of the “right” flavour charged lepton, where fewer than expected µ− are pro-
duced from an initially pure νµ beam.

13.6.1 Neutrino interaction thresholds

The observable experimental effects resulting from neutrino oscillations depend on
the type of neutrino interactions that are detectable. Neutrinos can be detected in
matter through their charged-current and neutral-current weak interactions, either
with atomic electrons or with nucleons, as shown in Figure 13.17. Unless kinemat-
ically forbidden, interactions with nucleons will dominate, since the neutrino inter-
action cross sections are proportional to the centre-of-mass energy squared, s ≈
2mEν, where m is the mass of the target particle (see for example, Section 12.3).
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!Fig. 13.17 The Feynman diagrams for CC and NC neutrino interactions in matter. Forνe there is also an s-channel process,
νee− → νee−.

Whether an appearance signal can be observed depends on whether the interac-
tion is kinematically allowed. Charged-current neutrino interactions are allowed if
the centre-of-mass energy is sufficient to produce a charged lepton and the final-
state hadronic system. The threshold is determined by the lowest W2 process,
ν(n → (−p. In the laboratory frame, where the neutron is at rest, the centre-of-
mass energy squared is given by

s = (pν + pn)2 = (Eν + mn)2 − E2
ν = 2Eνmn + m2

n.

The ν(n→ (−p interaction is only kinematically allowed if s > (m( + mp)2,

Eν >
(m2

p − m2
n) + m2

( + 2mpm(

2mn
.

From this expression, the laboratory frame neutrino threshold energies for charged-
current interactions with a nucleon are

Eνe > 0, Eνµ > 110 MeV and Eντ > 3.5 GeV.

For electron neutrinos with energies of order a few MeV, the nuclear binding energy
also has to be taken into account.

Charged-current interactions with an atomic electron ν(e− → νe(− are kinemat-
ically allowed if s > m2

( , where m( is the mass of the final-state charged lepton. In
the laboratory frame

s = (pν + pe)2 = (Eν + me)2 − E2
ν = 2Eνme + m2

e ,

and hence

Eν >
m2
( − m2

e

2me
,

leading to laboratory frame thresholds for charged-current νe− scattering of

Eνe > 0, Eνµ > 11 GeV and Eντ > 3090 GeV.

Consequently, for the neutrino energies encountered in most experiments, interac-
tions with atomic electrons are relevant only for electron neutrinos/antineutrinos.



353 13.7 Reactor experiments

13.7 Reactor experiments

Nuclear fission reactors produce a large flux of electron antineutrinos from the β-
decays of radioisotopes such as 235U, 238U, 239Pu and 241Pu, which are produced
in nuclear fission. The mean energy of the reactor antineutrinos is about 3 MeV
and the flux is known precisely from the power produced by the reactor (which is
closely monitored). The νe can be detected through the inverse β-decay process,

νe + p→ e+ + n.

If the νe oscillate to other neutrino flavours, they will not be detected since the
neutrino energy is well below threshold to produce a muon or tau-lepton the final
state. Hence it is only possible to observe the disappearance of reactor νe. The νe

survival probability is given by (13.27), which with the approximation ∆31 ≈ ∆32

becomes

P(νe → νe) ≈ 1 − 4|Ue1|2|Ue2|2 sin2 ∆21 − 4|Ue3|2
[
|Ue1|2 + |Ue2|2

]
sin2 ∆32.

Using the unitarity relation of (13.18), this can be written as

P(νe → νe) ≈ 1 − 4|Ue1|2|Ue2|2 sin2 ∆21 − 4|Ue3|2
[
1 − |Ue3|2

]
sin2 ∆32, (13.34)

which can be expressed in terms of the PMNS matrix elements of (13.33) as

P(νe → νe)=1 − 4(c12c13)2(s12c13)2 sin2 ∆21 − 4s2
13(1 − s2

13) sin2 ∆32

=1 − cos4(θ13) sin2(2θ12) sin2


∆m2

21L

4Eν


 − sin2(2θ13) sin2



∆m2

32L

4Eν


 .

(13.35)

Figure 13.18 shows the expected νe survival probability assuming θ12 = 30◦, θ23 =

45◦, θ13 = 10◦ and

∆m2
21 = 8 × 10−5 eV2 and ∆m2

32 = 2.5 × 10−3 eV2.

The oscillations occur on two different length scales. The short wavelength com-
ponent, which depends on ∆m2

32, oscillates with an amplitude of sin2(2θ13) about
the longer wavelength component, with wavelength determined by ∆m2

21. Hence,
measurements of the νe survival probability at distances of O(1) km are sensitive to
θ13 and measurements at distances of O(100) km are sensitive to ∆m2

21 and θ12.

13.7.1 The short-baseline reactor experiments

Close to a fission reactor, where the long wavelength contribution to neutrino oscil-
lations has yet to develop, the electron antineutrino survival probability of (13.35)
can be approximated by
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!Fig. 13.18 The P(νe → νe) survival probability as a function of distance for 3 MeV νe assuming θ13 = 10◦.

P(νe → νe) ≈ 1 − sin2(2θ13) sin2



∆m2

32L

4Eν


 . (13.36)

Until recently, such short-baseline neutrino oscillations had not been observed, and
θ13 only was known to be small. The first conclusive observations of a non-zero
value of θ13 were published in 2012.

The Daya Bay experiment in China detects neutrinos from six reactor cores each
producing 2.9 GW of power. The experiment consists of six detectors, two at a
mean flux-weighted distance of 470 m from the reactors, one at 576 m and three
at 1.65 km. Each detector consists of a large vessel containing 20 tons of liquid
scintillator loaded with gadolinium. The vessels are viewed by arrays of photo-
multiplier tubes. Electron antineutrinos are detected by the inverse β-decay reac-
tion νe + p→ e+ + n. The subsequent annihilation of the positron with an electron
gives two prompt photons. The low-energy neutron scatters in the liquid scintilla-
tor until it is captured by a gadolinium nucleus. The neutron capture, which occurs
on a timescale of 100 µs, produces photons from n + Gd → Gd∗ → Gd + γ. The
photons from both the annihilation process and neutron capture produce Compton
scattered electrons. These electrons then ionise the liquid scintillator producing
scintillation light. The signature for a νe interaction is therefore the coincidence of
a prompt pulse of scintillation light from the annihilation and a delayed pulse from
the neutron capture 10–100 µs later. The observed amount of prompt light provides
a measure of the neutrino energy.

The signal for neutrino oscillations at Daya Bay is a deficit of antineutrinos
that depends on the distance from the reactors and a distortion of the observed
e+ energy spectrum. By comparing the data recorded in the three far detectors
at 1.65 km from the reactors, with the data from the three near detectors, many
systematic uncertainties cancel. In the absence of neutrino oscillations, the rates
in the near and far detectors will be compatible and the same energy distribution
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!Fig. 13.19 Left: the observed antineutrino rates in the Daya Bay experiment scaled to the expectation for no oscilla-
tions, plotted as a function of the &ux-weighted distance to the reactors. Right: the observed background-
subtracted e+ energy spectrum in the far detectors compared to the corresponding scaled distributions from
the near detectors. Adapted from An et al. (2012).

will be observed in all detectors. The left-hand plot of Figure 13.19 shows the
observed background-subtracted rates in the near and far detectors relative to the
unoscillated expectation. The results show a clear deficit of events compared to
the unoscillated expectation and this deficit increases with the distance from the
reactors. Accounting for scaling of the fluxes with distance, the observed ratio of
far/near rates is

Nfar/Nnear = 0.940 ± 0.012.

The right-hand plot of Figure 13.19 shows the observed e+ energy spectrum in the
far detectors compared to that in the near detectors, scaled to the same integrated
neutrino flux. A clear difference is observed, with the maximum deficit in the far
detectors occurring in the 2–4 MeV range, consistent with neutrino oscillations
with the known value of ∆m2

32 = 2.3 × 10−3 eV2 (see Section 13.8). The observed
ratio of far-to-near event rates gives sin2(2θ13) = 0.092 ± 0.017.

Recent results from the RENO reactor experiment in South Korea, which is
similar in design to the Daya Bay experiment, also show a deficit of electron
antineutrinos, compatible with sin2(2θ13) = 0.113 ± 0.023, see Ahn et al. (2012).
Based on the initial Daya Bay and RENO results, it can be concluded that

sin2(2θ13) / 0.10 ± 0.01.

Further, albeit less significant, evidence for a non-zero value of θ13 has been pro-
vided by the Double-Chooz, MINOS and T2K experiments.
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13.7.2 The KamLAND experiment

The KamLAND experiment, located in the same mine as the Super-Kamiokande
experiment, detected νe from a number of reactors (with a total power 70 GW)
located at distances in the range 130–240 km from the detector. The KamLAND
detector consisted of a large volume of liquid scintillator surrounded by almost
1800 PMTs. Antineutrinos are again detected by the inverse β-decay reaction,
νe + p → e+ + n, giving a prompt signal from the positron annihilation followed
by a delayed signal from the 2.2 MeV photon produced from the neutron capture
reaction, n + p → D + γ. At the distances relevant to the KamLAND experiment,
the L/E dependence of the rapid oscillations due to the ∆m2

32 term in (13.35) is not
resolved because the neutrino sources (the reactors) are not at a single distance L
and also because the energy resolution is insufficient to resolve the rapid neutrino
energy dependence. Consequently, only the average value of

〈sin2 ∆32〉 = 1
2 ,

is relevant. Therefore the survival probability of (13.35) can be written

P(νe → νe) = 1 − cos4(θ13) sin2(2θ12) sin2 ∆21 − 1
2 sin2(2θ13)

= cos4(θ13) + sin4(θ13) − cos4(θ13) sin2(2θ12) sin2 ∆21.

Neglecting the sin4(θ13) term, which is small (< 0.001), gives

P(νe → νe) ≈ cos4(θ13)

1 − sin2(2θ12) sin2



∆m2

21L

4Eν




 . (13.37)

Hence, the effective survival probability for reactor neutrinos at large distances has
the same form as the two-flavour oscillation formula multiplied by cos4(θ13) ≈
0.95.

The KamLAND experiment observed 1609 reactor νe interactions compared
to the expectation of 2179±89 in the absence of neutrino oscillations. For each
event, a measurement of the neutrino energy was obtained from the amount of
light associated with the prompt scintillation signal from the positron annihilation.
By comparing the energy distribution of the observed data with the expected dis-
tribution, the survival probability can be plotted as a function of L0/Eν, where
L0 = 180 km is the flux-weighted average distance to the reactors contributing to
νe interactions in KamLAND, as shown in Figure 13.20. The range of L/E sam-
pled is determined by the energies of the neutrinos produced in nuclear reactors,
∼2−7 MeV. The data show a clear oscillation signal with a decrease and subsequent
rise in the mean oscillation probability. The measured distribution can be compared
to the expectation of (13.37) after accounting for the experimental energy resolu-
tion and range of distances sampled, which smears out the effect of the oscillations.
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!Fig. 13.20 KamLAND data showing the measured mean survival probability as a function of the measured neutrino
energy divided by the &ux-weighted mean distance to the reactors, L0. The histogram shows the expected
distribution for the oscillation parameters that best describe the data. Adapted from Abe et al. (2008).

The location of the minimum at L0/Eνe ∼ 50 km MeV−1 provides a tight constraint
on ∆m2

21 = m2
2 − m2

1,

∆m2
21 = (7.6 ± 0.2) × 10−5 eV2.

A measurement of the mixing angle θ12 can also be obtained, which when com-
bined with the more precise determination from the solar neutrino data of SNO
(see Section 13.2) gives

sin2(2θ12) = 0.87 ± 0.04.

13.8 Long-baseline neutrino experiments

In recent years, intense accelerator-based neutrino beams, produced in a similar
manner to that described in Section 12.2, have been used to study neutrino oscilla-
tions. One advantage of a neutrino beam experiment is that the energy spectrum can
be tailored to a specific measurement. Long-baseline neutrino oscillation experi-
ments typically use two detectors, one sufficiently close to the source of the beam
to allow a measurement of the unoscillated neutrino energy spectrum, and one far
from the source to measure the oscillated spectrum. The use of a near and far
detector means that many systematic uncertainties cancel, allowing precise mea-
surements to be made.
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13.8.1 The MINOS experiment

The MINOS long-baseline neutrino oscillation experiment uses an intense 0.3 MW
beam of muon neutrinos produced at Fermilab near Chicago. The neutrino energy
spectrum is concentrated in the range 1–5 GeV and peaks at 3 GeV. The 1000 ton
MINOS near detector is located 1 km from the source and the 5400 ton MINOS far
detector is located in a mine in Northern Minnesota, 735 km from the source. The
detectors are relatively simple, consisting of planes of iron, which provide the bulk
of the mass, interleaved with planes of 4 cm wide strips of plastic scintillator. When
a charged particle traverses the scintillator, light is produced. This scintillation light
is transmitted to small PMTs using optical fibres that are embedded in the scintil-
lator. The detector is magnetised to enable the measurement of the momentum of
muons produced in νµN → µ−X interactions from their curvature. The amount of
scintillation light gives a measure of the energy of the hadronic final state X pro-
duced in the interaction. Hence, on an event-by-event basis, the neutrino energy is
reconstructed, Eν = Eµ + EX . An example of a neutrino interaction in the MINOS
detector is shown in Figure 13.21.

MINOS studied the neutrino oscillations of an almost pure νµ beam. Because
θ13 is relatively small, νµ → ντ oscillations dominate. Since L is fixed, the oscilla-
tions are observed as a distortion of the energy spectrum. It is found that the first
maximum of the oscillation probability occurs at 1.3 GeV. Despite the fact that
the oscillations are dominated by νµ → ντ, most of the oscillated ντ are below
threshold for producing a tau-lepton and therefore MINOS makes a disappearance
measurement of |∆m2

32| and θ32. With the approximation ∆31 ≈ ∆32, the νµ → νµ
survival probability is given by (13.34) with the Uei replaced by Uµi,

P(νµ → νµ) ≈ 1 − 4|Uµ1|2Uµ2|2 sin2 ∆21 − 4|Uµ3|2(1 − |Uµ3|2) sin2 ∆32.

X

20 4 6
z/m

νm

m-

!Fig. 13.21 Aνµ charged-current weak interaction,νµN→ µ−X , in the MINOS detector. The sizes of the circles indicate
the amount of light recorded in the scintillator strips. The muon momentum is determined from the curvature
in the magnetic -eld and the energy of the hadronic system from the amount of light close to the interaction
vertex.
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!Fig. 13.22 Left: the MINOS far detector energy spectrum compared to the unoscillated prediction (dashed). Right: the
oscillation probability as measured from the ratio of the far detector data to the unoscillated prediction.
Adapted from Adamson et al. (2011).

For the MINOS experiment, with L = 735 km and Eν > 1 GeV, the contribution
to the oscillation probability from the long wavelength component associated with
∆21 can be neglected and therefore

P(νµ → νµ) ≈ 1 − 4|Uµ3|2(1 − |Uµ3|2) sin2 ∆32.

Using the parameterisation of the PMNS matrix given in (13.33), this can be written

P(νµ → νµ) = 1 − 4 sin2(θ23) cos2(θ13)
[
1 − sin2(θ23) cos2(θ13)

]
sin2 ∆32

= 1 −
[
sin2(2θ23) cos4(θ13) + sin2(2θ13) sin2(θ23)

]
sin2 ∆32

≈ 1 − A sin2



∆m2

32L

4Eν


 , (13.38)

where A = sin2(2θ23) cos4(θ13)+sin2(2θ13) sin2(θ23). Because θ13 is relatively small
the dominant term in the amplitude of the oscillations is from sin2(2θ23) cos4(θ13).

By comparing the energy spectrum of charged-current neutrino interactions in
the near and far detectors, MINOS directly measures the oscillation probability
as a function of Eν. Figure 13.22 shows the measured far detector energy spec-
trum compared to the expected spectrum for no oscillations, determined from the
unoscillated near detector data. A clear deficit of neutrinos is observed at low ener-
gies, where the oscillation probability is highest. The right plot of Figure 13.22
shows the ratio of the measured far detector energy spectrum to the expectation
without neutrino oscillations that is obtained from the near detector data. This pro-
vides a direct measurement of the survival probability P(νµ → νµ), albeit slightly
smeared out by the experimental energy resolution. The position of the minimum
in the measured oscillation curve at Eν ∼ 1.5 GeV determines
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|∆m2
32| = (2.3 ± 0.1) × 10−3 eV2.

The measured amplitude of the oscillations provides a measure of the parameter A,
which, by using the known value of θ13, provides a constraint on the mixing angle

sin2(2θ23) ! 0.90.

A slightly tighter constraint is obtained from the analysis of atmospheric neutrinos
in the Super-Kamiokande detector.

13.9 The global picture

For reasons of space, it has only been possible to describe a few notable exper-
iments that provide an illustration of the main experimental techniques used to
study neutrino oscillations; there are other experiments. For example, the CERN
to Gran Sasso neutrino experiment (CNGS) is searching for νµ → ντ appear-
ance. At the time of writing, two candidate ντ interactions have been observed
in the OPERA detector of the CNGS experiment. Furthermore, the T2K experi-
ment in Japan is studying νµ disappearance and νµ → νe appearance in an intense
beam.

When the results from all experiments are taken together, a detailed picture of
the properties of neutrinos emerges. The existence of neutrino oscillations implies
that the neutrinos have mass, even if the masses are very small. The differences of
the squares of the neutrino masses have been measured to better than 5% by the
KamLAND and MINOS experiments,

m2
2 − m2

1 = (7.6 ± 0.2) × 10−5 eV2,

|m2
3 − m2

2| = (2.3 ± 0.1) × 10−3 eV2.

Three of the four parameters of the PMNS matrix, describing the lepton flavour
sector of the Standard Model, have been determined. From the recent results of the
SNO, KamLAND, Super-Kamiokande, MINOS, Daya Bay, RENO and Double-
Chooz experiments it is known that

sin2(2θ12) = 0.87 ± 0.04,

sin2(2θ23) > 0.92,

sin2(2θ13) ≈ 0.10 ± 0.01.

From the above measurements, the magnitudes of the elements of PMNS matrix
are determined to be approximately



361 Summary




|Ue1| |Ue2| |Ue3|
|Uµ1| |Uµ2| |Uµ3|
|Uτ1| |Uτ2| |Uτ3|


 ∼




0.85 0.50 0.17
0.35 0.60 0.70
0.35 0.60 0.70


 . (13.39)

The final parameter of the PMNS matrix, the phase δ, is not yet known. The focus
of the next generation of experiments will be to measure this phase and thus estab-
lish whether CP is violated in leptonic weak interactions.

Summary

The νe, νµ and ντ are not fundamental particle states, but are mixtures of the mass
eigenstates, ν1, ν2 and ν3. The relationship between the weak and mass eigenstates
is determined by the unitary PMNS matrix




νe

νµ
ντ


 =




Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3
Uτ1 Uτ2 Uτ3







ν1

ν2

ν3


 .

The PMNS matrix can be expressed in terms of four fundamental parameters of
the Standard Model; three rotation angles, θ12, θ13 and θ23, and a complex phase δ
that admits the possibility of CP violation in the leptonic sector.

Neutrinos propagate as coherent linear superpositions of the mass eigenstates,
for example

|νe〉 = Ue1|ν1〉e−iφ1 + Ue2|ν2〉e−iφ2 + Ue3|ν3〉e−iφ3 .

If m(ν1) ! m(ν2) ! m(ν3), phase differences develop between the different compo-
nents, giving rise to the observable effect of neutrino oscillations, with oscillation
probabilities of the form

P(νe → νµ) = sin2(2θ) sin2
(
1.27
∆m2[eV2]L[km]

Eν[GeV]

)
.

The study of neutrino oscillations provides a determination of the differences in the
squares of the neutrino masses

m2
2 − m2

1 ≈ 7.6 × 10−5 eV2 and |m2
3 − m2

2| ≈ 2.3 × 10−3 eV2,

and measurements of the mixing angles of the PMNS matrix

θ12 ≈ 35◦, θ23 ≈ 45◦ and θ13 ≈ 10◦.
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Problems

13.1 By writing p1 = βE1 and p2 = βE2, and assuming β1 = β2 = β, show that Equation (13.13) reduces to
(13.12), i.e.

∆φ12 = (E1 − E2)
[

T −
(

E1 + E2

p1 + p1

)
L
]
+




m2
1 − m2

2

p1 + p2


 L ≈

m2
1 − m2

2

2p
L,

where p = p1 ≈ p2 and it is assumed that p1 1 m1 and p2 1 m2.

13.2 Show that when L is given in km and∆m2 is given in eV2, the two-&avour oscillation probability expressed in
natural units becomes

sin2(2θ) sin2
(
∆m2[GeV2]L[GeV−1]

4Eν[GeV]

)
→ sin2(2θ) sin2

(
1.27
∆m2[eV2]L[km]

4Eν[GeV]

)
.

13.3 From Equation (13.24) and the unitarity relation of (13.18), show that

P(νe → νe) = 1 + 2|Ue1|2|Ue2|2 Re{[e−i(φ1−φ2) − 1]}
+ 2|Ue1|2|Ue3|2 Re{[e−i(φ1−φ3) − 1]}
+ 2|Ue2|2|Ue3|2 Re{[e−i(φ2−φ3) − 1]}.

13.4 Derive Equation (13.30) in the following three steps.

(a) By writing the oscillation probability P(νe → νµ) as

P(νe → νµ) = 2
∑

i<j

Re
{

U∗ei Uµi Uej U∗µj

[
ei(φj−φi) − 1

]}
,

and writing∆ij = (φi − φj)/2, show that

P(νe → νµ) = −4
∑

i<j

Re{U∗ei Uµi Uej U∗µj} sin2 ∆ij

+ 2
∑

i<j

Im{U∗ei Uµi Uej U∗µj} sin 2∆ij.

(b) De-ning−J ≡ Im{U∗e1Uµ1Ue3U∗µ3}, use the unitarity of the PMNS matrix to show that

Im{U∗e1Uµ1Ue3U∗µ3} = −Im{U∗e2Uµ2Ue3U∗µ3} = −Im{U∗e1Uµ1Ue2U∗µ2} = −J.

(c) Hence, using the identity

sin A + sin B − sin(A + B) = 4 sin
(

A
2

)
sin

(
B
2

)
sin

(
A + B

2

)
,

show that

P(νe → νµ) = −4
∑

i<j

Re{U∗ei Uµi Uej U∗µj} sin2 ∆ij + 8J sin∆12 sin∆13 sin∆23.

(d) Hence show that

P(νe → νµ) − P(νe → νµ) = 16Im{U∗e1Uµ1Ue2U∗µ2} sin∆12 sin∆13 sin∆23.



363 Problems

(e) Finally, using the current knowledge of the PMNS matrix determine the maximum possible value of P(νe →
νµ) − P(νe → νµ).

13.5 The general unitary transformation between mass and weak eigenstates for two &avours can be written as
(
νe
νµ

)
=




cos θ exp (iδ1) sin θ exp
(

i
[
δ1+δ2

2 − δ
])

− sin θ exp
(

i
[
δ1+δ2

2 + δ
])

cos θ exp (iδ2)




(
ν1

ν2

)
.

(a) Show that the matrix in the above expression is indeed unitary.
(b) Show that the three complex phases δ1, δ2 and δ can be eliminated from the above expression by the

transformation

(α → (αei(θe+θ′α), νk → νk ei(θe+θ′k ) and Uαk → Uαk ei(θ′α−θ′k ),

without changing the physical form of the two-&avour weak charged current

−i
gW√

2
( e, µ) γ µ 1

2 (1 − γ5)
(

Ue1 Ue2

Uµ1 Uµ2

) (
ν1

ν2

)
.

13.6 The derivations of (13.37) and (13.38) used the trigonometric relations

1 − 1
2 sin2(2θ13) = cos4(θ13) + sin4(θ13),

and

4 sin2 θ23 cos2 θ13(1 − sin2 θ23 cos2 θ13) = (sin2 2θ23 cos4 θ13 + sin2 2θ13 sin2 θ23).

Convince yourself these relations hold.

13.7 Use the data of Figure 13.20 to obtain estimates of sin2(2θ12) and |∆m2
21|.

13.8 Use the data of Figure 13.22 to obtain estimates of sin2(2θ23) and |∆m2
32|.

13.9 The T2K experiment uses an o+-axis νµ beam produced from π+ → µ+νµ decays. Consider the case where
the pion has velocityβ along the z-direction in the laboratory frame and a neutrino with energy E∗ is produced
at an angle θ∗ with respect to the z′-axis in theπ+ rest frame.

(a) Show that the neutrino energy in the pion rest frame is p∗ = (m2
π − m2

µ)/2mπ .
(b) Using a Lorentz transformation, show that the energy E and angle of production θ of the neutrino in the

laboratory frame are

E = γE∗(1 + β cos θ∗) and E cos θ = γE∗(cos θ∗ + β),

where γ = Eπ/mπ.
(c) Using the expressions for E∗ and θ∗ in terms of E and θ, show that

γ2(1 − β cos θ)(1 + β cos θ∗) = 1.

(d) Show that maximum value of θ in the laboratory frame is θmax = 1/γ.
(e) In the limit θ % 1, show that

E ≈ 0.43Eπ
1

1 + βγ2θ2 ,

and therefore on-axis (θ = 0) the neutrino energy spectrum follows that of the pions.
(f) Assuming that the pions have a &at energy spectrum in the range 1–5 GeV, sketch the form of the resulting

neutrino energy spectrum at the T2K far detector (Super-Kamiokande), which is o+-axis atθ = 2.5◦. Given
that the Super-Kamiokande detector is 295 km from the beam, explain why this angle was chosen.


