
11 The weak interaction

This chapter provides an introduction to the weak interaction, which is medi-
ated by the massive W+ and W− bosons. The main topics covered are: the
origin of parity violation; the V–A form of the interaction vertex; and the con-
nection to Fermi theory, which is the effective low-energy description of the
weak charged current. The calculation of the decay rate of the charged pion is
used to illustrate the rôle of helicity in weak decays. The purpose of this chap-
ter is to describe the overall structure of the weak interaction; the applications
are described in the following chapters on charged-current interactions, neu-
trino oscillations and CP violation in the weak decays of neutral mesons.

11.1 The weak charged-current interaction

At the fundamental level, QED and QCD share a number of common features.
Both interactions are mediated by massless neutral spin-1 bosons and the spinor
part of the QED and QCD interaction vertices have the same u(p′)γ µu(p) form.
The charged-current weak interaction differs in almost all respects. It is mediated
by massive charged W± bosons and consequently couples together fermions differ-
ing by one unit of electric charge. It is also the only place in the Standard Model
where parity is not conserved. The parity violating nature of the interaction can
be directly related to the form of the interaction vertex, which differs from that of
QED and QCD.

11.2 Parity

The parity operation is equivalent to spatial inversion through the origin, x → −x.
In general, in quantum mechanics the parity transformation can be associated with
the operator P̂, defined by

ψ(x, t)→ ψ′(x, t) = P̂ψ(x, t) = ψ(−x, t).
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The original wavefunction is clearly recovered if the parity operator is applied
twice,

P̂P̂ψ(x, t) = P̂ψ(−x, t) = ψ(x, t),

and hence the parity operator is its own inverse,

P̂P̂ = I. (11.1)

If physics is invariant under parity transformations, then the parity operation must
be unitary

P̂†P̂ = I. (11.2)

From (11.1) and (11.2), it can be inferred that

P̂† = P̂,

and therefore P̂ is a Hermitian operator that corresponds to an observable prop-
erty of a quantum-mechanical system. Furthermore, if the interaction Hamiltonian
commutes with P̂, parity is an observable conserved quantity in the interaction. In
this case, if ψ(x, t) is an eigenstate of the Hamiltonian, it is also an eigenstate of the
parity operator with an eigenvalue P,

P̂ψ(x, t) = Pψ(x, t).

Acting on this eigenvalue equation with P̂ gives

P̂P̂ψ(x, t) = PP̂ψ(x, t) = P2ψ(x, t),

which implies that P2 = 1 since P̂P̂ = I. Because P̂ is Hermitian, its eigenvalues
are real and are therefore equal to ±1.

11.2.1 Intrinsic parity

Fundamental particles, despite being point-like, possess an intrinsic parity. In
Section 4.9, it was shown that the parity operator for Dirac spinors is γ0, which
in the Dirac–Pauli matrix representation is

P̂ = γ0 =




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1



.

It was also shown that spin-half particles, which necessarily satisfy the Dirac
equation, have the opposite parity to the corresponding antiparticles. By conven-
tion, the particle states are defined to have positive intrinsic parity; for example
P(e−)= P(νe)= P(q)=+1, and therefore antiparticles have negative intrinsic parity,
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for example P(e+)= P(νe)= P(q)=−1. From the Quantum Field Theory describ-
ing the force carrying particles, it can be shown that the vector bosons responsible
for the electromagnetic, strong and weak forces all have negative intrinsic parity,

P(γ) = P(g) = P(W±) = P(Z) = −1.

11.2.2 Parity conservation in QED

Parity conservation in QED arises naturally from the form of the interaction. For
example, the matrix element for the QED process of e−q→ e−q scattering, shown
in Figure 11.1, can be written as the four-vector scalar product

M = Qqe2

q2 je · jq,

where the electron and quark currents are defined by

j µe = u(p3)γ µu(p1) and jνq = u(p4)γνu(p2). (11.3)

The equivalent matrix element for the parity transformed process, where the
three-momenta of all the particles are reversed, can be obtained by applying the
parity operator P̂ = γ0 to the spinors of (11.3). Since Dirac spinors transform as

u
P̂−→ P̂u = γ0u, (11.4)

the adjoint spinors transform as

u = u†γ0 P̂−→ (P̂u)†γ0 = u†γ0†γ0 = u†γ0γ0 = uγ0,

and hence

u
P̂−→ uγ0. (11.5)

p2

p1 p3

p4

q q

e-e-

ν

g

m

!Fig. 11.1 The lowest-order Feynman diagram for the QED t-channel electron–quark scattering process.
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From (11.4) and (11.5), it can be seen that the four-vector currents of (11.3) become

j µe = u(p3)γ µu(p1)
P̂−→ u(p3)γ0γ µγ0u(p1).

Because γ0γ0 = I, the time-like component of the current is unchanged by the
parity operation,

j 0
e

P̂−→ uγ0γ0γ0u = uγ0u = j 0
e .

The space-like components of j µ, with indices k = 1, 2, 3, transform as

j k
e

P̂−→ uγ0γ kγ0u = −uγ kγ0γ0u = −uγ ku = − j k
e ,

since γ0γ k = −γ kγ0. Therefore, as expected, the parity operation changes the signs
of the space-like components of the four-vector current but the time-like compo-
nent remains unchanged. Consequently, the four-vector scalar product in the QED
matrix element, je · jq = j 0

e j 0
q − j k

e j k
q , transforms to

je.· jq = j 0
e j 0

q − j k
e j k

q
P̂−→ j 0

e j 0
q − (− j k

e )(− j k
q ) = je · jq, (11.6)

and it can be concluded that the QED matrix element is invariant under the parity
operation. Hence the terms in the Hamiltonian related to the QED interaction are
invariant under parity transformations. This invariance implies that

parity is conserved in QED.

Apart from the colour factors, the QCD interaction has the same form as QED and
consequently

parity is conserved in QCD.

The conservation of parity in strong and electromagnetic interactions needs to
be taken into account when considering particle decays. For example, consider the
two decays

ρ0(1−)→ π+(0−) + π−(0−) and η(0−)→ π+(0−) + π−(0−),

where the JP values are shown in brackets. The total parity of the two-body final
state is the product of the intrinsic parities of the particles and the parity of the
orbital wavefunction, which is given by (−1)$, where $ is the orbital angular
momentum in the final state. In order to conserve angular momentum, the π+ and
π− in the ρ0 → π+π− decay are produced with relative orbital angular moment
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$ = 1, whereas the π+π− in the decay of the η must have $ = 0. Therefore, conser-
vation of parity in the two decays can be expressed as follows:

P(ρ0) = P(π+) · P(π−) · (−1)$=1 ⇒ − 1 = (−1)(−1)(−1) !

P(η) = P(π+) · P(π−) · (−1)$=0 ⇒ − 1 = (−1)(−1)(+1) ×
Hence the strong interaction decay process ρ0 → π+π− is allowed, but the strong
decay η → π+π− does not occur as it would violate the conservation of parity
that is implicit in the strong interaction Hamiltonian. It can also be shown that the
QED and QCD interactions are invariant under the charge conjugation operation Ĉ,
defined in Section 4.7.5, which changes particles into antiparticles and vice versa,
and therefore there is a corresponding conserved quantity C = ±1.

Scalars, pseudoscalars, vectors and axial vectors
Physical quantities can be classified according to their rank (dimensionality) and
parity inversion properties. For example, single-valued scalar quantities, such as
mass and temperature, are invariant under parity transformations. Vector quantities,
such as position and momentum, change sign under parity transformations, x →
−x and p → −p. There is also a second class of vector quantity, known as an
axial vector, which is sometimes referred to as a pseudovector. Axial vectors are
formed from the cross product of two vector quantities, and therefore do not change
sign under parity transformations. One example is angular momentum L = x × p.
Because both x and p change sign under parity, the axial vector L is unchanged.
Other examples of axial vectors include the magnetic moment and the magnetic
flux density B, which is related to the current density j by the Biot–Savart law,
dB ∝ j× d3x. Scalar quantities can be formed out of scalar products of two vectors
or two axial vectors, the simplest example being the magnitude squared of the
momentum vector, p2 = p ·p. There is a second class of scalar quantity known as a
pseudoscalar. Pseudoscalars are single-valued quantities formed from the product
of a vector and an axial vector, and consequently change sign under the parity
operation. One important example of a pseudoscalar is helicity, h ∝ S · p. The
different scalar and vector quantities are listed in Table 11.1.

Table 11.1 The parity properties of scalars, pseudoscalars, vectors and
axial vectors.

Rank Parity Example

Scalar 0 + Temperature, T
Pseudoscalar 0 − Helicity, h
Vector 1 − Momentum, p
Axial vector 1 + Angular momentum, L
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P

!Fig. 11.2 The β-decay of polarised 60Co. On the left, an electron is emitted in a particular direction. On the right the
parity inverted equivalent is shown.

11.2.3 Parity violation in nuclearβ-decay

The parity inversion properties of the different types of physical quantity can be
exploited to investigate whether parity is conserved in the weak interaction. In
1957, Wu and collaborators studied nuclear β-decay of polarised cobalt-60,

60Co→ 60Ni∗ + e− + νe.

The 60Co nuclei, which possess a permanent nuclear magnetic moment µ, were
aligned in a strong magnetic field B and the β-decay electrons were detected at
different polar angles with respect to this axis, as shown in Figure 11.2. Because
both B and µ are axial vectors, they do not change sign under the parity trans-
formation. Hence when viewed in the parity inverted “mirror”, the only quantity
that changes sign is the vector momentum of the emitted electron. Hence, if parity
were conserved in the weak interaction, the rate at which electrons were emitted at
a certain direction relative to the B-field would be identical to the rate in the oppo-
site direction. Experimentally, it was observed that more electrons were emitted in
the hemisphere opposite to the direction of the applied magnetic field than in the
hemisphere in the direction of the applied field, thus providing a clear demonstra-
tion that

parity is NOT conserved in the weak interaction.

From this observation it can be concluded that, unlike QED and QCD, the weak
interaction does not have four-vector currents of the form j µ = u(p′)γ µu(p).

11.3 V – A structure of the weak interaction

QED and QCD are vector interactions with a current of the form j µ = u(p′)γ µu(p).
This particular combination of spinors and γ-matrices transforms as a four vec-
tor (as shown in Appendix B.3). From the observation of parity violation, the
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Table 11.2 Lorentz-invariant bilinear covariant currents.

Type Form Components Boson spin

Scalar ψφ 1 0
Pseudoscalar ψγ5φ 1 0
Vector ψγ µφ 4 1
Axial vector ψγ µγ5φ 4 1
Tensor ψ(γ µγν − γνγ µ)φ 6 2

weak interaction vertex is required have a different form. However, the require-
ment of Lorentz invariance of the interaction matrix element severely restricts the
possible forms of the interaction. The general bilinear combination of two spinors
can be written u(p′)Γu(p), where Γ is a 4 × 4 matrix formed from products of the
Dirac γ-matrices. It turns out that there are only five combinations of individual
γ-matrices that have the correct Lorentz transformation properties, such that they
can be combined into a Lorentz-invariant matrix element. These combinations are
called bilinear covariants and give rise to the possible scalar, pseudoscalar, vector,
axial vector and tensor currents listed in Table 11.2.

In QED, the factor gµν in the matrix element arises from the sum over the
(2J + 1) + 1 polarisation states of the JP = 1− virtual photon, which includes the
time-like component of the polarisation four-vector. These four polarisation states
correspond to the four degrees of freedom of the vector current j µ = ψγ µφ, labelled
by the index µ = 0, 1, 2, 3. The single component scalar and pseudoscalar interac-
tions therefore can be associated with the exchange of a spin-0 boson (J = 0),
which possesses just a single degree of freedom. Similarly, the six non-zero com-
ponents of a tensor interaction can be associated with the exchange of a spin-2
boson (J = 2), with (2J + 1) + 1 = 6 polarisation states for the spin-2 virtual
particle.

The most general Lorentz-invariant form for the interaction between a fermion
and a boson is a linear combination of the bilinear covariants. If this is restricted to
the exchange of a spin-1 (vector) boson, the most general form for the interaction
is a linear combination of vector and axial vector currents,

j µ ∝ u(p′)(gVγ
µ + gAγ

µγ5)u(p) = gV j µV + gA j µA ,

where gV and gA are vector and axial vector coupling constants and the current has
been decomposed into vector and axial vector components

j µV = u(p′)γ µu(p) and j µA = u(p′)γ µγ5u(p).
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The parity transformation properties of j µV were derived in Section 11.2.2. The
parity transformation properties of the pure axial vector current can be obtained
the same way

j µA = uγ µγ5u
P̂−→ uγ0γ µγ5γ0u = −uγ0γ µγ0γ5u,

which follows from γ5γ0 = −γ0γ5. Hence the time-like component of the axial
vector current transforms as

j 0
A =

P̂−→ −uγ0γ0γ0γ5u = −uγ0γ5u = − j 0
A,

and the space-like components transform as

j k
A =

P̂−→ −uγ0γkγ0γ5u = +uγkγ5u = + j k
A.

Therefore, the scalar product of two axial vector currents is invariant under parity
transformations

j1 · j2 = j 0
1 j 0

2 − j k
1 j k

2
P̂−→ (− j 0

1 )(− j 0
2 ) − j k

1 j k
2 = j1 · j2. (11.7)

This should come as no surprise, the matrix element is a scalar quantity; if it is
formed from the four-vector scalar product of either two vectors or two axial vec-
tors it has to be invariant under the parity transformation.

To summarise, the parity transformation properties of the components of the
vector and the axial vector currents are

j 0
V

P̂−→ + j 0
V , j k

V
P̂−→ − j k

V , and j 0
A

P̂−→ − j 0
A, j k

A
P̂−→ + j k

A.

Whilst the scalar products of two vector currents or two axial vector currents are
unchanged in a parity transformation, the scalar product jV·jA transforms to − jV·jA.
Hence the combination of vector and axial vector currents provides a mechanism
to explain the observed parity violation in the weak interaction.

Consider the (inverse-β-decay) charged-current weak interaction process νed→
e−u, shown in Figure 11.3, with assumed currents of the form

j µνe = u(p3)(gVγ
µ + gAγ

µγ5)u(p1) = gV jVνe + gA jA
νe,

jνdu = u(p4)(gVγ
ν + gAγ

νγ5)u(p2) = gV jVdu + gA jA
du.

The matrix element is proportional to the four-vector scalar products of two
currents

M f i ∝ jνe · jdu = g
2
V jVνe · jVdu + g

2
A jA
νe · jA

du + gVgA( jVνe · jA
du + jA

νe · jVdu).

The terms jVνe · jVνe and jA
νe · jA

νe do not change sign under a parity transformation, but
the mixed V and A combinations do, and therefore

jνe · jdu
P̂−→ g2

V jVνe · jVdu + g
2
A jA
νe · jA

du − gVgA( jVνe · jA
du + j,Aνe · jVdu).
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W

d u

e−νe

p3p1

p4p2

m

ν!Fig. 11.3 The lowest-order Feynman diagram for the charged-current weak interaction νed→ e−u.

Thus the relative strength of the parity violating part of the matrix element com-
pared to the parity conserving part is given by

gVgA

g2
V + g

2
A

.

Hence, if either gV or gA is zero, parity is conserved in the interaction. Furthermore,
maximal parity violation occurs when |gV | = |gA|, corresponding to a pure V − A or
V + A interaction. From experiment, it is known that the weak charged current due
to the exchange of W± bosons is a vector minus axial vector (V − A) interaction of
the form γ µ − γ µγ5, with a vertex factor of

−igW√
2

1
2γ
µ(1 − γ5). (11.8)

Here gW is the weak coupling constant (which is often written simply as g). The
origin of the additional numerical factors will be explained in Chapter 15. The
corresponding four-vector current is given by

j µ =
gW√

2
u(p′) 1

2γ
µ(1 − γ5)u(p).

11.4 Chiral structure of the weak interaction

In Chapter 6, the left- and right-handed chiral projection operators,

PR =
1
2 (1 + γ5) and PL =

1
2 (1 − γ5),

were introduced. Any spinor can be decomposed into left- and right-handed chiral
components,

u = 1
2 (1 + γ5)u + 1

2 (1 − γ5)u = PRu + PLu = aRuR + aLuL,

with coefficients aR and aL. In Section 6.4.1, it was shown that only two combi-
nations of chiral spinors (RR and LL) gave non-zero values for the QED vector
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current, u(p′)γ µu(p). For the weak interaction, the V − A vertex factor of (11.8)
already includes the left-handed chiral projection operator,

1
2 (1 − γ5).

In this case, the current where both the spinors are right-handed chiral states is
also zero

j µRR =
gW√

2
uR(p′)γ µ 1

2 (1 − γ5)uR(p)

=
gW√

2
uR(p′)γ µPLuR(p) = 0,

and the only non-zero current for particle spinors involves only left-handed chi-
ral states. Hence only left-handed chiral particle states participate in the charged-
current weak interaction. For antiparticle spinors PL projects out right-handed
chiral states,

1
2 (1 − γ5)v = vR,

and therefore only right-handed chiral antiparticle states participate in the charged-
current weak interaction. In the limit E ) m, where the chiral and helicity states
are the same, the V −A term in the weak interaction vertex projects out left-handed
helicity particle states and right-handed helicity antiparticles states. Hence, in this
ultra-relativistic limit, the only allowed helicity combinations for the weak interac-
tion vertices involving electrons/positrons and electron neutrinos/antineutrinos are
those shown in Figure 11.4.

The maximally different coupling of the weak charged-current interaction to left-
handed and right-handed chiral states is the origin of parity violation. For example,
the left-hand plot of Figure 11.5 shows the helicity configuration of the allowed
weak interaction of a high-energy left-handed e− and a right-handed νe. In the
parity mirror, the vector quantities are reversed, p→ −p, but the axial vector spins
of the particles remain unchanged, giving a RH particle and a LH antiparticle.
Hence the parity operation transforms an allowed weak interaction into one that is
not allowed, maximally violating the conservation of parity.

e+e-

e-

e+
νe

νe

νe

W W

W W

νe

!Fig. 11.4 The allowed helicity combinations in weak interaction vertices involving the e+, e−, νe and νe, in the limit
where E ) m (where the helicity states are e+ectively the same as the chiral states).
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RH antiparticle LH antiparticleLH particle RH particle

e- e-

pe -pepν -pν
νe νe

P!Fig. 11.5 The allowed helicity combination for a e−νe weak interaction, and (right) its parity transformed equivalent.

11.5 The W-boson propagator

The Feynman rule for the propagator of QED, corresponding to the exchange of
the massless spin-1 photon, is

−igµν
q2 .

The weak interaction not only differs from QED and QCD in the form of the inter-
action vertex, but it is mediated by the massive W bosons, with mW ∼ 80 GeV.
Consequently, the q2-dependence of the W-boson propagator is given by (5.7),

1
q2 − m2

W

.

The gµν term in the Feynman rule for QED propagator is associated with the sum
over the polarisation states of the virtual photon,

∑

λ

ελ∗µ ε
λ
ν = −gµν.

Massive spin-1 particles differ from massless spin-1 particles in having the addi-
tional degree of freedom of a longitudinal polarisation state. In Appendix D, it is
shown that the corresponding sum over the polarisation states of the exchanged
virtual massive spin-1 boson gives

∑

λ

ελ∗µ ε
λ
ν = −gµν +

qµqν
m2

W

.

Therefore, the Feynman rule associated with the exchange of a virtual W boson is

−i

q2 − m2
W


gµν −

qµqν
m2

W


 . (11.9)

In the limit where q2 + m2
W, the qµqν term is small and the propagator can be

taken to be

−igµν
q2 − m2

W

. (11.10)
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More generally, for the lowest-order calculations in the following chapters the qµqν
term in (11.9) does not contribute to the matrix element squared and it is sufficient
to take the propagator term to be that given in (11.10).

11.5.1 Fermi theory

For most low-energy weak interactions, such as the majority of particle decays,
|q2| + m2

W and the W-boson propagator of (11.10) can be approximated by

i
gµν

m2
W

, (11.11)

and the effective interaction no longer has any q2 dependence. Physically this cor-
responds to replacing the propagator with an interaction which occurs at a single
point in space-time, as indicated in Figure 11.6. Hence, in the low-energy limit,
the weak charged-current can be expressed in terms of this four-fermion contact
interaction.

The original description of the weak interaction, due to Fermi (1934), was for-
mulated before the discovery of the parity violation and the matrix element for
β-decay was expressed in terms of a contact interaction

M f i = GF gµν[ψ3γ
µψ1][ψ4γ

νψ2], (11.12)

where the strength of the weak interaction is given by the Fermi constant GF. After
the discovery of parity violation by Wu et al. (1957), this expression was modi-
fied to

M f i =
1√
2

GF gµν[ψ3γ
µ(1 − γ5)ψ1][ψ4γ

ν(1 − γ5)ψ2], (11.13)

W

d u

e- e-

ν

ν

d u

νe νe

p3p1

p2 p4

m

m

!Fig. 11.6 The weak interaction Feynman diagram and the q2 + m2
W limit of an e+ective contact interaction.
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where the factor of
√

2 was introduced so that the numerical value of GF did not
need to be changed. The expression of (11.13) can be compared to the full expres-
sion obtained using the Feynman rules for the weak interaction,

M f i = −
[
gW√

2
ψ3

1
2γ
µ(1 − γ5)ψ1

]
·


gµν − qµqν/m2

W

q2 − m2
W


 ·

[
gW√

2
ψ4

1
2γ

ν(1 − γ5)ψ2

]
,

which in the limit of q2 + m2
W reduces to

M f i =
g2

W

8m2
W

gµν[ψ3γ
µ(1 − γ5)ψ1][ψ4γ

ν(1 − γ5)ψ2]. (11.14)

Hence, by comparing (11.13) and (11.14), it can be seen that the Feynman rules
in the low-q2 limit, give the same expression for the matrix element as obtained
from Fermi theory and therefore the Fermi constant is related to the weak coupling
strength by

GF√
2
=
g2

W

8m2
W

. (11.15)

Strength of the weak interaction
The strength of the weak interaction is most precisely determined from low-energy
measurements, and in particular from the muon lifetime. For these low-energy mea-
surements, where for example mµ + mW, Fermi theory can be used. The calcula-
tion of the decay rate for µ− → e−νµνe includes a fairly involved integration over
the three-body phase space of the final state and the results are simply quoted here.
The muon lifetime τµ is related to its mass by

Γ(µ− → e−νµνe) =
1
τµ
=

G2
Fm5
µ

192π3 . (11.16)

The precise measurements of the muon lifetime and mass,

mµ = 0.105 658 371 5(35) GeV and τµ = 2.196 981 1(22) × 10−6 s,

provide a precise determination of the Fermi constant,

GF = 1.166 38 × 10−5 GeV−2.

However, GF does not express the fundamental strength of the weak interaction, it
is related to the ratio of the coupling strength gW and the W-boson mass by (11.15).
Nevertheless, GF is the quantity that is precisely measured in muon decay and it is
still used parameterise the strength of weak interaction.

The value of fundamental coupling constant gW can be obtained from GF using
the precise measurement of mW = 80.385 ± 0.015 GeV (see Chapter 16). From
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the relation of (11.15) and the measured values of GF and mW, the dimensionless
coupling constant of the weak interaction is

αW =
g2

W

4π
=

8m2
WGF

4
√

2π
≈ 1

30
.

Hence the weak interaction is in fact intrinsically stronger than the electromagnetic
interaction, αW > α. It is only the presence of the large mass of the W boson in the
propagator that is responsible for the weakness of the low-energy weak interaction
compared to that of QED. For a process where the exchanged boson carries four-
momentum q, where |q2| + m2

W, the QED and weak interactions propagators are
respectively

PQED ∼
1
q2 and PW ∼

1
q2 − m2

W

≈ − 1
m2

W

.

Therefore weak interaction decay rates, which are proportional to |M|2, are sup-
pressed by a factor q4/m4

W relative to QED decay rates. In contrast, in the high-
energy limit where |q2| > m2

W, the m2
W term in the weak propagator is relatively

unimportant and the electromagnetic and weak interactions have similar strength,
as will be seen directly in the results from high-Q2 electron–proton interactions,
described in Section 12.5.

11.6 Helicity in pion decay

The charged pions (π±) are the JP = 0− meson states formed from ud and du. They
are the lightest mesons with m(π±) ∼140 MeV and therefore cannot decay via the
strong interaction; they can only decay through the weak interaction to final states
with lighter fundamental fermions. Hence charged pions can only decay to final
states with either electrons or muons. The three main decay modes of the π− are
the charged-current weak processes π− → e−νe, π− → µ−νµ and π− → µ−νµγ,
with decays to µ−νµ dominating.

The Feynman diagrams for the decays π− → e−νe and π− → µ−νµ are shown in
Figure 11.7. Because the strength of the weak interaction for the different lepton
generations is found to be the same (see Chapter 12), it might be expected that
the matrix elements for the decays π− → e−νe and π− → µ−νµ would be simi-
lar. For a two-body decay, the phase space factor is proportional the momentum
of the decay products in the centre-of-mass frame, see (3.49). On this basis, the
decay rate to e−νe would be expected to be greater than that to µ−νµ. However, the
opposite is found to be true; charged pions decay almost entirely by π− → µ−νµ
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!Fig. 11.7 Two of the three main decay modes for the π−. The decay π− → µ−νµγ (not shown) has a comparable
branching ratio to that forπ− → e−νe.
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!−ν!!Fig. 11.8 The helicity con,guration inπ− → $−ν$ decay, where $ = e orµ.

(or equivalently π+ → µ+νµ) with a branching ratio of 99.988% and the measured
ratio of the decay rates to electrons and muons is

Γ(π− → e−νe)
Γ(π− → µ−νµ)

= 1.230(4) × 10−4.

This counterintuitive result is a manifestation of the chiral structure of the weak
interaction and provides a clear illustration of the difference between helicity,
defined by σ · p/|p|, and chirality defined by the action of the chiral projection
operators.

The weak interaction only couples to LH chiral particle states and RH chiral
antiparticle states. Because neutrinos are effectively massless, mν + E, the neu-
trino chiral states are, in all practical circumstances, equivalent to the helicity states.
Therefore, the antineutrino from a π− decay is always produced in a RH helicity
state. Because the pion is a spin-0 particle, the lepton–neutrino system must be
produced in the spin-0 singlet state, with the charged lepton and neutrino spins in
opposite directions. Therefore, because the neutrino is RH, conservation of angular
momentum implies that the charged lepton is also produced in a RH helicity state,
and the only allowed spin configuration is that of Figure 11.8. Since the weak inter-
action vertex is non-zero only for LH chiral particle states, the charged lepton has,
in some sense, the “wrong helicity” for the weak interaction. If the charged leptons
were also massless, the decay would not occur. However, chiral and helicity states
are not equivalent and the weak decay to a RH helicity particle state can occur,
although it may be highly suppressed.

In general the RH helicity spinor u↑ can be decomposed into RH and LH chiral
components, uR and uL, given by (6.38),

u↑ ≡ 1
2

(
1 +

p
E + m

)
uR +

1
2

(
1 − p

E + m

)
uL. (11.17)
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In the weak interaction vertex only the uL component of (11.17) will give a non-zero
contribution to the matrix element. Putting aside the relatively small differences
from the normalisations of the lepton and neutrino spinors, the charged-current
weak decay matrix element is proportional to the size of the LH chiral component
in (11.17) and

M ∼ 1
2

(
1 − p$

E$ + m$

)
, (11.18)

where E$, p$ and m$ are the energy, momentum and mass of the charged lepton.
If the charged lepton is highly relativistic, the left-handed chiral component of
the right-handed helicity state will be very small, resulting in a suppression of the
decay rate.

Taking the mass of the neutrino to be zero, it is straightforward to show that

E$ =
m2
π + m2

$

2mπ
and p$ =

m2
π − m2

$

2mπ
, (11.19)

giving

p$
E$ + m$

=
mπ − m$

mπ + m$
,

which when substituted into (11.18), demonstrates that

M ∼ m$

mπ + m$
.

Because mµ/me ≈ 200, pion decays to electrons are strongly suppressed with
respect to those to muons. This helicity suppression reflects the fact that the elec-
trons produced in pion decay are highly relativistic, β = 0.999 97, and therefore
the chiral states almost correspond to the helicity states. For the decay to muons,
β = 0.27, and the uL coefficient in (11.17) is significant. The above discussion gives
a qualitative explanation of why charged pions predominantly decay to muons
rather than electrons. The full calculation, which is interesting in its own right,
is given below.

11.6.1 Pion decay rate

Consider the π− → $−ν$ decay in its rest frame, where the direction of the charged
lepton defines the z-axis, as shown in Figure 11.9. In this case, the four-momenta
of the π−, $− and ν$ are respectively,

pπ = (mπ, 0, 0, 0), p$ = p3 = (E$, 0, 0, p) and pν = p4 = (p, 0, 0,−p),
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!Fig. 11.9 The de,nition of the four-momenta in the processπ− → $−ν$.

where p is the magnitude of the momentum of both the charged lepton and antineu-
trino in the centre-of-mass frame.

The weak leptonic current associated with the $−ν$ vertex is

jν$ =
gW√

2
u(p3) 1

2γ
ν(1 − γ5)v(p4).

Because the pion is a bound qq state, the corresponding hadronic current cannot
be expressed in terms of free particle Dirac spinors. However, the pion current
has to be a four-vector such that the four-vector scalar product with the leptonic
current gives a Lorentz-invariant expression for the matrix element. Since the pion
is a spin-0 particle, the only four-vector quantity that can be used is the pion four-
momentum. Hence, the most general expression for the pion current is obtained by
replacing vγ µ(1−γ5)u with fπp µπ , where fπ is a constant associated with the decay.
The matrix element for the decay π− → $−ν$ therefore can be written as

M f i =
[
gW√

2
1
2 fπp µπ

]
×



gµν

m2
W


 ×

[
gW√

2
u(p3)γν 1

2 (1 − γ5)v(p4)
]

=
g2

W

4m2
W

gµν fπp µπu(p3)γν 1
2 (1 − γ5)v(p4),

where the propagator has been approximated by the Fermi contact interaction
(which is an extremely good approximation because q2 = m2

π + m2
W). In the pion

rest frame, only the time-like component of the pion four-momentum is non-zero,
p0
π = mπ, and hence

M f i =
g2

W

4m2
W

fπmπu(p3)γ0 1
2 (1 − γ5)v(p4).

Because uγ0 = u†γ0γ0 = u†, this can be written as

M f i =
g2

W

4m2
W

fπmπu†(p3) 1
2 (1 − γ5)v(p4). (11.20)
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For the neutrino, which has m + E, the helicity eigenstates are essentially equiv-
alent to the chiral states and therefore 1

2 (1 − γ5)v(p4) = v↑(p4), and thus (11.20)
becomes

M f i =
g2

W

4m2
W

fπmπu†(p3)v↑(p4). (11.21)

The spinors corresponding to the two possible helicity states of the charged lep-
ton spinor are obtained from (4.65) with (θ = 0, φ = 0),

u↑(p3)=
√

E$ + m$




1
0
p

E$+m$

0




and u↓(p3)=
√

E$ + m$




0
1
0

− p
E$+m$



, (11.22)

and the right-handed antineutrino spinor is given by (4.66) with (θ = π, φ = π),

v↑(p4)=
√

p




1
0
−1

0



. (11.23)

From (11.22) and (11.23) it is immediately clear that u†↓(p3)v↑(p4) = 0. Therefore,
as anticipated, of the four possible helicity combinations, the only non-zero matrix
element corresponds to the case where both the charged lepton and the antineu-
trino are in RH helicity states. Using the explicit forms for the spinors, the matrix
element of (11.21) is

M f i =
g2

W

4m2
W

fπmπ

√
E$ + m$

√
p
(
1 − p

E$ + m$

)
. (11.24)

Equation (11.24) can be simplified using the expressions for E$ and p given in
(11.19), such that

M f i =
g2

W

4m2
W

fπmπ ·
mπ + m$√

2mπ

·



m2
π − m2

$

2mπ




1
2
· 2m$

mπ + m$

=

(
gW

2mW

)2

fπm$(m2
π − m2

$ )
1
2 .
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Since the pion is a spin-0 particle, there is no need to average over the initial-state
spins, and the matrix element squared is given by

〈|M f i|2〉 ≡ |M f i|2 = 2G2
F f 2
πm2

$ (m
2
π − m2

$ ),

where gW has been expressed in terms of GF using (11.15). Finally, the decay rate
can be determined from the expression for the two-body decay rate given by (3.49),
where the integral over solid angle introduces a factor of 4π as there is no angular
dependence in 〈|M f i|2〉. Hence

Γ =
4π

32π2m2
π

p 〈|M f i|2〉 =
G2

F

8πm3
π

f 2
π

[
m$(m2

π − m2
$ )
]2
, (11.25)

where p is given by (11.19). Therefore, to lowest order, the predicted ratio of the
π− → e−νe to π− → µ−νµ decay rates is

Γ(π− → e−νe)
Γ(π− → µ−νµ)

=




me(m2
π − m2

e)

mµ(m2
π − m2

µ)



2

= 1.26 × 10−4,

which is in reasonable agreement with the measured value of 1.230(4) × 10−4.

11.7 Experimental evidence for V – A

The V − A nature of the weak interaction is an experimentally established fact.
For example, if the weak interaction was a scalar (ψφ) or pseudoscalar (ψγ5φ)
interaction, the predicted ratio of the charged pion leptonic decay rates would be
Γ(π− → e−νe)/Γ(π− → µ−νµ) = 5.5, in clear contradiction with the experimental
observations. In general, any weak decay can be expressed in terms of a linear
combination of the five bilinear covariants, scalar (S ), pseudoscalar (P), vector
(V), axial vector (A) and tensor (T ):

gSψφ, gPψγ
5φ, gVψγ

µφ, gAψγ
µγ5φ and gTψ(γ µγν − γνγ µ)φ.

By comparing these predictions with the experimental measurements, limits can be
placed on the possible sizes of the different contributions. The most precise test of
the V − A structure of the weak interaction is based on measurements of the angu-
lar distribution of decays of approximately 1010 polarised muons by the TWIST
experiment: see Bayes et al. (2011). The measurements are expressed in terms of
the Michel parameters which parameterise the general combination of the possible
S +P+V+A+T interaction terms. For example, the Michel parameter ρ, which for
a pure V −A interaction should be 0.75, is measured to be ρ = 0.749 97±0.000 26.
All such tests indicate that the charged-current weak interaction is described by a
V − A vertex factor.
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Summary

In this chapter, the general structure of the weak charged-current interaction was
introduced. Unlike QED and QCD, the weak interaction does not conserve parity.
Parity violation in the weak charged-current interaction is a direct consequence of
the V − A form of the weak charged-current, which treats left-handed and right-
handed particles differently. The weak charged-current vertex factor was found
to be

−igW√
2

1
2γ
µ(1 − γ5),

and the propagator associated with the exchange of the massive W bosons is

−i

q2 − m2
W


g
µν − q µqν

m2
W


 .

Because of the V − A interaction only

LH chiral particle states and RH chiral antiparticle states

participate in the weak charged-current.

Problems

11.1 Explain why the strong decayρ0 → π−π+ is observed, but the strong decayρ0 → π0π0 is not.

Hint: you will need to consider conservation of angular momentum, parity and the symmetry of theπ0π0 wave-
function.

11.2 Whenπ− mesons are stopped in a deuterium target they can form a bound (π− − D) state with zero orbital
angular momentum, $ = 0. The bound state decays by the strong interaction

π−D→ nn.

By considering the possible spin and orbital angular momentum states of the nn system, and the required sym-
metry of the wavefunction, show that the pion has negative intrinsic parity.

Note: the deuteron has JP = 1+ and the pion is a spin-0 particle.

11.3 Classify the following quantities as either scalars (S), pseudoscalars (P), vectors (V) or axial-vectors (A):
(a) mechanical power, P = F · v ;
(b) force, F ;
(c) torque, G = r × F ;
(d) vorticity,Ω = ∇ × v ;
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(e) magnetic -ux,φ =
∫

B · dS ;
(f) divergence of the electric ,eld strength,∇ · E .

11.4 In the annihilation process e+e− → qq, the QED vector interaction leads to non-zero matrix elements only for
the chiral combinations LR → LR, LR → RL, RL → RL, RL → LR. What are the corresponding allowed chiral
combinations for S, P and S − P interactions?

11.5 Consider the decay at rest τ− → π−ντ, where the spin of the tau is in the positive z-direction and the ντ
andπ− travel in the± z-directions. Sketch the allowed spin con,gurations assuming that the form of the weak
charged-current interaction is (i) V − A and (ii) V + A.

11.6 Repeat the pion decay calculation for a pure scalar interaction and show that the predicted ratio of decay
rates is

Γ(π− → e−νe)
Γ(π− → µ−νµ)

≈ 5.5.

11.7 Predict the ratio of the K− → e−νe and K− → µ−νµ weak interaction decay rates and compare your answer
to the measured value of

Γ(K− → e−νe)
Γ(K− → µ−νµ)

= (2.488 ± 0.012) × 10−5.

11.8 Charged kaons have several weak interaction decay modes, the largest of which are

K+(us)→ µ+νµ, K+ → π+π0 and K+ → π+π+π−.

(a) Draw the Feynman diagrams for these three weak decays.
(b) Using the measured branching ratio

Br(K+ → µ+νµ) = 63.55 ± 0.11 %,

estimate the lifetime of the charged kaon.

Note: charged pions decay almost 100% of the time by the weak interactionπ+ → µ+νµ and have a lifetime
of (2.6033 ± 0.0005) × 10−8 s.

11.9 From the prediction of (11.25) and the above measured value of the charged pion lifetime, obtain a value
for fπ.

11.10 Calculate the partial decay width for the decay τ− → π−ντ in the following steps.

(a) Draw the Feynman diagram and show that the corresponding matrix element is

M ≈
√

2GFfπu(pν)γ µ 1
2 (1 − γ5)u(pτ)gµνpνπ.

(b) Taking the τ− spin to be in the z-direction and the four-momentum of the neutrino to be

pν = p∗(1, sin θ, 0, cos θ),

show that the leptonic current is

j µ =
√

2mτp∗ (−s,−c,−ic, s) ,

where s = sin
(
θ
2

)
and c = cos

(
θ
2

)
. Note that, for this con,guration, the spinor for the τ− can be taken

to be u1 for a particle at rest.
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(c) Write down the four-momentum of theπ− and show that

|M|2 = 4G2
Ff 2
πm3

τp∗ sin2
(
θ
2

)
.

(d) Hence show that

Γ(τ− → π−ντ) =
G2

Ff 2
π

16π
m3
τ

(
m2
τ − m2

π

m2
τ

)2

.

(e) Using the value of fπ obtained in the previous problem, ,nd a numerical value forΓ(τ− → π−ντ).
(f) Given that the lifetime of the τ-lepton is measured to beττ = 2.906× 10−13 s, ,nd an approximate value

for the τ− → π−ντ branching ratio.


