
10 Quantum Chromodynamics (QCD)

This chapter provides an introduction to the theory of Quantum Chromody-
namics (QCD). Firstly, the concept of a local gauge symmetry is described
and then used to obtain the form of the QCD interaction. Superficially QCD
appears like a stronger version of QED with eight gluons replacing the sin-
gle photon, but because the gluons carry the charge of the interaction, QCD
behaves very differently. A number of important topics are discussed includ-
ing colour confinement, hadronisation, renormalisation, running coupling con-
stants and colour factors. The last part of chapter provides an introduction to
hadron–hadron collisions at the Tevatron and the LHC.

10.1 The local gauge principle

Gauge invariance is a familiar idea from electromagnetism, where the physical E
and B fields, which are obtained from the scalar and vector potentials φ and A, do
not change under the gauge transformation

φ→ φ′ = φ − ∂χ
∂t

and A→ A′ = A + ∇χ.

This gauge transformation can be written more succinctly as

Aµ → A′µ = Aµ − ∂µχ, (10.1)

where Aµ = (φ,−A) and ∂µ = (∂0,∇).
In relativistic quantum mechanics, the gauge invariance of electromagnetism can

be related to a local gauge principle. Suppose there is a fundamental symmetry of
the Universe that requires the invariance of physics under local phase transforma-
tions defined by

ψ(x)→ ψ′(x) = Û(x)ψ(x) = eiqχ(x)ψ(x). (10.2)

This is similar to the U(1) global phase transformation of ψ → ψ′ = eiφψ of (9.3),
but here the phase q χ(x) can be different at all points in space-time. For this local
U(1) phase transformation, the free-particle Dirac equation
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243 10.1 The local gauge principle

iγ µ∂µψ = mψ, (10.3)

becomes

iγ µ∂µ(eiqχ(x)ψ) = meiqχ(x)ψ

⇒ eiqχ iγ µ
[
∂µψ + iq(∂µχ)ψ

]
= eiqχmψ

iγ µ(∂µ + iq∂µχ)ψ = mψ, (10.4)

which differs from (10.3) by the term −qγ µ(∂µχ)ψ. Hence, as it stands, the free-
particle Dirac equation does not possess the hypothesised invariance under a U(1)
local phase transformation. More generally, local phase invariance is not possible
for a free theory, i.e. one without interactions. The required invariance can be estab-
lished only by modifying the Dirac equation to include a new degree of freedom
Aµ such that the original form of the Dirac equation of (10.3) becomes

iγ µ(∂µ + iqAµ)ψ − mψ = 0, (10.5)

where Aµ will be interpreted as the field corresponding to a massless gauge boson.
Equation (10.5) is invariant under the local phase transformation defined in (10.2)
provided Aµ transforms as

Aµ → A′µ = Aµ − ∂µχ,

in order to cancel the unwanted −qγ µ(∂µχ)ψ term in (10.4). Stating this another
way, for physical predictions to remain unchanged under a local U(1) phase trans-
formation, it is necessary to introduce a new field that exhibits the observed gauge
invariance of classical electromagnetism, as given in (10.1). More significantly, the
modified Dirac equation of (10.5) no longer corresponds to a wave equation for a
free particle, there is now an interaction term of the form

qγ µAµψ. (10.6)

This is identical to the QED interaction term of (5.13) which was previously iden-
tified using minimal substitution.

The requirement that physics is invariant under local U(1) phase transformations
implies the existence of a gauge field which couples to Dirac particles in exactly the
same way as the photon. This is a profound statement; all of QED, including ulti-
mately Maxwell’s equations, can be derived by requiring the invariance of physics
under local U(1) transformations of the form Û = eiqχ(x).

10.1.1 From QED to QCD

Quantum Electrodynamics (QED) corresponds to a U(1) local gauge symmetry
of the Universe. The underlying symmetry associated with Quantum Chromody-
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namics (QCD), which is the Quantum Field Theory of the strong interaction, is
invariance under SU(3) local phase transformations,

ψ(x)→ ψ′(x) = exp
[
igSα(x) · T̂

]
ψ(x). (10.7)

Here T̂ = {T a} are the eight generators of the SU(3) symmetry group, which are
related to the Gell-Mann matrices of (9.31) by

T a = 1
2λ

a,

and αa(x) are eight functions of the space-time coordinate x. Because the gen-
erators of SU(3) are represented by 3 × 3 matrices, the wavefunction ψ must now
include three additional degrees of freedom that can be represented by a three com-
ponent vector analogous to the representation of the u, d and s quarks in SU(3)
flavour symmetry. This new degree of freedom is termed “colour” with red, blue
and green labelling the states. The SU(3) local phase transformation corresponds
to “rotating” states in this colour space about an axis whose direction is different at
every point in space-time. For the local gauge transformation of (10.7), the Dirac
equation becomes

iγ µ
[
∂µ + igS (∂µα) · T̂

]
ψ = mψ. (10.8)

The required local gauge invariance can be asserted by introducing eight new fields
Ga
µ(x), where the index a = 1, . . . , 8, each corresponding to one of the eight gen-

erators of the SU(3) symmetry. The Dirac equation, including the interactions with
the new gauge fields,

iγ µ
[
∂µ + igS Ga

µT
a
]
ψ − mψ = 0, (10.9)

is invariant under local SU(3) phase transformations provided the new fields trans-
form as

Gk
µ → Gk

µ
′
= Gk

µ − ∂µαk − gS fi jkαiG
j
µ. (10.10)

The last term in (10.10) arises because the generators of the SU(3) symmetry do
not commute and the fi jk are the structure constants of the SU(3) group, defined by
the commutation relations [λi, λ j] = 2i fi jkλk. Because the generators SU(3) do not
commute, QCD is known as a non-Abelian gauge theory and the presence of the
additional term in (10.10) gives rise to gluon self-interactions (see Appendix F).
The mathematical forms of these triple and quartic gluon vertices, shown in Fig-
ure 10.1, are completely specified by the SU(3) gauge symmetry. Putting aside
these self-interactions for now, the required SU(3) local gauge invariance necessi-
tates the modification of the Dirac equation to include new interaction terms, one
for each of the eight generators of the gauge symmetry. The eight new fields Ga are
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!Fig. 10.1 The predicted QCD interaction vertices arising from the requirement of SU(3) local gauge invariance.

the gluons of QCD and from (10.9) it can be seen that the form of qqg interaction
vertex is

gS T aγ µGa
µψ = gS

1
2λ

aγ µGa
µψ. (10.11)

10.2 Colour and QCD

The underlying theory of quantum chromodynamics appears to be very similar to
that of QED. The QED interaction is mediated by a massless photon corresponding
to the single generator of the U(1) local gauge symmetry, whereas QCD is medi-
ated by eight massless gluons corresponding to the eight generators of the SU(3)
local gauge symmetry. The single charge of QED is replaced by three conserved
“colour” charges, r, b and g (where colour is simply a label for the orthogonal
states in the SU(3) colour space). Only particles that have non-zero colour charge
couple to gluons. For this reason the leptons, which are colour neutral, do not feel
the strong force. The quarks, which carry colour charge, exist in three orthogo-
nal colour states. Unlike the approximate SU(3) flavour symmetry, discussed in
Chapter 9, the SU(3) colour symmetry is exact and QCD is invariant under unitary
transformations in colour space. Consequently, the strength of QCD interaction is
independent of the colour charge of the quark. In QED the antiparticles have the
opposite electric charge to the particles. Similarly, in QCD the antiquarks carry the
opposite colour charge to the quarks, r, g and b.

The three colour states of QCD can be represented by colour wavefunctions,

r =




1
0
0


 , g =




0
1
0


 and b =




0
0
1


 .

Following the discussion of SU(3) flavour symmetry in Chapter 9, the colour states
of quarks and antiquarks can be labelled by two additive quantum numbers, the
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third component of colour isospin Ic
3 and colour hypercharge Yc as indicated in

Figure 10.2.

10.2.1 The quark–gluon vertex

The SU(3) local gauge symmetry of QCD implies a conserved colour charge and an
interaction between quarks and gluons of the form given by (10.11). By comparing
the QCD interaction term to that for QED given in (10.6),

−iqγ µAµψ→ −igS
1
2λ

aγ µGa
µψ,

the QCD vertex factor can be identified as

−iqγ µ → −igS γ
µ 1

2λ
a.

Apart from the different coupling constant, the quark–gluon interaction only differs
from the QED interaction in the appearance of the 3 × 3 Gell-Mann matrices that
only act on the colour part of the quark wavefunction. The quark wavefunctions
therefore need to include this colour degree of freedom. This can be achieved by
writing

u(p)→ ciu(p),

where u(p) is a Dirac spinor and ci represents one of the possible colour states

c1 = r =




1
0
0


 , c2 = g =




0
1
0


 and c3 = b =




0
0
1


 .

Consequently, the quark current associated with the QCD vertex, shown in
Figure 10.3, can be written

j µq = u(p3)c†j
{
− 1

2 igS λ
aγ µ

}
ciu(p1), (10.12)

where the ci and c j are the colour wavefunctions of the quarks and the index a
refers to gluon corresponding to the SU(3) generator T a. (In other textbooks you
may see the colour index appended to the spinor ciu(p)→ ui(p).)
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!Fig. 10.3 The QCD quark–gluon vertex representing the interaction of quarks with colours i and j with a gluon of type
a and the gluon propagator.

In the quark current of (10.12), the 3 × 3 Gell-Mann matrix λa acts on the three-
component colour wavefunction, whereas the 4×4 γ-matrices act on the four com-
ponents of the Dirac spinor. Therefore the colour part of the current factorises,
allowing (10.12) to be written as

u(p3)c†j{− 1
2 igsλ

aγ µ}ciu(p1) = − 1
2 igs

[
c†jλ

aci

]
× [

u(p3)γ µu(p1)
]
.

The factorised colour part of the interaction is

c†jλ
aci = c†j




λa
1i
λa

2i
λa

3i


 = λ

a
ji.

Hence the qqg vertex can be written as

− 1
2 igS λ

a
ji
[
u(p3)γ µu(p1)

]
,

where λa
ji is just a number, namely the jith element of λa. Therefore, the Feynman

rule associated with the QCD vertex is

− 1
2 igS λ

a
jiγ
µ.

For lowest-order diagrams, the Feynman rule for the gluon propagator of
Figure 10.3 is

−i
gµν

q2 δ
ab,

where the delta-function ensures that the gluon of type a emitted at the vertex
labelled µ is the same as that which is absorbed at vertex ν.

10.3 Gluons

The QCD interaction vertex includes a factor λa
ji, where i and j label the colours

of the quarks. Consequently, gluons corresponding to the non-diagonal Gell-Mann
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matrices connect quark states of different colour. In order for colour to be con-
served at the interaction vertex, the gluons must carry colour charge. For example,
the gluon corresponding to λ4, defined in (9.31), which has non-zero entries in the
13 and 31 positions, contributes to interactions involving the changes of colour
r → b and b→ r. This is illustrated in Figure 10.4, which shows the QCD process
of qq → qq scattering where the colour flow corresponds to br → rb, illustrated
both in terms the colour flow in the Feynman diagram and as the two correspond-
ing time-ordered diagrams. Because colour is a conserved charge, the interaction
involves the exchange of a br gluon in the first time-ordering and a rb gluon in
the second time-ordering. From this discussion, it is clear that gluons must carry
simultaneously both colour charge and anticolour charge.

Since gluons carry a combination of colour and anticolour, there are six gluons
with different colour and anticolour, rg, gr, rb, br, gb and bg. Naïvely one might
expect three gluons corresponding to rr, gg and bb. However, the physical gluons
correspond to the fields associated with the generators λ1,..,8 of the SU(3) gauge
symmetry. The gluons are therefore an octet of coloured states, analogous to the qq
meson SU(3) flavour states. The colour assignments of the eight physical gluons
can be written

rg, gr, rb, br, gb, bg, 1√
2
(rr − gg) and 1√

6
(rr + gg − 2bb).

Even though two of these gluon states have Ic
3 = Yc = 0, they are part of a colour

octet and therefore still carry colour charge (unlike the colourless singlet state).

10.4 Colour con&nement

There is a wealth of experimental evidence for the existence of quarks. However,
despite many experimental attempts to detect free quarks, which would be observed
as fractionally charged particles, they have never been seen directly. The non-
observation of free quarks is explained by the hypothesis of colour confinement,
which states that coloured objects are always confined to colour singlet states and
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!Fig. 10.5 Lowest-order Feynman diagrams for the process gg→ gg, formed from the triple and quartic gluon vertices
of Figure 10.1.
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!Fig. 10.6 Qualitative picture of the e-ect of gluon–gluon interactions on the long-range QCD force.

that no objects with non-zero colour charge can propagate as free particles. Colour
confinement is believed to originate from the gluon–gluon self-interactions that
arise because the gluons carry colour charge, allowing gluons to interact with other
gluons through diagrams such as those shown in Figure 10.5.

There is currently no analytic proof of the concept of colour confinement,
although there has been recent progress using the techniques of lattice QCD. Nev-
ertheless, a qualitative understanding of the likely origin can be obtained by consid-
ering what happens when two free quarks are pulled apart. The interaction between
the quarks can be thought of in terms of the exchange of virtual gluons. Because
they carry colour charge, there are attractive interactions between these exchanged
virtual gluons, as indicated in Figure 10.6a. The effect of these interactions is to
squeeze the colour field between the quarks into a tube. Rather than the field lines
spreading out as in QED (Figure 10.6b), they are confined to a tube between the
quarks, as indicated in Figure 10.6c. At relatively large distances, the energy den-
sity in the tube between the quarks containing the gluon field is constant. Therefore
the energy stored in the field is proportional the separation of the quarks, giving a
term in the potential of the form

V(r) ∼ κr, (10.13)

where experimentally κ ∼ 1 GeV/fm. This experimentally determined value for
κ (see Section 10.8) corresponds to a very large force of O(105) N between any
two unconfined quarks, regardless of separation! Because the energy stored in the
colour field increases linearly with distance, it would require an infinite amount



250 Quantum Chromodynamics (QCD)

of energy to separate two quarks to infinity. Put another way, if there are two free
colour charges in the Universe, separated by macroscopic distances, the energy
stored in the resulting gluon field between them would be vast. As a result, coloured
objects arrange themselves into bound hadronic states that are colourless combina-
tions with no colour field between them. Consequently quarks are always confined
to colourless hadrons.

Another consequence of the colour confinement hypothesis is that gluons, being
coloured, are also confined to colourless objects. Therefore, unlike photons (the
force carriers of QED), gluons do not propagate over macroscopic distances. It is
interesting to note that had nature chosen a U(3) local gauge symmetry, rather than
SU(3), there would be a ninth gluon corresponding to the additional U(1) generator.
This gluon would be the colour singlet state,

G9 =
1√
3
(rr + gg + bb).

Because this gluon state is colourless, it would be unconfined and would behave
like a strongly interacting photon, resulting in an infinite range strong force; the
Universe would be a very different (and not very hospitable) place with long-range
strong interactions between all quarks.

10.4.1 Colour con%nement and hadronic states

Colour confinement implies that quarks are always observed to be confined to
bound colourless states. To understand exactly what is meant by “colourless”, it
is worth recalling the states formed from the combination of spin for two spin-half
particles. The four possible spin combinations give rise to a triplet of spin-1 states
and a spin-0 singlet (2 ⊗ 2 = 3 ⊕ 1):

|1,+1〉 =↑↑, |1, 0〉 = 1√
2
(↑↓ + ↓↑), |1,−1〉 =↓↓ and |0, 0〉 = 1√

2
(↑↓ − ↓↑).

The singlet state is “spinless” in the sense that it carries no angular momentum.
In a similar way, SU(3) colour singlet states are colourless combinations which
have zero colour quantum numbers, Ic

3 = Yc = 0. It should be remembered that
Ic
3 = Yc = 0 is a necessary but not sufficient condition for a state to be colourless.

The action of any of the SU(3) colour ladder operators on a colour singlet state must
yield zero, in which case the state is analogous to the spinless |0, 0〉 singlet state.

The colour confinement hypothesis implies that only colour singlet states can
exist as free particles. Consequently, all bound states of quarks and antiquarks must
occur in colour singlets. This places a strong restriction on the structure of possi-
ble hadronic states; the allowed combinations of quarks and antiquarks are those
where a colour singlet state can be formed. The algebra of the exact SU(3) colour
symmetry was described in Chapter 9 in the context of SU(3) flavour symmetry
and the results can be directly applied to colour with the replacements, u → r,
d→ g and s→ b.
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First consider the possible colour wavefunctions for a bound qq state. The com-
bination of a colour with an anticolour is mathematically identical to the construc-
tion of meson flavour wavefunctions in SU(3) flavour symmetry. The resulting
colour multiplets, shown in Figure 10.7, are a coloured octet and a colourless sin-
glet. The colour confinement hypothesis implies that all hadrons must be colour
singlets, and hence the colour wavefunction for mesons is

ψc(qq) = 1√
3
(rr + gg + bb).

The addition of another quark (or antiquark) to either the octet or singlet state in
Figure 10.7 will not yield a state with Ic

3 = Yc = 0. Therefore, it can be concluded
that bound states of qqq or qq q do not exist in nature.

These arguments can be extended to the combinations of two and three quarks as
shown in Figure 10.8. The combination of two colour triplets yields a colour sextet
and a colour triplet (3). The absence of a colour singlet state for the qq system,
implies that bound states of two quarks are always coloured objects and therefore
do not exist in nature. However, the combination of three colours yields a single
singlet state with the colour wavefunction
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ψc(qqq) = 1√
6
(rgb − rbg + gbr − grb + brg − bgr), (10.14)

analogous to the SU(3) flavour singlet wavefunction of Section 9.6.4. This state
clearly satisfies the requirement that Ic

3 = Yc = 0. The colour ladder operators
can be used to confirm it is a colour singlet. For example, the action of the colour
isospin raising operator T c

+, for which T c
+g = r, gives

T c
+ψ

c(qqq) = 1√
6
(rrb − rbr + rbr − rrb + brr − brr) = 0,

as required. Hence a SU(3) colour singlet state can be formed from the combination
of three quarks and colourless bound states of qqq are observed in nature. Since the
colour singlet wavefunction of (10.14) is totally antisymmetric, and it is the only
colour singlet state for three quarks, the colour wavefunction for baryons is always
antisymmetric. This justifies the assumption used in Chapter 9 to construct the
baryon wavefunctions.

Colour confinement places strong restrictions on the possible combinations of
quarks and antiquarks that can form bound hadronic states. To date, all confirmed
observed hadronic states correspond to colour singlets either in the form of mesons
(qq), baryons (qqq) or antibaryons (q q q). In principle, combinations of (qq) and
(qqq) such as pentaquark states (qqqqq) could exist, either as bound states in their
own right or as hadronic molecules such as (qq)-(qqq). In recent years there have
been a number of claims for the existence of pentaquark states, but the evidence is
(at best) far from convincing.

10.4.2 Hadronisation and jets

In processes such as e+e− → qq, the two (initially free) high-energy quarks are
produced travelling back to back in the centre-of-mass frame. As a consequence
of colour confinement, the quarks do not propagate freely and are observed as
jets of colourless particles. The process by which high-energy quarks (and gluons)
produce jets is known as hadronisation.

A qualitative description of the hadronisation process is shown in Figure 10.9.
The five stages correspond to: (i) the quark and antiquark produced in an inter-
action initially separate at high velocities; (ii) as they separate the colour field is
restricted to a tube with energy density of approximately 1 GeV/fm; (iii) as the
quarks separate further, the energy stored in the colour field is sufficient to pro-
vide the energy necessary to form new qq pairs and breaking the colour field into
smaller “strings” is energetically favourable; (iv) this process continues and further
qq pairs are produced until (v) all the quarks and antiquarks have sufficiently low
energy to combine to form colourless hadrons. The hadronisation process results
in two jets of hadrons, one following the initial quark direction and the other in the
initial antiquark direction. Hence, in high-energy experiments, quarks and gluons
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!Fig. 10.9 Qualitative picture of the steps in the hadronisation process.

are always observed as jets of hadrons (see for example, Figures 10.19 and 10.30).
The precise process of hadronisation is poorly understood. Nevertheless, there are
a number of phenomenological models (often with many free parameters) that are
able to provide a reasonable description of the experimental data. Whilst these
models are motived by QCD, they are a long way from a first-principles theoretical
description of the hadronisation process.

10.5 Running ofαS and asymptotic freedom

At low-energy scales, the coupling constant of QCD is large, αS ∼ O(1). Conse-
quently, the perturbation expansion discussed in the context of QED in
Section 6.1, does not converge rapidly. For this reason (low-energy) QCD pro-
cesses are not calculable using traditional perturbation theory. Nevertheless, in
recent years, there has been a significant progress with the computational technique
of lattice QCD, where quantum-mechanical calculations are performed on a dis-
crete lattice of space-time points. Such calculations are computationally intensive,
with a single calculation often taking many months, even using specially adapted
supercomputing facilities. With lattice QCD it has been possible to calculate the
proton mass with a precision of a few per cent, thus providing a first principles test
of the validity of QCD in the non-perturbative regime. Despite this success, most
practical calculations in particle physics are based on perturbation theory. For this
reason, it might seem problematic that perturbation theory cannot be applied in
QCD processes because of the large value of αS . Fortunately, it turns out that αS is
not constant; its value depends on the energy scale of the interaction being consid-
ered. At high energies, αS becomes sufficiently small that perturbation theory can
again be used. In this way, QCD divides into a non-perturbative low-energy regime,
where first-principles calculations are not currently possible, such as the hadroni-
sation process, and a high-energy regime where perturbation theory can be used.
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The running of αS is closely related to the concept of renormalisation. A thorough
mathematical treatment of renormalisation is beyond the level of this book. Never-
theless, it is necessary to introduce the basic ideas in order to provide a qualitative
understanding of the running of the coupling constants of both QED and QCD.

10.5.1 *Renormalisation in QED

The strength of the interaction between a photon and an electron is determined by
the coupling at the QED vertex, which up to this point has been taken to be constant
with value e. The experimentally measured value of the electron charge e, which
corresponds to α ≈ 1/137, is obtained from measurements of the strength of the
static Coulomb potential in atomic physics. This is not the same as the strength of
coupling between an electron and photon that appears in Feynman diagrams, which
can be written as e0 (often referred to as the bare electron charge); the experimen-
tally measured value of e is the effective strength of the interaction which results
from the sum over all relevant QED higher-order diagrams.

Up to this point, only the lowest-order contribution to the QED coupling between
a photon and a charged fermion, shown in Figure 10.10a, has been considered.
However, for each QED vertex in a Feynman diagram, there is an infinite set of
higher-order corrections; for example, the O(e2) corrections to the QED e−γe− ver-
tex are shown in Figures 10.10b–10.10e. The experimentally measured strength of
the QED interaction is the effective strength from the sum over of all such dia-
grams. The diagram of Figure 10.10b represents correction to the propagator and
the diagrams in Figures 10.10c–10.10e represent corrections to the electron four-
vector current. In principle, both types of diagram will modify the strength of the
interaction relative to the lowest-order diagram alone.

For each higher-order diagram, it is relatively straightforward to write down the
matrix element using the Feynman rules for QED. Each loop in a Feynman diagram
enters as an integral over the four momenta of the particles in the loop and such dia-
grams lead to divergent (infinite) results. Fortunately, the infinities associated with
the loop corrections to the photon propagator can be absorbed into the definition
of the electron charge (described below). However, the corrections to four-vector

(a) (b) (c) (d) (e)

!Fig. 10.10 The lowest-order diagram for the QED vertex and theO(e2) corrections.
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!Fig. 10.11 Renormalisation in QED, relating the running charge e(q2) to the bare charge e0.

current, Figures 10.10c–10.10e, are potentially more problematic as they involve
loops that include virtual fermions. Consequently, the results of the corresponding
loop integrals will depend on the fermion masses. In principle, this would result in
the effective strength of the QED interaction being dependent on the mass of the
particle involved, which is not the case. However, in a field theory with local gauge
invariance such as QED, the effect of the diagram of Figure 10.10c is exactly can-
celled by the effects of diagrams 10.10d–10.10e. This type of cancellation, that is
known as a Ward identity, holds to all orders in perturbation theory. Consequently,
here we only need to consider the higher-order corrections to the photon propaga-
tor.

The infinite series of corrections to the photon propagator, known as the photon
self-energy terms, are accounted for by replacing the lowest-order photon exchange
diagram by the infinite series of loop diagrams expressed in terms on the bare elec-
tron charge, e0. As a result of the loop corrections, the photon propagator includ-
ing the self-energy terms, will no longer have a simple 1/q2 form. The physical
effects of the modification to the propagator can be accounted for by retaining the
1/q2 dependence for the effective propagator and absorbing the corrections into
the definition of the charge, which now necessarily depends on q2. This procedure
is shown in Figure 10.11, where the infinite sum over the self-energy corrections
to the photon with bare charge e0, indicated by the blob, is replaced by a 1/q2

propagator with effective charge e(q2).
The effective photon propagator, here denoted as P, can be expressed in terms

of the propagator with the bare charge,

P0 =
e2

0

q2 ,

by inserting an infinite series of the fermion loops. Each loop introduces a correc-
tion factor π(q2), such that the effective propagator is given by

P = P0 + P0 π(q2) P0 + P0 π(q2) P0 π(q2) P0 + · · · ,

where, for example, the second term in the above sum corresponds to a single
loop correction π(q2) inserted between two bare P0 propagator terms, and therefore



256 Quantum Chromodynamics (QCD)

represents the second diagram in Figure 10.11. This geometric series can be
summed to give

P = P0
1

1 − π(q2) P0
= P0

1
1 − e2

0Π(q2)
,

where Π(q2) = π(q2)/q2 is the one-loop photon self-energy correction. The effec-
tive propagator can then be expressed in terms of the running coupling e(q2) as

P ≡ e2(q2)
q2 =

e2
0

q2

1
1 − e2

0Π(q2)
.

Since scattering cross sections are known to be finite, it is an experimentally estab-
lished fact that e(q2) is finite, therefore

e2(q2) =
e2

0

1 − e2
0Π(q2)

, (10.15)

is finite, even though the denominator contains Π(q2) which is divergent. If the
physical electron charge is known at some scale q2 = µ2, then (10.15) can be
rearranged to give an expression for the bare charge

e2
0 =

e2(µ2)
1 + e2(µ2)Π(µ2)

,

which can be substituted back into (10.15) to give the exact relation,

e2(q2) =
e2(µ2)

1 − e2(µ2) · [Π(q2) − Π(µ2)]
. (10.16)

As a result of the loop integral for the photon self-energy, both Π(q2) and Π(µ2)
are separately divergent. However, the difference Π(q2) − Π(µ2) is finite and cal-
culable. Although the infinities have been renormalised away, the finite difference
between the effective strength of the interaction at different values of q2 remains.
Consequently, the coupling strength is no longer constant, it runs with the q2 scale
of the virtual photon. For values of q2 and µ2 larger than the electron mass squared,
it can be shown that

Π(q2) − Π(µ2) ≈ 1
12π2 ln

(
q2

µ2

)
.

Substituting this into (10.16) and writing α(q2) = e2(q2)/4π gives

α(q2) =
α(µ2)

1 − α(µ2)
1

3π
ln




q2

µ2




, (10.17)
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q /GeV!Fig. 10.12 Measurements ofα(q2) at di-erent q2 scales from e+e− → ff with the OPAL experiment at LEP. The dotted
line shows the low-q2 limit ofα ≈ 1/137. Adapted from Abbiendi et al. (2004).

and the coupling has acquired a dependence on the q2 of the photon. Hence, the
lowest-order QED diagram with a running coupling constant α(q2) incorporates the
effects of the virtual loop diagrams in the photon propagator. The above derivation
applies equally to s-channel and t-channel processes and (10.17) holds in both
cases. In a t-channel process both q2 and µ2 are negative and the running of the
coupling constant is often written as α(Q2). It should be noted that α(q2) should be
read as α(|q2|).

The minus sign in (10.17) implies that the coupling of QED increases with
increasing |q2|, although the evolution is rather slow. In measurements from atomic
physics at q2 ≈ 0, the fine-structure constant is determined to be

α(q2 ≈ 0) =
1

137.035 999 074(94)
.

The QED coupling α(q2) has also been measured in e+e− annihilation at LEP; the
results from the highest q2 measurements are shown in Figure 10.12. At a mean
centre-of-mass energy of

√
s = 193 GeV, it is found that

α =
1

127.4 ± 2.1
,

providing a clear demonstration of the running of the coupling of QED.

10.5.2 Running ofαS

The treatment of renormalisation in QCD is similar to that of QED. However,
owing to the gluon–gluon self-interactions, there are additional loop diagrams, as
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!Fig. 10.13 Renormalisation in QCD.

shown in Figure 10.13. For values of q2 and µ2 larger than the confinement scale,
the difference between the gluon self-energy again grows logarithmically

ΠS (q2) − ΠS (µ2) ≈ − B
4π

ln
(

q2

µ2

)
,

where the B depends to the numbers of fermionic (quark) and bosonic (gluon)
loops. For N f quark flavours and Nc colours,

B =
11Nc − 2N f

12π
.

The effect of the bosonic loops enters the expression for the q2 evolution of αS

with the opposite sign to the pure fermion loops, with the fermion loops leading
to a negative contributions (which was also the case for QED) and the gluon loops
leading to positive contributions. The corresponding evolution of αS (q2) is

αS (q2) =
αS (µ2)

1 + BαS (µ2) ln




q2

µ2




.

For Nc = 3 colours and N f ≤ 6 quarks, B is greater than zero and hence αS

decreases with increasing q2.
There are many ways in which αS can be measured. These include studies of the

hadronic decays of the tau-lepton, the observed spectra of bound states of heavy
quarks (cc and bb), measurements of deep inelastic scattering, and jet production
rates in e+e− annihilation. Figure 10.14 shows a summary of the most precise mea-
surements of αS which span |q| = 2 − 200 GeV. The predicted decrease in αS with
increasing |q| is clearly observed and the data are consistent with the QCD predic-
tions for the running of αS with a value of αS at |q2| = m2

Z of

αS (m2
Z) = 0.1184 ± 0.0007.
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!Fig. 10.14 Measurements of αS at di-erent |q| scales. The barely noticeable kinks in the QCD prediction occur at the
thresholds for producing ss, cc and bb; these a-ect the evolution of αS as the number of e-ective fermion
*avours Nf changes. Adapted from Bethke (2009).

Asymptotic freedom
The strength of the QCD coupling varies considerably over the range of energies
relevant to particle physics. At |q| ∼ 1 GeV, αS is of O(1) and perturbation theory
cannot be used. This non-perturbative regime applies to the discussion of bound
hadronic states and the latter stages in the hadronisation process. At |q| > 100 GeV,
which is the typical scale for modern high-energy collider experiments, αS ∼ 0.1,
which is sufficiently small that perturbation theory again can be used. This prop-
erty of QCD is known as asymptotic freedom. It is the reason that, in the previous
discussion of deep inelastic scattering at high q2, the quarks could be treated as
quasi-free particles, rather than being strongly bound within the proton. It should
be noted that at high q2, even though αS ∼ 0.1 is sufficiently small for perturbation
theory to be applicable, unlike QED, it is not so small that higher-order correc-
tions can be neglected. For this reason, QCD calculations for processes at the LHC
are almost always calculated beyond lowest order. These calculations, which often
involve many Feynman diagrams, are extremely challenging.

10.6 QCD in electron–positron annihilation

A number of the properties of QCD can be studied at an electron–positron collider,
primarily through the production of qq pairs in the annihilation process e+e− → qq,
shown Figure 10.15. There are a number of advantages in studying QCD at an
electron–positron collider compared to at a hadron collider. The QED production
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!Fig. 10.15 The lowest-order QED Feynman diagram for e+e− → qq production and the appearance of the interaction
in a detector as a ,nal state consisting of two jets of hadrons.

process of e+e− annihilation is well understood and can be calculated to high preci-
sion; there are no uncertainties related to the parton distribution functions. In addi-
tion, the observed final state corresponds to the underlying hard interaction. This
is not the case for hadron–hadron collisions, where the remnants of the colliding
hadrons are also observed, typically as forward-going jets.

The differential cross-section for the process e+e− → µ+µ− was calculated in
Chapter 6. Assuming that quarks are spin-half particles, the angular dependence of
the differential cross section for e+e− → qq is expected to be

dσ
dΩ
∝ (1 + cos2 θ),

where θ is the angle between the incoming e− and the final-state quark. Because the
quark and antiquark will hadronise into jets of hadrons, it is not generally possible
to identify experimentally which flavour of quark was produced. For this reason,
the e+e− → qq cross section is usually expressed as an inclusive sum over all quark
flavours, e+e− → hadrons. Furthermore, it is also not usually possible to identify
which jet came from the quark and which jet came from the antiquark. To reflect
this ambiguity, the differential cross section is usually quoted in terms of | cos θ|.
For example, Figure 10.16 shows the observed angular distribution of the jets in
the process e+e− → hadrons in the centre-of-mass energy range 38.8 <

√
s <

46.5 GeV. The angular distribution is consistent with expected (1 + cos2 θ) form,
demonstrating that quarks are indeed spin-half particles.

The total QED e+e− → µ+µ− cross section, was calculated previously

σ(e+e− → µ+µ−) =
4πα2

3s
. (10.18)

The corresponding cross section for the QED production of a qq pair is

σ(e+e− → qq ) = 3 × 4πα2

3s
Q2

q, (10.19)
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!Fig. 10.16 The angular distribution of the jets produced in e+e− annihilation at centre-of-mass energies between
38.8 GeV <

√
s < 46.5 GeV as observed in the CELLO experiment at the PETRA e+e− collider at DESY.

The expected (1 + cos2θ) distribution for the production of spin-half particles is also shown. Adapted from
Behrend et al. (1987).

where the factor of three accounts for the sum over the three possible colour com-
binations of the final-state qq that can be produced as gg, rr or bb. The inclusive
QED cross section for σ(e+e− → hadrons) is the sum of the cross sections for the
quark flavours that are kinematically accessible at a given centre-of-mass energy
(
√

s > 2mq),

σ(e+e− → hadrons) =
4πα2

s
× 3

∑

flavours

Q2
q. (10.20)

It is convenient to express the inclusive cross section of (10.20) in terms of a ratio
relative to the µ+µ− cross section of (10.18),

Rµ ≡
σ(e+e− → hadrons)
σ(e+e− → µ+µ−)

= 3
∑

flavours

Q2
q. (10.21)

This has the advantage that a number of experimental systematic uncertainties can-
cel since Rµ is related to the ratio of the observed numbers of events. The expected
value of Rµ depends on the sum of the squares of the charges of the quark flavours
that can be produced at a particular centre-of-mass energy. For

√
s ! 3 GeV, only

u, d and s quarks can be produced, giving the predicted value

R d,u,s
µ = 3 ×

(
4
9 +

1
9 +

1
9

)
= 2.
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ing three colours. The solid line includes the ,rst-order QCD correction of (1 + αS(q2)/π). Based on data
compiled by the Particle Data Group, Beringer et al. (2012).

Above the thresholds for cc production (3.1 GeV) and bb production (9.5 GeV) the
predictions for Rµ are respectively

R c
µ = 3 ×

(
1
9 +

4
9 +

1
9 +

4
9

)
= 10

3 and R b
µ = 3 ×

(
1
9 +

4
9 +

1
9 +

4
9 +

1
9

)
= 11

3 .

Figure 10.17 shows the measurements of Rµ over a wide range of centre-of-
mass energies. At relatively low energies, there is significant structure due to res-
onant production of bound qq states with the same spin and parity as the virtual
photon, JP = 1−. These resonances greatly enhance the e+e− → hadrons cross
section when the centre-of-mass energy is close to the mass of the state being pro-
duced. At very low energies, the resonance structure is dominated by the JP = 1−

mesons introduced in Section 9.6.3, namely the ρ0(770 MeV), ω(782 MeV) and
φ(1020 MeV) mesons. At higher energies, charmonium (cc) and bottomonium (bb)
states are produced, such as the J/ψ(3097 MeV),ψ′(3686 MeV) andΥ states. These
heavy quark resonances are discussed further in Section 10.8.

In the continuum between the meson resonances, the data disagree with the pre-
dictions for Rµ given in (10.21) at the level of approximately 10%. The origin of the
discrepancy is that the cross sections of (10.18) and (10.19) are only relevant for
the lowest-order process, whereas the measured cross sections will include µ+µ−γ,
qqγ and qqg final states, as shown in Figure 10.18. The cross sections for these
processes will be suppressed relative to the lowest-order process by respective fac-
tors of α, α and αS due to the additional vertex. The QED corrections are relatively
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!Fig. 10.18 Feynman diagrams for e+e− → µ+µ−γ, qqγ, qqg.

small, but the O(αS ) correction cannot be neglected. If the first-order QCD correc-
tion from e+e− → qqg is included, the prediction of (10.21) is modified to

Rµ =
σ(e+e− → hadrons)
σ(e+e− → µ+µ−)

= 3
(
1 +

αS (q2)
π

) ∑

flavours

Q2
q. (10.22)

With the QCD correction included, the prediction for Rµ, shown by the solid line in
Figure 10.17, is in excellent agreement with the experimental measurements away
from the resonances. This agreement provides strong evidence for the existence of
colour (which is never directly observed); without the additional colour degree of
freedom, the prediction for Rµ would be a factor of three smaller and would be
incompatible with the observed data.

Gluon production in e+e− annihilation

Jet production in high-energy electron–positron collisions also provides direct evi-
dence for the existence of gluons. Figure 10.19 shows three examples of e+e− →
hadrons events observed in the OPAL detector at LEP. Whilst the majority of the
e+e− → hadrons events are produced with a clear two-jet topology, final states
with three- or four-jets are also observed. The three-jet events originate from the
process e+e− → qqg, where the gluon is radiated from either the final-state quark
or antiquark, as shown in Figure 10.19b. The relative cross section for the produc-
tion of three-jet events compared to the two-jet final states is proportional to αS .
Hence the observed number of three-jet events relative to the number of two-jet
events, provides one of the most precise measurements of αS (q2). Jet production in
electron–positron collisions also provides a direct test of the SU(3) group structure
of QCD. For example, one of the Feynman diagrams for four-jet production, shown
in Figure 10.19c, involves the triple gluon vertex. The Feynman rules for this ver-
tex are determined by the local gauge symmetry of QCD. By studying the angular
distributions of the jets in four-jet events, it is possible to distinguish between an
underlying SU(3) colour symmetry and alternative gauge symmetries. Needless to
say, the experimental data are consistent with the predictions of SU(3).
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!Fig. 10.19 Jet production in e+e− annihilation. The example events were recorded at
√

s = 91 GeV by the OPAL exper-
iment at LEP in the mid 1990s. They correspond to (a) e+e− → qq → two-jets, (b) e+e− → qqg →
three-jets and (c) e+e− → qqgg→ four-jets. Reproduced courtesy of the OPAL collaboration. Also shown
are possible Feynman diagrams corresponding to the observed events. In the case of four-jet production there
are also diagrams where both gluons are radiated from the quarks.

10.7 Colour factors

At hadron colliders, such as the LHC, the observed event rates are dominated by
the QCD scattering of quarks and gluons. Figure 10.20 shows one of the parton-
level processes contributing to the cross section for pp → two jets + X, where X
represents the remnants of the proton that are observed as forward jets in the direc-
tion of the incoming proton beams. The calculation of the corresponding matrix
element needs to account for the different colours of the quarks and gluons that can
contribute to the scattering process.

In the Feynman diagram of Figure 10.20, the incoming and outgoing quark
colours are labelled by i, j, k and l. The exchanged gluon is labelled by a and b
at the two vertices, with the δab term in the propagator ensuring that the gluon at
vertex µ is the same as that at vertex ν. The colour flow in the diagram corresponds
to ik → jl. There are 34 possible colour combinations for the four quarks involved
in this process. In addition, there and eight possible gluons that can be exchanged.
Consequently, there are 648 distinct combinations of quark colours and gluons that
potentially can contribute to the process. Fortunately, the effect of summing over
all the colour and gluon combinations can be absorbed into a single colour factor.
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The matrix element for the Feynman diagram of Figure 10.20 can be written
down using the Feynman rules for QCD:

−iM =
[
u(p3){− 1

2 igS λ
a
jiγ
µ}u(p1)

]−igµν
q2 δab

[
u(p4){− 1

2 igS λ
b
lkγ

ν}u(p2)
]
.

This can be rearranged to give

M = −
g2

S

4
λa

jiλ
a
lk

1
q2 gµν

[
u(p3)γ µu(p1)

][
u(p4)γνu(p2)

]
. (10.23)

This matrix element resembles that for the QED process e−q→ e−q given in (8.13),

M = Qq
e2

q2 gµν
[
u(p3)γ µu(p1)

][
u(p4)γνu(p2)

]
.

The QCD matrix element for a particular combination of quark colours can be
obtained from the calculated QED matrix element by making the replacements
−Qqe2 → g2

S , or equivalently −Qqα → αS , and multiplying by the colour factor
C(ik → jl) that accounts for the sum over the eight possible exchanged
gluons

C(ik → jl) ≡ 1
4

8∑

a=1

λa
jiλ

a
lk. (10.24)
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!Fig. 10.21 Examples of the four classes of colour exchange diagram in quark–quark scattering.

The QCD colour factor C(ik → jl) can be evaluated using the Gell-Mann
matrices

λ1 =




0 1 0
1 0 0
0 0 0


 , λ4 =




0 0 1
0 0 0
1 0 0


 , λ6 =




0 0 0
0 0 1
0 1 0


 , λ3 =




1 0 0
0 −1 0
0 0 0


 ,

λ2 =




0 −i 0
i 0 0
0 0 0


 , λ5 =




0 0 −i
0 0 0
i 0 0


 , λ7 =




0 0 0
0 0 −i
0 i 0


 , λ8 =

1√
3




1 0 0
0 1 0
0 0 −2


 ,

where λ1 and λ2 correspond to the exchange of rg and gr gluons, λ4 and λ5 rep-
resent rb and br gluons, λ6 and λ7 represent gb and bg gluons, and λ3 and λ8

represent the exchange of 1
2 (rr−gg) and 1√

6
(rr+gg−2bb) gluons. The 34 possible

combinations of the colours i, j, k and l can be categorised into the four classes of
colour exchange, shown in Figure 10.21. These correspond to the following cases:
all four colours are the same, e.g. rr → rr ; the two initial-state quarks have dif-
ferent colours but do not change colour, e.g. rb → rb ; the two initial-state quarks
have different colours and exchange colour, e.g. rb→ br ; and all three colours are
involved. The different colour indices determine which elements of the λ-matrices
are relevant to the scattering process, which in turn determines which gluons con-
tribute.

From (10.24) the colour factor for rr → rr is

C(rr → rr) ≡ 1
4

8∑

a=1

λa
11λ

a
11.

Here the non-zero contributions arise from λ3 and λ8, which are the only
Gell-Mann matrices with non-zero values in the 11-element. Hence

C(rr → rr) =
1
4

8∑

a=1

λa
11λ

a
11 =

1
4

(λ3
11λ

3
11 + λ

8
11λ

8
11)

=
1
4

(
1 + 1

3

)
= 1

3 .
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Because of the underlying exact SU(3) colour symmetry, there is no need to repeat
the exercise for gg → gg or bb → bb ; the SU(3) colour symmetry guarantees that
the same result will be obtained, thus

C(rr → rr) = C(gg→ gg) = C(bb→ bb) = 1
3 . (10.25)

For the second class of diagram of Figure 10.21, rb→ rb, the corresponding colour
factor is

C(rb→ rb) =
1
4

8∑

a=1

λa
11λ

a
33.

Hence only the gluons associated with the Gell-Mann matrices with non-zero
entries in the 11 and 33 positions give a non-zero contribution, thus

C(rb→ rb) =
1
4

8∑

a=1

λa
11λ

a
33 =

1
4
λ8

11λ
8
33 =

1
4

(
1√
3
· −2√

3

)
= −1

6
,

and, from the SU(3) colour symmetry,

C(rb→ rb) = C(rg→ rg) = C(gr → gr) =

C(gb→ gb) = C(br → br) = C(bg→ bg) = −1
6 . (10.26)

For the third class of colour exchange of Figure 10.21, rg → gr, the only non-
zero contributions arise from the λ-matrices with non-zero entries in the 12 and 21
positions, therefore

C(rg→ gr) =
1
4

8∑

a=1

λa
21λ

a
12 =

1
4

(
λ1

21λ
1
12 + λ

2
21λ

2
12

)
=

1
2
,

and thus

C(rb→ br) = C(rg→ gr) = C(gr → rg) =

C(gb→ bg) = C(br → rb) = C(bg→ gb) = 1
2 . (10.27)

Finally, for the case where three different colours are involved, e.g. rb→ bg,

C(rb→ bg) =
1
4

8∑

a=1

λa
31λ

a
23.

Because none of the λ-matrices has non-zero entries in both the 31 and 23 posi-
tions, the colour factor is zero. This should come as no surprise, colour is a con-
served charge of the SU(3) colour symmetry and the process rb→ bg would result
in a net change of colour.
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Averaged colour factor
The colour factors calculated above account for the summation over the eight pos-
sible gluon intermediate states for a particular colour exchange ik → jl. In the scat-
tering process ud → ud, the colours of each of the initial-state quarks are equally
likely to be r, b or g. Therefore the nine possible initial-state colour combinations
are equally probable. For a particular initial-state colour combination, the cross
section will depend on the sum of the squared matrix elements for each of the nine
possible orthogonal final-state colour combinations. The possible colour combina-
tions are accounted for by the colour-averaged sum of squared matrix elements,

〈|M|2〉 = 1
9

3∑

i, j,k,l= 1

|M(i j→ kl)|2, (10.28)

where the sum is over all possible colours in the initial- and final-state, and the
factor of 1

9 averages over the nine possible initial-state colour combinations. The
colour part of (10.28),

〈|C|2〉 = 1
9

3∑

i, j,k,l= 1

|C(i j→ kl)|2, (10.29)

can be evaluated using the expressions for the individual colour factors of (10.25)–
(10.27). There are three colour combinations of the type rr → rr (i.e. rr → rr,
bb → bb and gg → gg) each with an individual colour factor 1

3 , six combinations
of the type rb→ rb with colour factor −1

6 and six combinations of the type rb→ br
with colour factor 1

2 . Hence the overall colour factor is

〈|C|2〉 = 1
9

[
3 ×

(
1
3

)2
+ 6 ×

(
− 1

6

)2
+ 6 ×

(
1
2

)2
]
= 2

9 . (10.30)

Hence, the entire effect of the 648 possible combinations of quark colours and
types of gluons is encompassed into a single number.

The QCD cross section for the scattering process ud→ ud can be obtained from
the QED cross section for e−q→ e−q of (8.19),

dσ
dq2 =

2πQ2
qα

2

q4


1 +

(
1 +

q2

s

)2 ,

by replacing αQq with αS and by multiplying by the averaged colour factor of
(10.30), to give

dσ
dq2 =

4πα2
S

9q4


1 +

(
1 +

q2

ŝ

)2 , (10.31)

where ŝ is the centre-of-mass energy of the colliding ud system.
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10.7.1 Colour in processes with antiquarks

Figure 10.22 shows the vertices for the basic QCD interaction between quarks
and/or antiquarks. The quark current associated with the qqg vertex is given by
(10.12)

j µq = u(p3)c†j
{
− 1

2 igS λ
aγ µ

}
ciu(p1),

where the outgoing quark enters as the adjoint spinor. In the equivalent expression
for the q qg vertex, the incoming antiparticle is now represented by the adjoint
spinor

j µq = v(p1)c†i
{
− 1

2 igS λ
aγ µ

}
c jv(p3).

Consequently, the colour part of the expression is

c†i λ
ac j = c†i




λa
1 j
λa

2 j
λa

3 j



= λa

i j.

The order of the indices i j is swapped with respect to the quark case, ji → i j. In
general, the colour index associated with the adjoint spinor appears first, and thus
the colour factor associated with the qqg annihilation vertex shown of Figure 10.22
is λa

ki.
Figure 10.23 shows the four possible combinations of two quarks/antiquarks

interacting via the exchange of a single gluon. For the quark–antiquark and
antiquark–antiquark scattering diagrams, the expressions for the colour factors are

C(i k → j l) ≡ 1
4

8∑

a=1

λa
i jλ

a
kl, and C(i k → j l) ≡ 1

4

8∑

a=1

λa
jiλ

a
kl,

which can be compared to the expression for the colour factor for quark–quark
scattering of (10.24). Because the Gell-Mann matrices have the property that either
λT = λ or λT = −λ, the same colour factors are obtained for qq and q q scattering,

i

p1

j

ga

p3

q q
m

p3p1

ga

m p1

i

p2

ga

q

m
k

ji
q q

q!Fig. 10.22 Colour indices for the qqg , qqg and qqg vertices.
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k!Fig. 10.23 The four diagrams involving the interaction of two quarks/antiquarks via a single gluon.
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and it is straightforward to show that the non-zero colour factors for the t-channel
scattering processes are

C(r r → r r) = C(r r → r r) = C(r r → r r) = 1
3 , (10.32)

C(r g→ r g) = C(r g→ r g) = C(r g→ r g) = −1
6 , (10.33)

C(r g→ g r) = C(r r → g g) = C(r g→ g r) = 1
2 . (10.34)

For the s-channel annihilation diagram, the expression for the individual colour
factors is

Cs(i k → jl) ≡ 1
4

8∑

a=1

λa
kiλ

a
jl,

from which it follows that

Cs(r r → r r) = 1
3 , Cs(r g→ r g) = 1

2 and Cs(r r → g g) = − 1
6 . (10.35)

For all four processes shown in Figure 10.23, the colour-averaged colour factor,
defined in (10.29), is 〈|C|2〉 = 2/9. Each of the individual colour factors given in
(10.32)–(10.35) can be associated with the exchange of a particular type of gluon,
such that colour charge is conserved at each vertex. For example, Figure 10.24
shows the colour flow in the Feynman diagrams of Figure 10.23 for the case where
the virtual gluon corresponds to the combined effect of the exchange of rg and gr
gluons.
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10.7.2 *Colour sums revisited

The overall colour factor for quark (or antiquark) scattering via the exchange of
a single gluon can be obtained directly by considering the factors that enter the
expression for the matrix element squared. For example, the qq → qq matrix ele-
mentM for colours ik → jl includes the colour factor

C =
1
4
λa

jiλ
a
lk,

where summation over the repeated gluon indices is implied. The matrix element
squared for this colour combination, |M|2 =MM†, is proportional to

CC∗ =
1

16
λa

jiλ
a
lk · (λb

ji)
∗(λb

lk)∗

=
1

16
λa

jiλ
a
lkλ

b
i jλ

b
kl, (10.36)

where the second line follows from the Gell-Mann matrices being Hermitian. The
colour-averaged summed matrix element squared therefore can be written

〈|C|2〉 = 〈CC∗〉 = 1
9

1
16

8∑

a,b=1

3∑

i jkl=1

λa
jiλ

b
i jλ

a
lkλ

b
kl

=
1

144

8∑

a,b=1

[
Tr

(
λaλb

)]2
.

It is straightforward to show that Tr
(
λaλb

)
= 2δab, and thus

〈|C|2〉 = 1
144

8∑

a,b=1

(2δab)2 =
1

144

8∑

a=1

22 =
2
9
.

The same result will be obtained independent of the order in which the indices
appear in the initial expression, and therefore the same colour-averaged colour fac-
tor is obtained for all four processes of Figure 10.23.

10.8 Heavy mesons and the QCD colour potential

Heavy quark cc (charmonium) and bb (bottomonium) bound states are observed as
resonances in e+e− annihilation, as seen previously in Figure 10.17. The multiple
charmonium and bottomonium resonances correspond to eigenstates of the qq sys-
tem in the QCD potential. Whilst only states with spin-parity JP = 1− are produced
in e+e− annihilation, other states are observed in particle decays. Unlike the quarks
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!Fig. 10.25 The masses and JPC assignments of the observed charmonium (cc) and bottomonium (bb) bound states,
where C is the charge conjugation quantum number discussed in Chapter 14.

in the light uds mesons, which are relativistic, the velocities of the heavy quarks in
the charmonium and bottomonium states are relatively low, βc ∼ 0.3 and βb ∼ 0.1.
In this case, the observed spectra of charmonium and bottomonium states, shown
in Figure 10.25, provide a probe of the QCD potential in the non-relativistic limit.

In non-relativistic QCD (NRQCD), the interaction between two quarks (or
between a quark and an antiquark) can be expressed as a static potential of the
form V(r). Owing to the gluon self-interactions (10.13), the potential at large dis-
tances is proportional to the separation of the quarks, V(r) ∼ κr. The short-range
component of the NRQCD potential can be obtained by considering the analo-
gous situation for QED. The non-relativistic limit of QED gives rise to a repulsive
Coulomb potential between two electrons (i.e. two particles), V(r) = α/r, and an
attractive potential between an electron and its antiparticle, V(r) = −α/r. With the
exception of the treatment of colour, which factorises from the spinor part, the fun-
damental QCD interaction has exactly the same φγ µψ form as QED. Therefore, the
short-range NRQCD potential between two quarks must be

Vqq(r) = +C
αS

r
, (10.37)

and that between a quark and an antiquark is

Vqq(r) = −C
αS

r
, (10.38)

where C is the appropriate colour factor. Depending on the sign of this colour
factor, which will depend on the colour wavefunction of the state, the short-range
static potential for the qq system could be either attractive or repulsive.
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From the colour confinement hypothesis, it is known that mesons are colour
singlets, with a colour wavefunction

ψ = 1√
3
(rr + gg + bb).

Thus, the expectation value of the NRQCD potential for a meson can be written

〈Vqq〉 = 〈ψ|VQCD|ψ〉 = 1
3

(
〈rr|VQCD|rr〉 + · · · + 〈rr|VQCD|bb〉 + · · ·

)
, (10.39)

where the dots indicate the other seven colour combinations. From the form of the
NRQCD potential identified in (10.38),

〈rr|VQCD|rr〉 = −C(rr → rr)
αS

r
and 〈rr|VQCD|bb〉 = −C(rr → bb)

αS

r
,

and therefore the expectation value of the QCD potential of (10.39) can be written

〈Vqq〉 = −
αS

3r

(
C(rr → rr) + · · · +C(rr → bb) + · · ·

)
.

This expression contains three terms of the form rr → rr and six of the form
rr → gg, and therefore

〈Vqq〉 = −
αS

3r
[
3 ×C(rr → rr) + 6 ×C(rr → gg)] .

Using the expressions for the colour factors for the t-channel exchange of a gluon
between a quark and an antiquark, given in (10.32) and (10.34), the non-relativistic
QCD potential can be written

〈Vqq〉 = −
αS

3r

[
3 × 1

3 + 6 × 1
2

]
= −4

3
αS

r
.

Hence, the short range NRQCD potential in the qq colour singlet state is attractive.
Adding in the long-range term of (10.13), gives the expression for the NRQCD
potential

Vqq(r) = −4
3
αS

r
+ κr. (10.40)

The non-relativistic QCD potential of (10.40) can be used to obtain the predicted
spectra for the cc and bb bound states. The more accurate predictions are obtained
for the bb system, where the non-relativistic treatment is a good approximation.
Reasonable agreement with observed l = 0 and l = 1 charmonium and bottom-
onium states of Figure 10.25 is found assuming λ ≈ 1 GeV/fm, providing further
evidence for the presence of the linear term in the potential, which is believed to
be responsible for colour confinement.

Figure 10.26 shows the non-relativistic QCD potential of (10.40) for αS =

0.2 and κ = 1 GeV/fm. The potential energy becomes positive at approximately
0.25 fm, with the linear term dominating at larger radii, setting the length scale for
confinement for these heavy quark states.
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!Fig. 10.26 The approximate form of the non-relativistic QCD potential for a bound qq state, assuming αS = 0.2 and
κ = 1 GeV/ fm.

10.9 Hadron–hadron collisions

Hadron colliders, either proton–proton or proton–antiproton, provide a route to
achieving higher centre-of-mass energies than is possible with circular e+e− col-
liders, and are central to the search for the production of new particles at high-mass
scales. The underlying process in hadron–hadron collisions is the interaction of two
partons, which can be either quarks, antiquarks or gluons.

10.9.1 Hadron collider event kinematics

In electron–proton elastic scattering, a single variable was sufficient to describe the
event kinematics. This was chosen to be the scattering angle of the electron. In
electron–proton deep inelastic scattering two variables are required, reflecting the
additional degree of freedom associated with the unknown momentum fraction x
of the struck quark. In hadron–hadron collisions, the momentum fractions x1 and
x2 of the two interacting partons are unknown, and the event kinematics have to be
described by three variables, for example Q2, x1 and x2. These three independent
kinematic variables can be related to three experimentally well-measured quanti-
ties. In hadron collider experiments, the scattered partons are observed as jets. In
a process such as pp → two jets + X, the angles of the two-jets with respect to
the beam axis are relatively well measured. Consequently, differential cross sec-
tions are usually described in terms of these two jet angles and the component of
momentum of one of the jets in the plane transverse to the beam axis, referred to
as the transverse momentum
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pT =

√
p2

x + p2
y,

where the z-axis defines the beam direction.
At a hadron–hadron collider, such as the LHC, the collisions take place in the

centre-of-mass frame of the pp system, which is not the centre-of-mass frame of the
colliding partons. The net longitudinal momentum of the colliding parton–parton
system is given by (x1− x2)Ep, where Ep is the energy of the proton. Consequently,
in a process such pp → 2 jets + X, the two final-state jets are boosted along the
beam direction. For this reason, the jet angles are usually expressed in terms of the
rapidity y, defined by

y =
1
2

ln
(

E + pz

E − pz

)
, (10.41)

where E and pz are the measured energy and z-component of momentum of a jet.
The use of rapidity has the advantage that rapidity differences are invariant under
boosts along the beam direction. This can be seen by considering the effect of a
Lorentz transformation along the z-axis, where the rapidity y in the boosted frame
of reference is given by

y′ =
1
2

ln
[
E′ + p′z
E′ − p′z

]
=

1
2

ln
[
γ(E − βpz) + γ(pz − βE)
γ(E − βpz) − γ(pz − βE)

]

=
1
2

ln
[
(1 − β)(E + pz)
(1 + β)(E − pz)

]

= y +
1
2

ln
(
1 − β
1 + β

)
.

Hence, differences in rapidities are the same measured in any two frames, ∆y′ =
∆y. Therefore, the a priori unknown longitudinal boost of the parton–parton system
does not affect the distribution of rapidity differences.

The invariant mass of the system of particles forming a jet is referred to as the jet
mass. The jet mass is not the same as the mass of the primary parton; it is mainly
generated in the hadronisation process. For high-energy jets, the jet mass is usually
small compared to the jet energy and pz ≈ E cos θ, where θ is the polar angle of the
jet with respect to the beam axis. Hence the rapidity can be approximated by

y ≈ 1
2

ln
(
1 + cos θ
1 − cos θ

)
=

1
2

ln
(
cot2 θ

2

)
.

Therefore, the pseudorapidity η defined as

η ≡ − ln
(
tan θ

2

)

can be used in place of rapidity y when jet masses can be neglected. Figure 10.27
illustrates the polar angle ranges covered by different regions of pseudorapidity.
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Broadly speaking, the differential cross sections for jet production in hadron–hadron
collisions are approximately constant in pseudorapidity, implying that roughly equal
numbers of jets are observed in each interval of pseudorapidity shown in
Figure 10.27, reflecting the forward nature of jet production in pp and pp colli-
sions.

10.9.2 The Drell–Yan process

The QED production of a pair of leptons in hadron–hadron collisions from the
annihilation of an antiquark and a quark, shown in Figure 10.28, is known as the
Drell–Yan process. It provides a useful example of a cross section calculation for
hadron–hadron collisions, in this case pp → µ+µ−X, where X represents the rem-
nants of the colliding hadrons.

The QED annihilation cross section for e+e− → µ+µ− was calculated in
Chapter 7. The corresponding cross section for qq→ µ+µ− annihilation is

σ(qq→ µ+µ−) =
1

Nc
Q2

q
4πα2

3ŝ
, (10.42)

where Qq is the quark/antiquark charge and ŝ is the centre-of-mass energy of the
colliding qq system. The factor 1/Nc, where Nc = 3 is the number of colours,
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accounts for the conservation of colour charge, which implies that of the nine pos-
sible colour combinations of the qq system, the annihilation process can only occur
for three, rr, bb and gg. From the definition of the parton distribution functions, the
contribution to the pp Drell–Yan cross section from an up-quark within the proton
with momentum fraction x1 → x1 + δx1 annihilating with an anti-up-quark within
the antiproton with momentum fraction x2 → x2 + δx2 is

d2σ = Q2
u

4πα2

9ŝ
up(x1)dx1 up(x2) dx2, (10.43)

where up(x2) is the PDF for the anti-up-quark in the antiproton. Because the anti-
quark PDFs within the antiproton will be identical to the corresponding quark PDFs
in the proton, up(x) = up(x) ≡ u(x), Equation (10.43) can be written

d2σ =
4
9
· 4πα2

9ŝ
u(x1)u(x2) dx1dx2. (10.44)

The centre-of-mass energy of the qq system can be expressed in terms of that of
the proton–antiproton system using

ŝ = (x1 p1 + x2 p2)2 = x2
1 p2

1 + x2
2 p2

2 + 2x1x2 p1 ·p2.

In the high-energy limit, where the proton mass squared can be neglected, p2
1 =

p2
2 ≈ 0 and

ŝ ≈ x1x2(2p1 ·p2) = x1x2s,

where s is the centre-of-mass energy of the colliding pp system. Hence (10.44),
expressed in terms of s, becomes

d2σ =
4
9
· 4πα2

9x1x2s
u(x1)u(x2) dx1dx2. (10.45)

Accounting for the (smaller) contribution from the annihilation of a u in the proton
with a u in the antiproton and the contribution from dd annihilation, leads to

d2σ =
4πα2

9x1x2s

[
4
9

{
u(x1)u(x2) + u(x1)u(x2)

}
+ 1

9

{
d(x1)d(x2) + d(x1)d(x2)

}]
dx1dx2.

(10.46)

The Drell–Yan differential cross section is most usefully expressed in terms of
the experimental observables. Here a suitable choice is the rapidity and the invari-
ant mass of the µ+µ− system, both of which can be determined from the momenta
of the µ+ and µ− as reconstructed in the tracking system of the detector. The coordi-
nate transformation from x1 and x2 to these experimental observables is not entirely
straightforward, but is shown to illustrate the general principle. The invariant mass
of the µ+µ− system is equal to the centre-of-mass energy of the colliding partons,

M2 = x1x2s. (10.47)
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The rapidity of the µ+µ− system is given by

y =
1
2

ln
(

E3 + E4 + p3z + p4z

E3 + E4 − p3z − p4z

)
=

1
2

ln
(

Eq + Eq + pqz + pqz

Eq + Eq − pqz − pqz

)
,

where the equality of four-momenta of the µ+µ− system and that of the colliding
partons follows from energy and momentum conservation. The four-momenta of
the colliding q and q are respectively given by

pq =

√
s

2
(x1, 0, 0, x1) and pq =

√
s

2
(x2, 0, 0,−x2),

and hence

y =
1
2

ln
(
(x1 + x2) + (x1 − x2)
(x1 + x2) − (x1 − x2)

)
=

1
2

ln
x1

x2
. (10.48)

From (10.47) and (10.48), x1 and x2 can be written in terms of M and y,

x1 =
M√

s
ey and x2 =

M√
s
e−y. (10.49)

The differential cross section in terms of dx1dx2 can be expressed in terms of dy dM
using the determinant of the Jacobian matrix for the coordinate transformation

dy dM =
∂(y,M)
∂(x1, x2)

dx1dx2 =

∣∣∣∣∣∣∣

∂y
∂x1

∂y
∂x2

∂M
∂x1

∂M
∂x2

∣∣∣∣∣∣∣
dx1 dx2,

where the partial derivatives obtained from (10.47) and (10.48) give

dy dM =
s

2M
dx1dx2.

Hence the differential cross section of (10.46) can be expressed as

d2σ =
4πα2

9M2 f (x1, x2)
2M

s
dy dM,

where

f (x1, x2) =
[

4
9

{
u(x1)u(x2) + u(x1)u(x2)

}
+ 1

9

{
d(x1)d(x2) + d(x1)d(x2)

}]
,

and thus, the Drell–Yan differential cross section, written in terms of the invariant
mass and rapidity of the µ+µ− system, is

d2σ

dy dM
=

8πα2

9Ms
f (x1, x2),

where x1 and x2 are given by (10.49).
The above treatment of the Drell–Yan process considered only the QED photon-

exchange diagram. However, any neutral particle which couples to both quarks
and muons can contribute. For example, Figure 10.29 shows the measured differ-
ential cross section for pp → µ+µ−X from the CDF experiment at the Tevatron,
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!Fig. 10.29 The measured Drell–Yan cross section in pp collisions at
√

s = 1.8 TeV in the CDF detector at the Tevatron
collider. Adapted from Abe et al. (1999).

which operated from 1989 to 2011. The strong enhancement in the cross section
at Mµ+µ− ∼ 91 GeV is due to the resonant production of the Z boson, through the
annihilation process qq→ Z→ µ+µ−. The Drell–Yan process also provides a way
of searching for physics beyond the Standard Model through the production of new
massive neutral particles that couple to both quarks and leptons, through the pro-
cess qq → X0 → µ+µ−. To date, no such signals of physics beyond the Standard
Model have been observed.

10.9.3 Jet production at the LHC

The Large Hadron Collider at CERN is the highest energy accelerator ever built. It
is a pp collider designed to operate at an ultimate centre-of-mass energy of 14 TeV.
The LHC commenced full operation at

√
s = 7 TeV in 2010 and ran at

√
s =

8 TeV in 2012. The most common, although not the most interesting, high-energy
process at the LHC is the QCD production of two-jets. Figure 10.30 shows an
example of a two-jet event recorded at

√
s = 7 TeV in the ATLAS experiment.

Since the colliding partons have no momentum transverse to the beam axis, the
jets are produce back to back in the transverse plane and have equal and opposite
transverse momenta, pT. In the other view, the jets are not back to back due to
the boost of the final-state system from the net momentum of the colliding partons
along the beam axis, (x1 − x2)

√
s/2.

The cross section for the production of two jets from the t-channel gluon
exchange process qq→ qq is given by (10.31),
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!Fig. 10.30 An example of a pp → two-jets X event observed in the ATLAS detector a the LHC: (left) the transverse
view (perpendicular to the beam direction) and (right) the yz-view with the z-axis along the beam direction.
Reproduced courtesy of the ATLAS collaboration.

dσ
dQ2 =

4πα2
S

9Q4


1 +

(
1 − Q2

ŝ

)2 ,

where Q2 = −q2 and ŝ = x1x2s is the centre-of-mass energy of the colliding
quarks. The contribution to the proton–proton cross section, expressed in terms of
the parton density functions, is therefore

dσ
dQ2 =

4πα2
S

9Q4


1 +

(
1 − Q2

sx1x2

)2 g(x1, x2) dx1dx2.

where g(x1, x2) is the sum over the products of the relevant parton distribution
functions for the scattering process qq→ qq, which for up- and down-quarks is

g(x1, x2) = [u(x1)u(x2) + u(x1)d(x2) + d(x1)u(x2) + d(x1)d(x2)] .

The differential cross section therefore can be written as

d3σ

dQ2 dx1 dx2
=

4πα2
S

9Q4


1 +

(
1 − Q2

sx1x2

)2 g(x1, x2). (10.50)

This expression has three degrees of freedom; one from the underlying elastic
scattering process, here written in terms of Q2, and one from each of the parton
momentum fractions, x1 and x2. In the process pp → two-jets X, the experimen-
tally well-measured quantities are the rapidities of the two final-state jets, y3 and
y4, and the magnitude of the transverse momentum, pT (which is the same for both
jets). Equation (10.50) can be written in terms of these measured quantities using
the determinant of the Jacobian for the coordinate transformation from {Q2, x1, x2}
to {pT, y3, y4} (see Problems 10.6 and 10.7). In principle, given knowledge of the
PDFs, it would be possible to calculate the lowest-order QCD contribution to the
LHC two-jet production cross section from the process qq → qq and express it
in terms of these three experimental observables. However, qq → qq is just one
of a number of parton-level processes that contribute to pp → two-jets X at the
LHC. For example, some of the other Feynman diagrams resulting in a two-jet
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!Fig. 10.31 Feynman diagrams for two-jet production in proton–proton collisions. There are also diagrams involving
initial-state antiquarks.

final state are shown in Figure 10.31. The contributions from all processes, includ-
ing the interference between diagrams with the same final-state partons, need to
be summed to obtain the cross section for pp → two-jets X. Furthermore, for
accurate predictions, the effects of higher-order QCD diagrams also need to be
considered.

At this point, it should be clear that unlike the case of electron–positron anni-
hilation, cross section calculations for the LHC are highly complex. Not only are
the PDFs required, but multiple diagrams are involved and higher orders have to
be included. In practice, such calculations are performed numerically in highly
sophisticated computer programs. Nevertheless, the comparison of the predictions
from these calculations with the experimental data from the LHC provides a pow-
erful test of QCD. For example, Figure 10.32 shows early data from the CMS
experiment. The plot shows the inclusive jet production cross section d2σ/dpTdy
in intervals of ∆y = 0.5 of rapidity (which correspond to different ranges of polar
angles in the detector). The pT distribution is peaked towards zero, reflecting the
1/Q4 propagator term and the large values of the PDFs at low x. The measured
cross sections for each interval of rapidity are similar, with roughly equal num-
bers of jets being observed in each of the (pseudo)rapidity intervals shown in
Figure 10.27, demonstrating that jets are produced preferentially in the forward
directions.

The data of Figure 10.32 are compared to next-to-leading-order (NLO) QCD
predictions using the current knowledge of the PDFs. The predicted cross sections
are in good agreement with the data that span a wide range of jet pT. In general,
QCD is found to provide an excellent description of jet phenomena in hadron–
hadron collisions. The success of QCD in describing the experimental results is
an important achievement of modern particle physics and provides overwhelming
evidence for the existence of the underlying SU(3) gauge symmetry.
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!Fig. 10.32 The measurement of the inclusive di-erential cross section for jet production from data recorded at
√

s =
7 TeV in the CMS experiment at the LHC. The curves are the predicted cross sections from NLO QCD. Adapted
from Chatrchyan et al. (2011).

Summary

Quantum Chromodynamics is the quantum field theory of the strong interaction. It
corresponds to a non-Abelian SU(3) local gauge symmetry, with eight gluons asso-
ciated with the eight generators. The interactions between the gluons and quarks
are described by the qqg vertex factor

− 1
2 igS λ

a
jiγ
µ,

where i and j are the colour charges of the quarks. The corresponding Feynman
rule for the gluon propagator is

−i
gµν

q2 δ
ab.

Whilst the Feynman rules for the QCD vertex and the gluon propagator resem-
ble those of QED, the presence of gluon self-interactions leads to very different
behaviour. For example, colour is confined and all freely propagating particles are
colour singlet states; free quarks and gluons are not observed.

The running of αS (Q2) implies that the strength of the QCD interaction decreases
with energy scale, a property known as asymptotic freedom. As a consequence,
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perturbative calculations can be used for high-energy QCD processes. Despite the
practical difficulties of performing accurate calculations, QCD is found to provide
an excellent description of hadron collider data and the SU(3) local gauge symme-
try should be considered to be an experimentally established fact.

Problems

10.1 By considering the symmetry of the wavefunction, explain why the existence of theΩ−(sss) L = 0 baryon
provides evidence for a degree of freedom in addition to space× spin× *avour.

10.2 From the expression for the running of αS with Nf = 3, determine the value of q2 at which αS appears to
become in,nite. Comment on this result.

10.3 Find the overall “colour factor” for qq→ qq if QCD corresponded to a SU(2) colour symmetry.

10.4 Calculate the non-relativistic QCD potential between quarks q1 and q2 in a q1q2q3 baryon with colour wavefunc-
tion

ψ =
1√

6
(rgb − grb + gbr − bgr + brg − rbg).

10.5 Draw the lowest-order QCD Feynman diagrams for the process pp → two-jets + X , where X represents the
remnants of the colliding hadrons.

10.6 The observed events in the process pp → two-jets at the LHC can be described in terms of the jet pT and the
jet rapidities y3 and y4.
(a) Assuming that the jets are massless, E2 = p2

T + p2
z , show that the four-momenta of the ,nal-state jets can

be written as

p3 = (pT cosh y3,+pT sin φ,+pT cos φ, pT sinh y3),
p4 = (pT cosh y4,−pT sin φ,−pT cos φ, pT sinh y4).

(b) By writing the four-momenta of the colliding partons in a pp collision as

p1 =

√
s

2
(x1, 0, 0, x1) and p2 =

√
s

2
(x2, 0, 0,−x1),

show that conservation of energy and momentum implies

x1 =
pT√

s
(e+y3 + e+y4 ) and x2 =

pT√
s
(e−y3 + e−y4 ).

(c) Hence show that

Q2 = p2
T(1 + ey4−y3 ).

10.7 Using the results of the previous question show that the Jacobian

∂(y3, y4, p2
T)

∂(x1, x2, q2)
=

1
x1x2
.



284 Quantum Chromodynamics (QCD)

10.8 The total cross section for the Drell–Yan process pp→ µ+µ−X was shown to be

σDY =
4πα2

81s

∫ 1

0

∫ 1

0

1
x1x2

[
4u(x1)u(x2) + 4u(x1)u(x2) + d(x1)d(x2) + d(x1)d(x2)

]
dx1dx2 .

(a) Express this cross section in terms of the valence quark PDFs and a single PDF for the sea contribution, where
S(x) = u(x) = d(x).

(b) Obtain the corresponding expression for pp→ µ+µ−X .
(c) Sketch the region in the x1–x2 plane corresponding sqq > s/4. Comment on the expected ratio of the Drell–

Yan cross sections in pp and pp collisions (at the same centre-of-mass energy) for the two cases: (i) ŝ 3 s
and (ii) ŝ > s/4, where ŝ is the centre-of-mass energy of the colliding partons.

10.9 Drell–Yan production ofµ+µ−-pairs with an invariant mass Q2 has been studied inπ± interactions with carbon
(which has equal numbers of protons and neutrons). Explain why the ratio

σ(π+C→ µ+µ−X)
σ(π−C→ µ+µ−X)

tends to unity for small Q2 and tends to 1
4 as Q2 approaches s.


