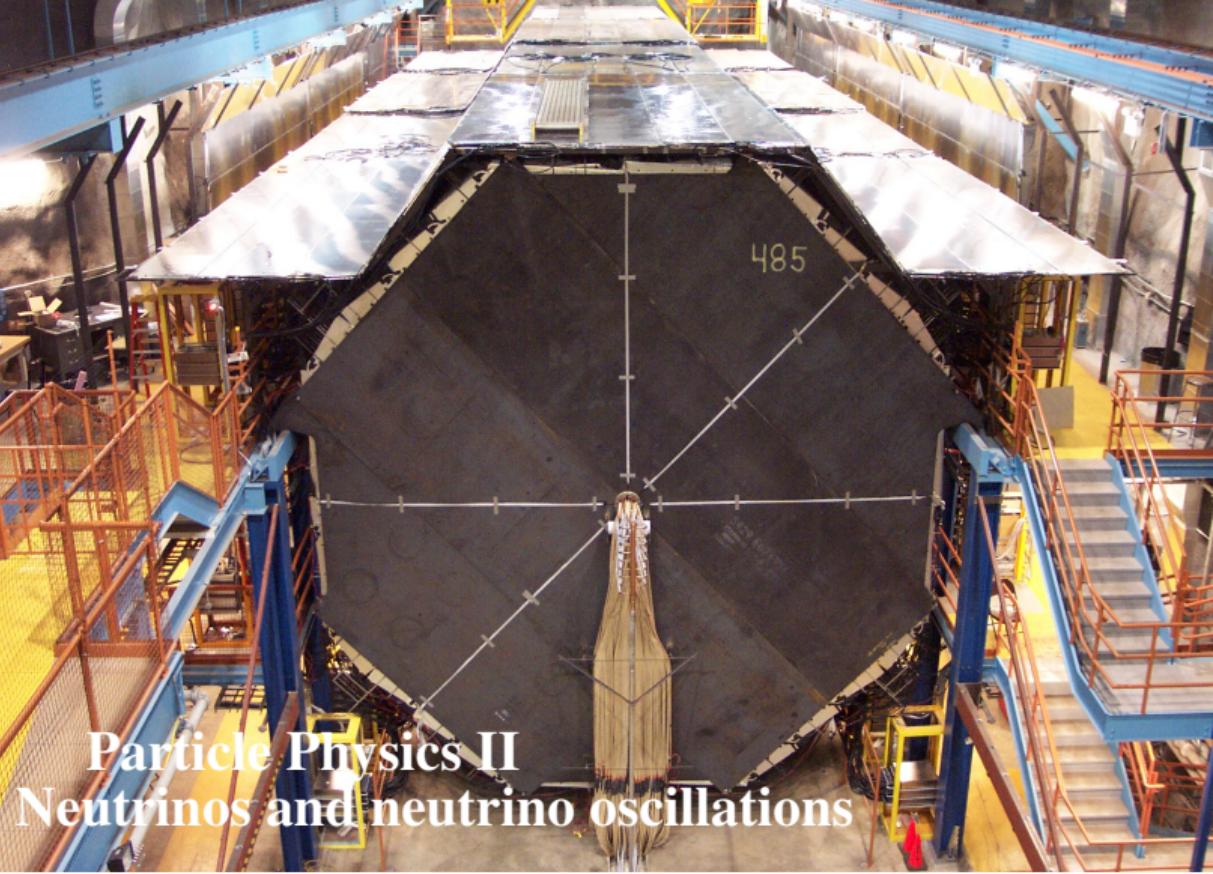


Lecture 5



Particle Physics II Neutrinos and neutrino oscillations

Lesya Shchutska

March 20, 2025

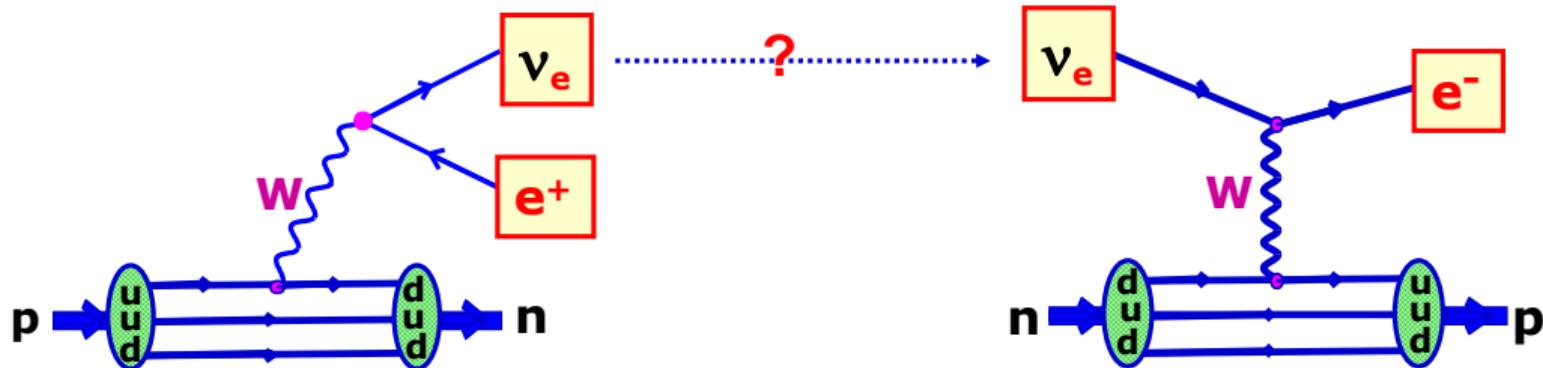
- ν are never observed directly but detected via their weak interactions
- by definition, ν_e is the ν state produced along with e^+
- and vice versa: charged current weak interactions of the state ν_e produce e^-

ν_e, ν_μ, ν_τ – weak eigenstates

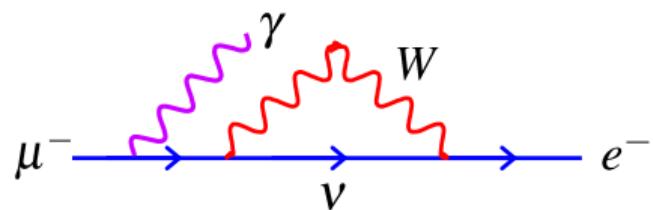
- was assumed for many years: ν_e, ν_μ, ν_τ – massless fundamental particles

Neutrino flavors

Experimental evidence: ν produced along with e^+ always lead to e^- in CC weak interactions, etc:

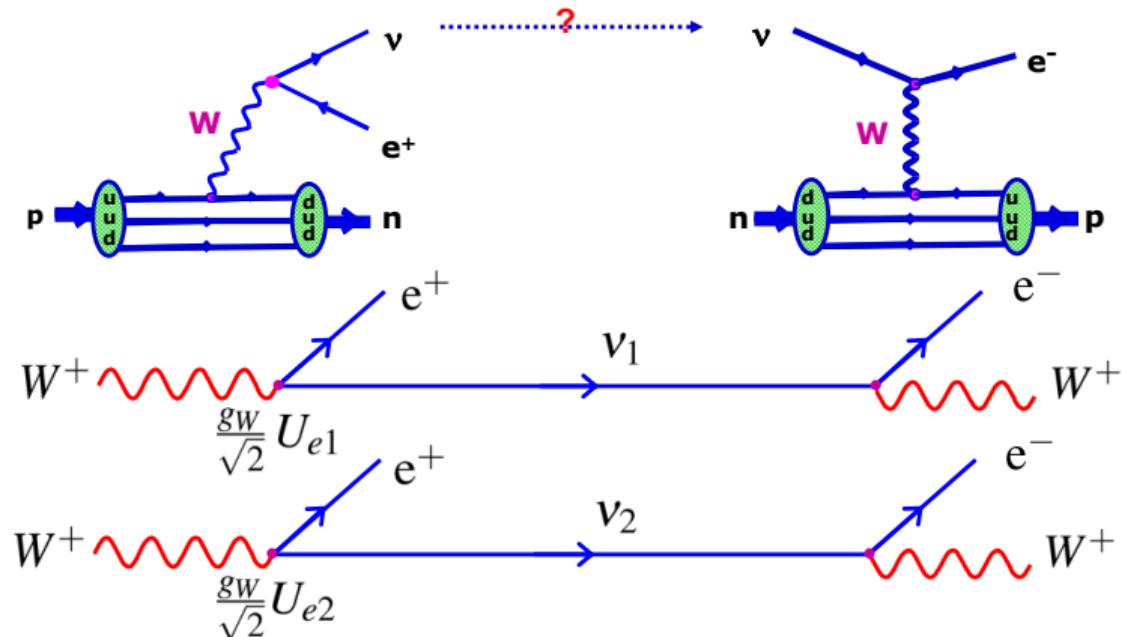


Experimental evidence: absence of $\mu^- \rightarrow e^- \gamma$ suggests that ν_e and ν_μ are distinct particles
 $\mathcal{B}(\mu^- \rightarrow e^- \gamma) < 10^{-11}$



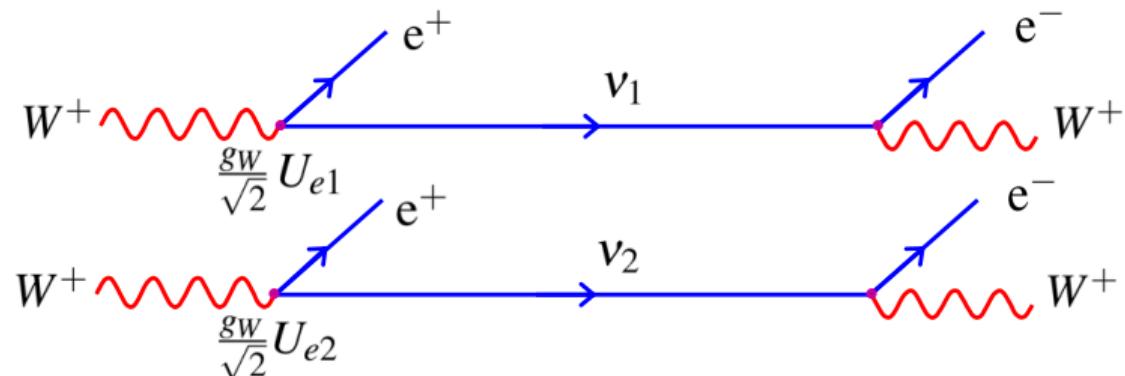
Mass eigenstates and weak eigenstates

- the essential feature in understanding the physics of neutrino oscillations is to understand what is meant by weak eigenstates and mass eigenstates ν_1, ν_2
- suppose the process below proceeds via two fundamental particle states



Mass eigenstates and weak eigenstates

- can't know which **mass eigenstate** (ν_1, ν_2) was involved



- in QM treat as a coherent state $\psi = \nu_e = U_{e1}\nu_1 + U_{e2}\nu_2$
- ν_e represents the wave-function of the coherent state produced along with e^+ in the weak interaction, i.e. the **weak eigenstate**

Neutrino oscillations for two flavors

- neutrinos are produced and interact as **weak eigenstates**, ν_e , ν_μ
- they are coherent linear combinations of the fundamental “**mass eigenstates**” ν_1 , ν_2
- the mass eigenstates are the free particle solutions to the wave equation and will be taken to propagate as plane waves:

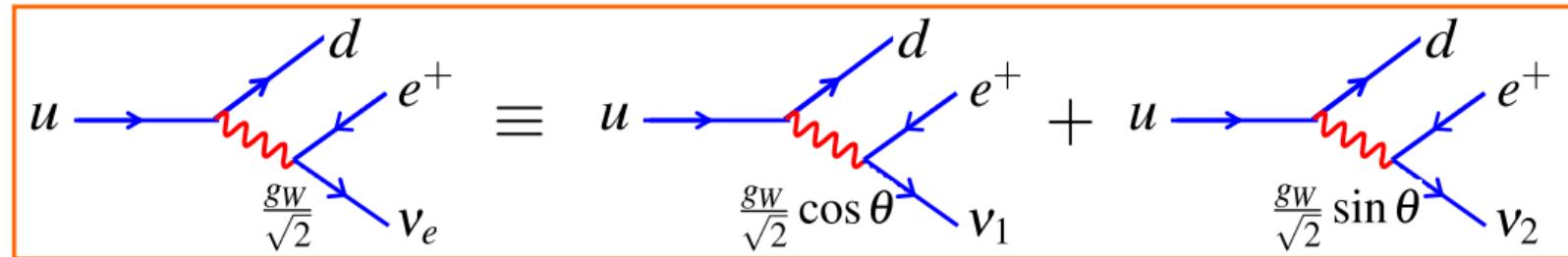
$$|\nu_1(t)\rangle = |\nu_1\rangle e^{i\vec{p}_1 \cdot \vec{x} - iE_1 t}$$

$$|\nu_2(t)\rangle = |\nu_2\rangle e^{i\vec{p}_2 \cdot \vec{x} - iE_2 t}$$

Neutrino oscillations for two flavors

- the weak and mass eigenstates are related by the **unitary** 2×2 matrix:

$$\begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix}$$



- equation inversion leads to:

$$\begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix}$$

Neutrino oscillations for two flavors

- suppose at time $t = 0$ a neutrino is produced in a pure ν_e state, e.g. in a decay $u \rightarrow d e^+ \nu_e$:

$$|\psi(0)\rangle = |\nu_e\rangle = \cos \theta |\nu_1\rangle + \sin \theta |\nu_2\rangle$$

- take the z -axis to be along the neutrino direction
- the wave-function evolves according to the time evolution of the **mass eigenstates** (free particle solutions to the wave equation)

$$|\psi(t)\rangle = \cos \theta |\nu_1\rangle e^{-ip_1 \cdot x} + \sin \theta |\nu_2\rangle e^{-ip_2 \cdot x},$$

where $p_i \cdot x = E_i t - \vec{p}_i \cdot \vec{x} = E_i t - |\vec{p}_i| z$

Neutrino oscillations for two flavors

- suppose the neutrino interacts in a detector at a distance L and a time T
 $\phi_i = p_i \cdot x = E_i T - |\vec{p}_i| L$, giving:

$$|\psi(L, T)\rangle = \cos \theta |\nu_1\rangle e^{-i\phi_1} + \sin \theta |\nu_2\rangle e^{-i\phi_2}$$

Neutrino oscillations for two flavors

- expressing the mass eigenstates, $|\nu_1\rangle$, $|\nu_2\rangle$, in terms of weak eigenstates:

$$|\psi(L, T)\rangle = \cos \theta [\cos \theta |\nu_e\rangle - \sin \theta |\nu_\mu\rangle] e^{-i\phi_1} + \sin \theta [\sin \theta |\nu_e\rangle + \cos \theta |\nu_\mu\rangle] e^{-i\phi_2}$$

$$|\psi(L, T)\rangle = |\nu_e\rangle [\cos^2 \theta e^{-i\phi_1} + \sin^2 \theta e^{-i\phi_2}] + |\nu_\mu\rangle \sin \theta \cos \theta [-e^{-i\phi_1} + e^{-i\phi_2}]$$

- if the masses of $|\nu_1\rangle$, $|\nu_2\rangle$ are the same, the mass eigenstates remain in phase, $\phi_1 = \phi_2$, and the state remains the linear combination corresponding to $|\nu_e\rangle$, and in a weak interaction will produce an electron

Neutrino oscillations for two flavors

- if the masses are different, the wave-function is no longer a pure $|\nu_e\rangle$:

$$P(\nu_e \rightarrow \nu_\mu) = |\langle \nu_\mu | \psi(L, T) \rangle|^2 \quad (1)$$

$$= \cos^2 \theta \sin^2 \theta (-e^{-i\phi_1} + e^{-i\phi_2})(-e^{+i\phi_1} + e^{+i\phi_2}) \quad (2)$$

$$= \frac{1}{4} \sin^2 2\theta (2 - 2 \cos(\phi_1 - \phi_2)) = \sin^2 2\theta \sin^2 \left(\frac{\phi_1 - \phi_2}{2} \right) \quad (3)$$

Neutrino oscillations for two flavors

- let's look at the phase difference:

$$\Delta\phi_{12} = \phi_1 - \phi_2 = (E_1 - E_2)T - (|p_1| - |p_2|)L$$

- can assume that $|p_1| = |p_2| = p$ in which case

$$\Delta\phi_{12} = (E_1 - E_2)T = \left[(p^2 + m_1^2)^{1/2} - (p^2 + m_2^2)^{1/2} \right] L, \text{ as } L \approx (c)T$$

$$\Delta\phi_{12} = p \left[\left(1 + \frac{m_1^2}{p^2} \right)^{1/2} - \left(1 + \frac{m_2^2}{p^2} \right)^{1/2} \right] L \approx \frac{m_1^2 - m_2^2}{2p} L$$

- here we neglected that for the same momentum, different mass eigenstates propagate at different velocities and are observed at different times
- the full derivation requires a wave-packet treatment and gives the same result

Neutrino oscillations for two flavors

- the phase difference can be written as:

$$\Delta\phi_{12} = (E_1 - E_2)T - \left(\frac{|p_1|^2 - |p_2|^2}{|p_1| + |p_2|} \right) L$$

$$\Delta\phi_{12} = (E_1 - E_2) \left[T - \left(\frac{E_1 + E_2}{|p_1| + |p_2|} \right) L \right] + \left(\frac{m_1^2 - m_2^2}{|p_1| + |p_2|} \right) L$$

- the first term of the RHS vanishes if we assume $E_1 = E_2$ or $\beta_1 = \beta_2$
- therefore in all cases:

$$\Delta\phi_{12} = \frac{m_1^2 - m_2^2}{2p} L = \frac{\Delta m^2}{2E} L$$

Neutrino oscillations for two flavors

- hence the two-flavor oscillation probability is:

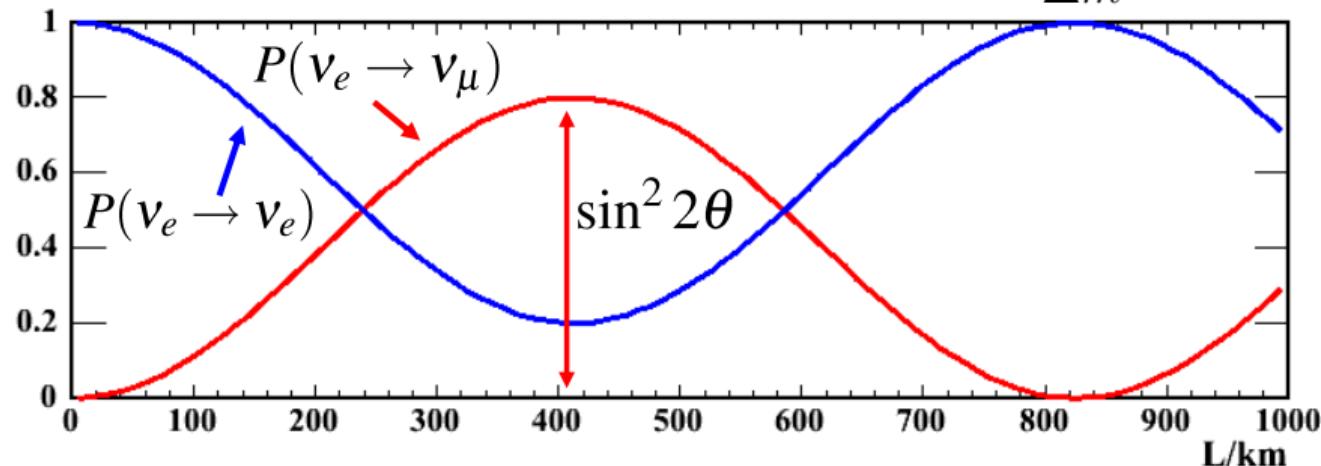
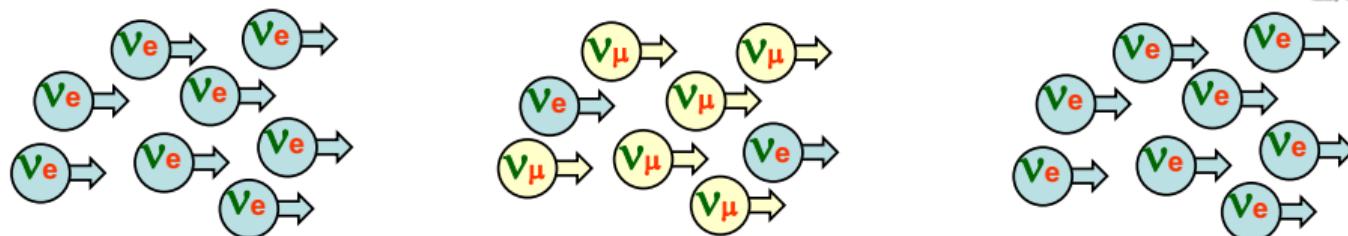
$$P(\nu_e \rightarrow \nu_\mu) = \sin^2 2\theta \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E} \right), \text{ with } \Delta m_{21}^2 = m_2^2 - m_1^2$$

- the corresponding two-flavor survival probability is:

$$P(\nu_e \rightarrow \nu_e) = 1 - \sin^2 2\theta \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E} \right)$$

Neutrino oscillations for two flavors

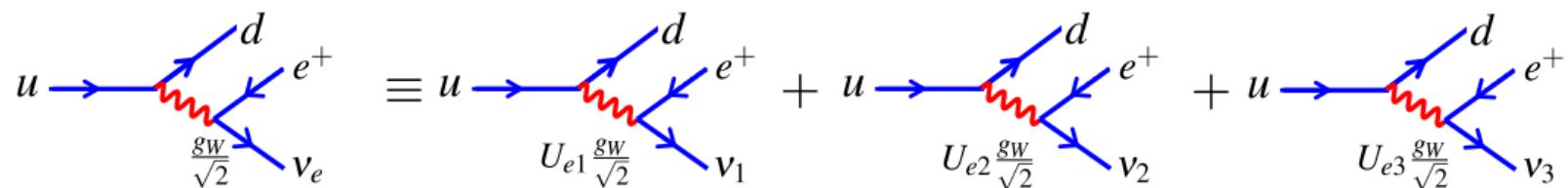
- e.g. $\Delta m^2 = 0.003 \text{ eV}^2$, $\sin^2 2\theta = 0.8$, $E_\nu = 1 \text{ GeV}$, $\lambda_{\text{osc}} = \frac{4\pi E}{\Delta m^2}$



Neutrino oscillations for three flavors

- it is straightforward to extend this treatment to three generations of neutrinos
- in this case we have:

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$



Neutrino oscillations for three flavors

- the 3×3 Unitary matrix U is known as the **Pontecorvo-Maki-Nakagawa-Sakata** matrix, usually abbreviated **PMNS**
- it has to be unitary to conserve probability
- using $U^\dagger U = 1 \implies U^{-1} = U^\dagger = (U^*)^T$ gives

$$\begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix} = \begin{pmatrix} U_{e1}^* & U_{\mu 1}^* & U_{\tau 1}^* \\ U_{e2}^* & U_{\mu 2}^* & U_{\tau 2}^* \\ U_{e3}^* & U_{\mu 3}^* & U_{\tau 3}^* \end{pmatrix} \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix}$$

Unitarity relations

- the unitarity of the PMNS matrix gives several useful relations:

$$UU^\dagger = I \implies$$

$$\begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} U_{e1}^* & U_{\mu 1}^* & U_{\tau 1}^* \\ U_{e2}^* & U_{\mu 2}^* & U_{\tau 2}^* \\ U_{e3}^* & U_{\mu 3}^* & U_{\tau 3}^* \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$U_{e1}U_{e1}^* + U_{e2}U_{e2}^* + U_{e3}U_{e3}^* = 1 \quad (4)$$

$$U_{\mu 1}U_{\mu 1}^* + U_{\mu 2}U_{\mu 2}^* + U_{\mu 3}U_{\mu 3}^* = 1 \quad (5)$$

$$U_{\tau 1}U_{\tau 1}^* + U_{\tau 2}U_{\tau 2}^* + U_{\tau 3}U_{\tau 3}^* = 1 \quad (6)$$

$$U_{e1}U_{\mu 1}^* + U_{e2}U_{\mu 2}^* + U_{e3}U_{\mu 3}^* = 0 \quad (7)$$

$$U_{e1}U_{\tau 1}^* + U_{e2}U_{\tau 2}^* + U_{e3}U_{\tau 3}^* = 0 \quad (8)$$

$$U_{\mu 1}U_{\tau 1}^* + U_{\mu 2}U_{\tau 2}^* + U_{\mu 3}U_{\tau 3}^* = 0 \quad (9)$$

- to calculate the oscillation probability we can proceed as before

3-flavor oscillation probability

- consider a state produced at $t = 0$ as $|\nu_e\rangle$:

$$|\psi(t=0)\rangle = |\nu_e\rangle = U_{e1} |\nu_1\rangle + U_{e2} |\nu_2\rangle + U_{e3} |\nu_3\rangle$$

- the wave-function evolves as:

$$|\psi(t)\rangle = |\nu_e\rangle = U_{e1} |\nu_1\rangle e^{-ip_1 \cdot x} + U_{e2} |\nu_2\rangle e^{-ip_2 \cdot x} + U_{e3} |\nu_3\rangle e^{-ip_3 \cdot x},$$

where $p_i \cdot x = E_i t - \vec{p}_i \cdot \vec{x} = E_i t - |\vec{p}| z$ (z -axis in direction of propagation)

- after traveling a distance L :

$$|\psi(L)\rangle = U_{e1} |\nu_1\rangle e^{-i\phi_1} + U_{e2} |\nu_2\rangle e^{-i\phi_2} + U_{e3} |\nu_3\rangle e^{-i\phi_3},$$

where $\phi_i = p_i \cdot x = E_i t - |p|L = (E_i - |p|_i)L$

- as before we can approximate $\phi_i \approx \frac{m_i^2}{2E_i}L$

3-flavor oscillation probability

- expressing the mass eigenstates in terms of the weak eigenstates:

$$|\psi(L)\rangle = U_{e1} \left[U_{e1}^* |\nu_e\rangle + U_{\mu 1}^* |\nu_\mu\rangle + U_{\tau 1}^* |\nu_\tau\rangle \right] e^{-i\phi_1} \quad (10)$$

$$+ U_{e2} \left[U_{e2}^* |\nu_e\rangle + U_{\mu 2}^* |\nu_\mu\rangle + U_{\tau 2}^* |\nu_\tau\rangle \right] e^{-i\phi_2} \quad (11)$$

$$+ U_{e3} \left[U_{e3}^* |\nu_e\rangle + U_{\mu 3}^* |\nu_\mu\rangle + U_{\tau 3}^* |\nu_\tau\rangle \right] e^{-i\phi_3} \quad (12)$$

- which can be rearranged to give:

$$|\psi(L)\rangle = \left[U_{e1} U_{e1}^* e^{-i\phi_1} + U_{e2} U_{e2}^* e^{-i\phi_2} + U_{e3} U_{e3}^* e^{-i\phi_3} \right] |\nu_e\rangle \quad (13)$$

$$+ \left[U_{e1} U_{\mu 1}^* e^{-i\phi_1} + U_{e2} U_{\mu 2}^* e^{-i\phi_2} + U_{e3} U_{\mu 3}^* e^{-i\phi_3} \right] |\nu_\mu\rangle \quad (14)$$

$$+ \left[U_{e1} U_{\tau 1}^* e^{-i\phi_1} + U_{e2} U_{\tau 2}^* e^{-i\phi_2} + U_{e3} U_{\tau 3}^* e^{-i\phi_3} \right] |\nu_\tau\rangle \quad (15)$$

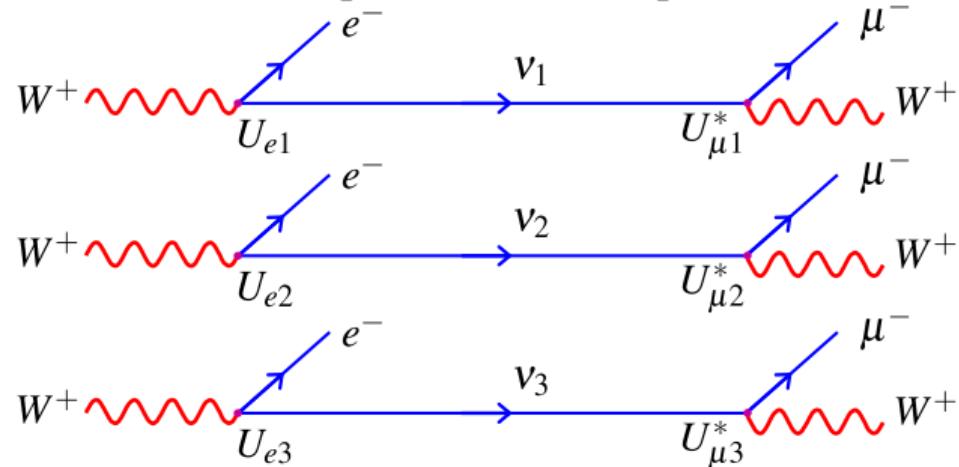
3-flavor oscillation probability

- from there:

$$P(\nu_e \rightarrow \nu_\mu) = |\langle \nu_\mu | \psi(L) \rangle|^2 \quad (16)$$

$$= \left| U_{e1} U_{\mu 1}^* e^{-i\phi_1} + U_{e2} U_{\mu 2}^* e^{-i\phi_2} + U_{e3} U_{\mu 3}^* e^{-i\phi_3} \right|^2 \quad (17)$$

- the terms in this expression can be represented as:



3-flavor oscillation probability

- because of the unitarity of the PMNS matrix we have:

$$U_{e1}U_{\mu 1}^* + U_{e2}U_{\mu 2}^* + U_{e3}U_{\mu 3}^* = 0 :$$

unless the phases of the different components are different, the sum of these three diagrams is 0, i.e., **need different ν_i masses for oscillation**

3-flavor oscillation probability

- evaluate

$$P(\nu_e \rightarrow \nu_\mu) = \left| U_{e1} U_{\mu 1}^* e^{-i\phi_1} + U_{e2} U_{\mu 2}^* e^{-i\phi_2} + U_{e3} U_{\mu 3}^* e^{-i\phi_3} \right|^2$$

using $|z_1 + z_2 + z_3|^2 \equiv |z_1|^2 + |z_2|^2 + |z_3|^2 + 2\mathcal{R}(z_1 z_2^* + z_1 z_3^* + z_2 z_3^*)$

$$P(\nu_e \rightarrow \nu_\mu) = |U_{e1} U_{\mu 1}^*|^2 + |U_{e2} U_{\mu 2}^*|^2 + |U_{e3} U_{\mu 3}^*|^2 + \quad (18)$$

$$2\mathcal{R}(U_{e1} U_{\mu 1}^* U_{e2}^* U_{\mu 2} e^{-i(\phi_1 - \phi_2)} + U_{e1} U_{\mu 1}^* U_{e3}^* U_{\mu 3} e^{-i(\phi_1 - \phi_3)} + \quad (19)$$

$$U_{e2} U_{\mu 2}^* U_{e3}^* U_{\mu 3} e^{-i(\phi_2 - \phi_3)}) \quad (20)$$

- can simplify the expression using $|U_{e1} U_{\mu 1}^* + U_{e2} U_{\mu 2}^* + U_{e3} U_{\mu 3}^*|^2 = 0$

$$\implies |U_{e1} U_{\mu 1}^*|^2 + |U_{e2} U_{\mu 2}^*|^2 + |U_{e3} U_{\mu 3}^*|^2 =$$

$$= -2\mathcal{R}(U_{e1} U_{\mu 1}^* U_{e2}^* U_{\mu 2} + U_{e1} U_{\mu 1}^* U_{e3}^* U_{\mu 3} + U_{e2} U_{\mu 2}^* U_{e3}^* U_{\mu 3})$$

3-flavor oscillation probability

- substituting the last expression into Eq. 18:

$$P(\nu_e \rightarrow \nu_\mu) = 2\mathcal{R} \left\{ U_{e1} U_{\mu 1}^* U_{e2}^* U_{\mu 2} [e^{-i(\phi_1 - \phi_2)} - 1] \right\} \quad (21)$$

$$+ 2\mathcal{R} \left\{ U_{e1} U_{\mu 1}^* U_{e3}^* U_{\mu 3} [e^{-i(\phi_1 - \phi_3)} - 1] \right\} \quad (22)$$

$$+ 2\mathcal{R} \left\{ U_{e2} U_{\mu 2}^* U_{e3}^* U_{\mu 3} [e^{-i(\phi_2 - \phi_3)} - 1] \right\} \quad (23)$$

- for electron survival probability:

$$P(\nu_e \rightarrow \nu_e) = |\langle \nu_e | \psi(L) \rangle|^2 \quad (24)$$

$$= \left| U_{e1} U_{e1}^* e^{-i\phi_1} + U_{e2} U_{e2}^* e^{-i\phi_2} + U_{e3} U_{e3}^* e^{-i\phi_3} \right|^2 \quad (25)$$

3-flavor oscillation probability

- using for it U unitarity $U_{e1}U_{e1}^* + U_{e2}U_{e2}^* + U_{e3}U_{e3}^* = 1$ get:

$$P(\nu_e \rightarrow \nu_e) = 1 + 2|U_{e1}|^2|U_{e2}|^2\mathcal{R}\left\{e^{-i(\phi_1 - \phi_2)} - 1\right\} \quad (26)$$

$$+ 2|U_{e1}|^2|U_{e3}|^2\mathcal{R}\left\{e^{-i(\phi_1 - \phi_3)} - 1\right\} \quad (27)$$

$$+ 2|U_{e2}|^2|U_{e3}|^2\mathcal{R}\left\{e^{-i(\phi_2 - \phi_3)} - 1\right\} \quad (28)$$

3-flavor oscillation probability

- can simplify this expression using:

$$\begin{aligned}\mathcal{R}\{e^{-i(\phi_1 - \phi_2)} - 1\} &= \cos(\phi_2 - \phi_1) - 1 = -2 \sin^2\left(\frac{\phi_2 - \phi_1}{2}\right) = \\ &= -2 \sin^2\left(\frac{(m_2^2 - m_1^2)L}{4E}\right) \text{ with } \phi_i \approx \frac{m_i^2}{2E}L\end{aligned}$$

- define

$$\Delta_{21} = \frac{(m_2^2 - m_1^2)L}{4E} = \frac{\Delta m_{21}^2 L}{4E} \text{ with } \Delta m_{21}^2 = m_2^2 - m_1^2$$

note that $\Delta_{21} = (\phi_2 - \phi_1)/2$ is a phase difference, i.e. dimensionless

- which gives electron neutrino survival probability:

$$P(\nu_e \rightarrow \nu_e) = 1 - 4|U_{e1}|^2|U_{e2}|^2 \sin^2 \Delta_{21} \quad (29)$$

$$- 4|U_{e1}|^2|U_{e3}|^2 \sin^2 \Delta_{31} \quad (30)$$

$$- 4|U_{e2}|^2|U_{e3}|^2 \sin^2 \Delta_{32} \quad (31)$$

3-flavor oscillation probability

- similar expressions can be obtained for the muon and tau neutrino survival probabilities
- note that since we only have three neutrino generations there are only two independent mass-squared differences, i.e.:

$$m_3^2 - m_1^2 = (m_3^2 - m_2^2) + (m_2^2 - m_1^2)$$

and in the above equations only two of the Δ_{ij} are independent

- all expressions are in natural units
- converting to more practical units:

$$\Delta_{21} = 1.27 \frac{\Delta m_{21}^2 (\text{eV}^2) L (\text{km})}{E (\text{GeV})} \text{ and } \lambda_{\text{osc}} (\text{km}) = 2.47 \frac{E (\text{GeV})}{\Delta m^2 (\text{eV}^2)}$$

CP and CPT in the weak interaction

- there are three important discrete symmetries:

Parity	$\hat{P} : \vec{r} \rightarrow -\vec{r}$	(32)
--------	--	------

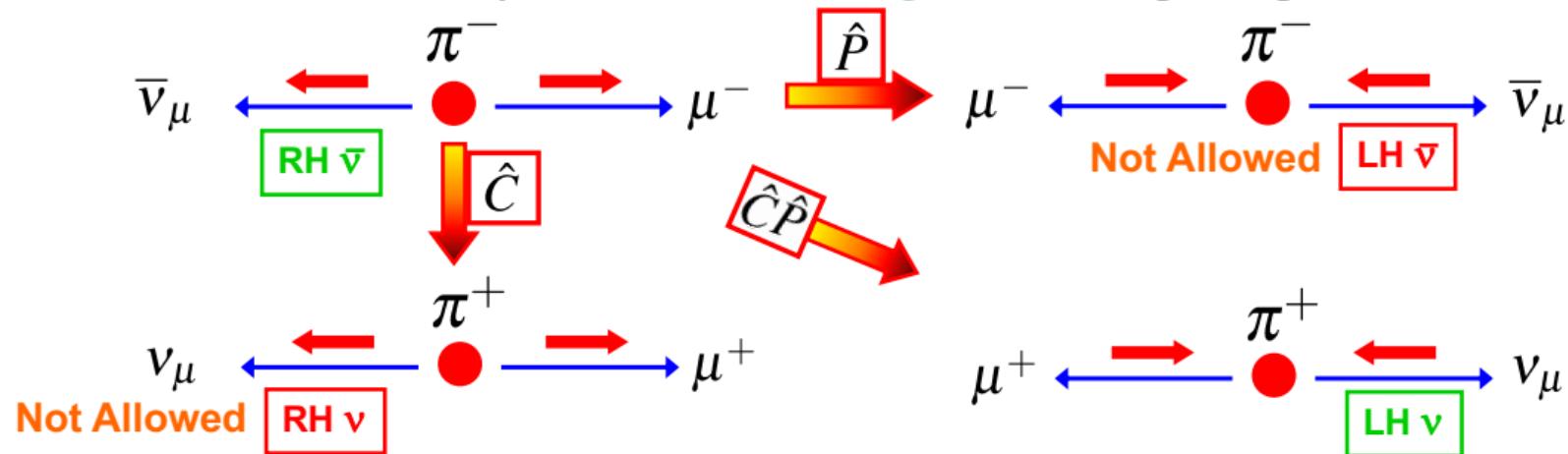
Time reversal	$\hat{T} : t \rightarrow -t$	(33)
---------------	------------------------------	------

Charge conjugation	$\hat{C} : \text{Particle} \rightarrow \text{Antiparticle}$	(34)
--------------------	---	------

- the weak interaction violates parity conservation P , but also C

CP and CPT in the weak interaction

- consider pion decay remembering that the neutrino is ultra-relativistic and only **left-handed ν** and **right-handed $\bar{\nu}$** participate in WI:



- hence weak interaction also **violates charge conjugation** symmetry but appears to be invariant under combined effect of C and P

CP and CPT in the weak interaction

CP transforms:

RH particles \leftrightarrow LH antiparticles

LH particles \leftrightarrow RH antiparticles

- if the weak interaction were invariant under CP , expect:

$$\Gamma(\pi^+ \rightarrow \mu^+ \nu_\mu) = \Gamma(\pi^- \rightarrow \mu^- \bar{\nu}_\mu)$$

- all Lorentz-invariant quantum field theories are invariant under $CPT \implies$ particles and antiparticles have identical mass, lifetime, magnetic moments etc

Best current experimental test: $m_{K^0} - m_{\bar{K}^0} < 6 \times 10^{-19} m_{K^0}$

- since CPT holds:

if CP invariance holds \implies time reversal symmetry

if CP is violated \implies time reversal symmetry violated

- to account for the small excess of matter over antimatter that must have existed early in the universe, require CP violation in particle physics
- CP violation can arise in the weak interaction

CP and T violation in neutrino oscillations

- previously derived the oscillation probability for $\nu_e \rightarrow \nu_\mu$:

$$P(\nu_e \rightarrow \nu_\mu) = 2\mathcal{R} \left\{ U_{e1} U_{\mu 1}^* U_{e2}^* U_{\mu 2} [e^{-i(\phi_1 - \phi_2)} - 1] \right\} \quad (35)$$

$$+ 2\mathcal{R} \left\{ U_{e1} U_{\mu 1}^* U_{e3}^* U_{\mu 3} [e^{-i(\phi_1 - \phi_3)} - 1] \right\} \quad (36)$$

$$+ 2\mathcal{R} \left\{ U_{e2} U_{\mu 2}^* U_{e3}^* U_{\mu 3} [e^{-i(\phi_2 - \phi_3)} - 1] \right\} \quad (37)$$

- the oscillation probability for $\nu_\mu \rightarrow \nu_e$ can be obtained in the same manner or by simply exchanging the labels $(e) \leftrightarrow (\mu)$:

$$P(\nu_\mu \rightarrow \nu_e) = 2\mathcal{R} \left\{ U_{\mu 1} U_{e1}^* U_{\mu 2}^* U_{e2} [e^{-i(\phi_1 - \phi_2)} - 1] \right\} \quad (38)$$

$$+ 2\mathcal{R} \left\{ U_{\mu 1} U_{e1}^* U_{\mu 3}^* U_{e3} [e^{-i(\phi_1 - \phi_3)} - 1] \right\} \quad (39)$$

$$+ 2\mathcal{R} \left\{ U_{\mu 2} U_{e2}^* U_{\mu 3}^* U_{e3} [e^{-i(\phi_2 - \phi_3)} - 1] \right\} \quad (40)$$

- unless the elements of the PMNS matrix are real $P(\nu_e \rightarrow \nu_\mu) \neq P(\nu_\mu \rightarrow \nu_e)$

CP and T violation in neutrino oscillations

- unless the elements of the PMNS matrix are real $P(\nu_e \rightarrow \nu_\mu) \neq P(\nu_\mu \rightarrow \nu_e)$
- if any of the elements of the PMNS matrix are complex, neutrino oscillations are not invariant under time reversal $t \rightarrow -t$

CP and T violation in neutrino oscillations

- consider the effects of T , CP , and CPT on neutrino oscillations:

$$\boxed{T} \quad \nu_e \rightarrow \nu_\mu \xrightarrow{\hat{T}} \nu_\mu \rightarrow \nu_e \quad (41)$$

$$\boxed{CP} \quad \nu_e \rightarrow \nu_\mu \xrightarrow{\hat{C}\hat{P}} \bar{\nu}_e \rightarrow \bar{\nu}_\mu \quad (42)$$

$$\boxed{CPT} \quad \nu_e \rightarrow \nu_\mu \xrightarrow{\hat{C}\hat{P}\hat{T}} \bar{\nu}_\mu \rightarrow \bar{\nu}_e \quad (43)$$

Note that C alone is not sufficient in Eq. 42 as it transforms **LH neutrinos** into **LH antineutrinos** (not involved in weak interaction)

- if the weak interactions are invariant under CPT :

$$P(\nu_e \rightarrow \nu_\mu) = P(\bar{\nu}_\mu \rightarrow \bar{\nu}_e)$$

$$P(\nu_\mu \rightarrow \nu_e) = P(\bar{\nu}_e \rightarrow \bar{\nu}_\mu)$$

- if the PMNS matrix is not purely real then

$$P(\nu_e \rightarrow \nu_\mu) \neq P(\nu_\mu \rightarrow \nu_e)$$

From above: $P(\nu_e \rightarrow \nu_\mu) \neq P(\bar{\nu}_e \rightarrow \bar{\nu}_\mu) \implies \text{CP is violated in neutrino oscillations!}$

Neutrino mass hierarchy

- to date, results on neutrino oscillations only determine

$$|\Delta m_{ij}^2| = |m_j^2 - m_i^2|$$

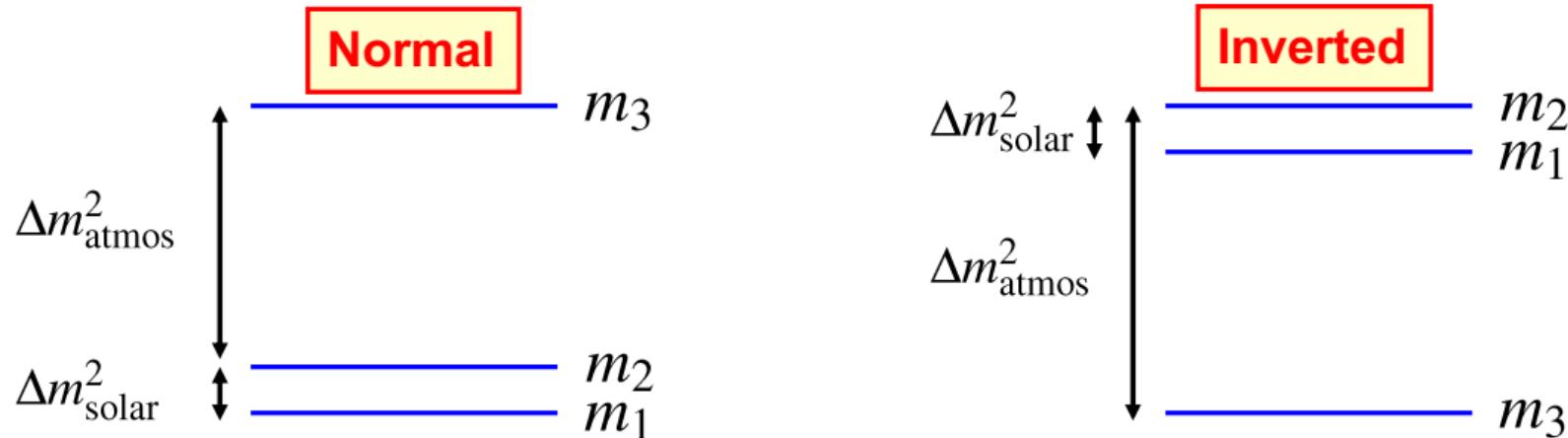
- there are two distinct and very different mass scales:

- atmospheric neutrino oscillations: $|\Delta m^2|_{\text{atmos}} \sim 2.5 \times 10^{-3} \text{ eV}^2$

- solar neutrino oscillations: $|\Delta m^2|_{\text{solar}} \sim 8 \times 10^{-5} \text{ eV}^2$

Neutrino mass hierarchy

- two possible assignments of mass hierarchy:



- in both cases: $\Delta m_{21}^2 \sim 8 \times 10^{-5} \text{ eV}^2$ (solar)
 $|\Delta m_{31}^2| \approx |\Delta m_{32}^2| \sim 2.5 \times 10^{-3} \text{ eV}^2$ (atmospheric)
- hence we can approximate $\Delta m_{31}^2 \approx \Delta m_{32}^2$

3-flavor oscillations neglecting CP violation

- neglecting CP violation considerably simplifies the algebra of 3-flavor neutrino oscillations
- taking the PMNS matrix to be real:

$$P(\nu_e \rightarrow \nu_\mu) = -4U_{e1}U_{\mu 1}U_{e2}U_{\mu 2} \sin^2 \Delta_{21} \quad (44)$$

$$-4U_{e1}U_{\mu 1}U_{e3}U_{\mu 3} \sin^2 \Delta_{31} \quad (45)$$

$$-4U_{e2}U_{\mu 2}U_{e3}U_{\mu 3} \sin^2 \Delta_{32} \quad (46)$$

$$\text{with } \Delta_{ij} = \frac{(m_j^2 - m_i^2)L}{4E} = \frac{\Delta m_{ij}^2 L}{4E}$$

- using $\Delta_{31} \approx \Delta_{32}$

$$P(\nu_e \rightarrow \nu_\mu) = -4U_{e1}U_{\mu 1}U_{e2}U_{\mu 2} \sin^2 \Delta_{21} \quad (47)$$

$$-4(U_{e1}U_{\mu 1} + U_{e2}U_{\mu 2})U_{e3}U_{\mu 3} \sin^2 \Delta_{32} \quad (48)$$

- using $U_{e1}U_{\mu 1}^* + U_{e2}U_{\mu 2}^* + U_{e3}U_{\mu 3}^* = 0$

$$P(\nu_e \rightarrow \nu_\mu) \approx -4U_{e1}U_{\mu 1}U_{e2}U_{\mu 2} \sin^2 \Delta_{21} + 4U_{e3}^2U_{\mu 3}^2 \sin^2 \Delta_{32}$$

3-flavor oscillations neglecting CP violation

- can apply $\Delta_{31} \approx \Delta_{32}$ to the expression for ν_e survival probability:

$$P(\nu_e \rightarrow \nu_e) = 1 - 4U_{e1}^2 U_{e2}^2 \sin^2 \Delta_{21} - 4U_{e1}^2 U_{e3}^2 \sin^2 \Delta_{31} - 4U_{e2}^2 U_{e3}^2 \sin^2 \Delta_{32} \quad (49)$$

$$\approx 1 - 4U_{e1}^2 U_{e2}^2 \sin^2 \Delta_{21} - 4(U_{e1}^2 + U_{e2}^2) U_{e3}^2 \sin^2 \Delta_{32} \quad (50)$$

- which can be simplified using $U_{e1}U_{e1}^* + U_{e2}U_{e2}^* + U_{e3}U_{e3}^* = 1$:

$$\implies P(\nu_e \rightarrow \nu_\mu) \approx -4U_{e1}U_{\mu 1}U_{e2}U_{\mu 2} \sin^2 \Delta_{21} + 4U_{e3}^2 U_{\mu 3}^2 \sin^2 \Delta_{32}$$

3-flavor oscillations neglecting CP violation

- neglecting CP violation and taking $|\Delta m_{31}^2| \approx |\Delta m_{32}^2|$ obtain the following expressions for neutrino oscillation probabilities:

$$P(\nu_e \rightarrow \nu_e) \approx 1 - 4U_{e1}^2 U_{e2}^2 \sin^2 \Delta_{21} - 4(1 - U_{e3}^2) U_{e3}^2 \sin^2 \Delta_{32} \quad (51)$$

$$P(\nu_\mu \rightarrow \nu_\mu) \approx 1 - 4U_{\mu 1}^2 U_{\mu 2}^2 \sin^2 \Delta_{21} - 4(1 - U_{\mu 3}^2) U_{\mu 3}^2 \sin^2 \Delta_{32} \quad (52)$$

$$P(\nu_\tau \rightarrow \nu_\tau) \approx 1 - 4U_{\tau 1}^2 U_{\tau 2}^2 \sin^2 \Delta_{21} - 4(1 - U_{\tau 3}^2) U_{\tau 3}^2 \sin^2 \Delta_{32} \quad (53)$$

$$P(\nu_e \rightarrow \nu_\mu) = P(\nu_\mu \rightarrow \nu_e) \approx -4U_{e1} U_{\mu 1} U_{e2} U_{\mu 2} \sin^2 \Delta_{21} + 4U_{e3}^2 U_{\mu 3}^2 \sin^2 \Delta_{32} \quad (54)$$

$$P(\nu_e \rightarrow \nu_\tau) = P(\nu_\tau \rightarrow \nu_e) \approx -4U_{e1} U_{\tau 1} U_{e2} U_{\tau 2} \sin^2 \Delta_{21} + 4U_{e3}^2 U_{\tau 3}^2 \sin^2 \Delta_{32} \quad (55)$$

$$P(\nu_\mu \rightarrow \nu_\tau) = P(\nu_\tau \rightarrow \nu_\mu) \approx -4U_{\mu 1} U_{\tau 1} U_{\mu 2} U_{\tau 2} \sin^2 \Delta_{21} + 4U_{\mu 3}^2 U_{\tau 3}^2 \sin^2 \Delta_{32} \quad (56)$$

3-flavor oscillations neglecting CP violation

- the wavelength associated with $\sin^2 \Delta_{21}$ and $\sin^2 \Delta_{32}$ are:

“SOLAR”

$$\lambda_{21} = \frac{4\pi E}{\Delta m_{21}^2}$$

“Long”-Wavelength

and

$$\lambda_{32} = \frac{4\pi E}{\Delta m_{32}^2}$$

“ATMOSPHERIC”

“Short”-Wavelength

PMNS matrix

- PMNS matrix is expressed in terms of 3 rotation angles θ_{12} , θ_{23} , θ_{13} , and a complex phase δ , using the notation $s_{ij} = \sin \theta_{ij}$, $c_{ij} = \cos \theta_{ij}$:

$$\begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} = \underbrace{\begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix}}_{\text{Dominates: } \text{“Atmospheric”}} \times \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \times \underbrace{\begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\text{“Solar”}}$$

PMNS matrix

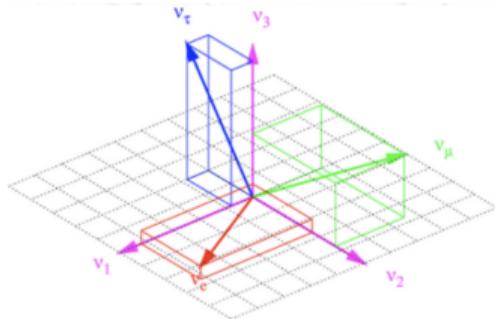
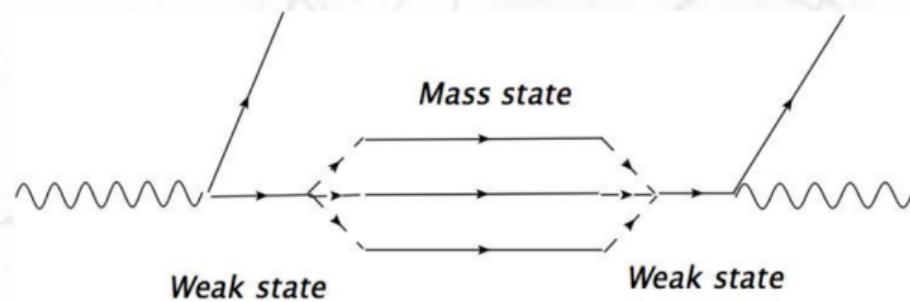
- writing out in full:

$$U = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

- there are **six** SM parameters that can be measured in ν oscillation experiments

$ \Delta m_{21} ^2 = m_2^2 - m_1^2 $	θ_{12}	Solar and reactor neutrino experiments
$ \Delta m_{32} ^2 = m_3^2 - m_2^2 $	θ_{23}	Atmospheric and beam neutrino experiments
	θ_{13}	Reactor neutrino experiments + future beam
	δ	Future beam experiments

PMNS matrix: current picture



ν oscillation: Atmospheric

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix}$$

$$\theta_{23} \approx 45^\circ$$

Atmospheric exp.

Accelerator LBL

Reactor

$$\begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix}$$

$$\theta_{13} \approx 10^\circ$$

Reactor

Solar

$$\begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

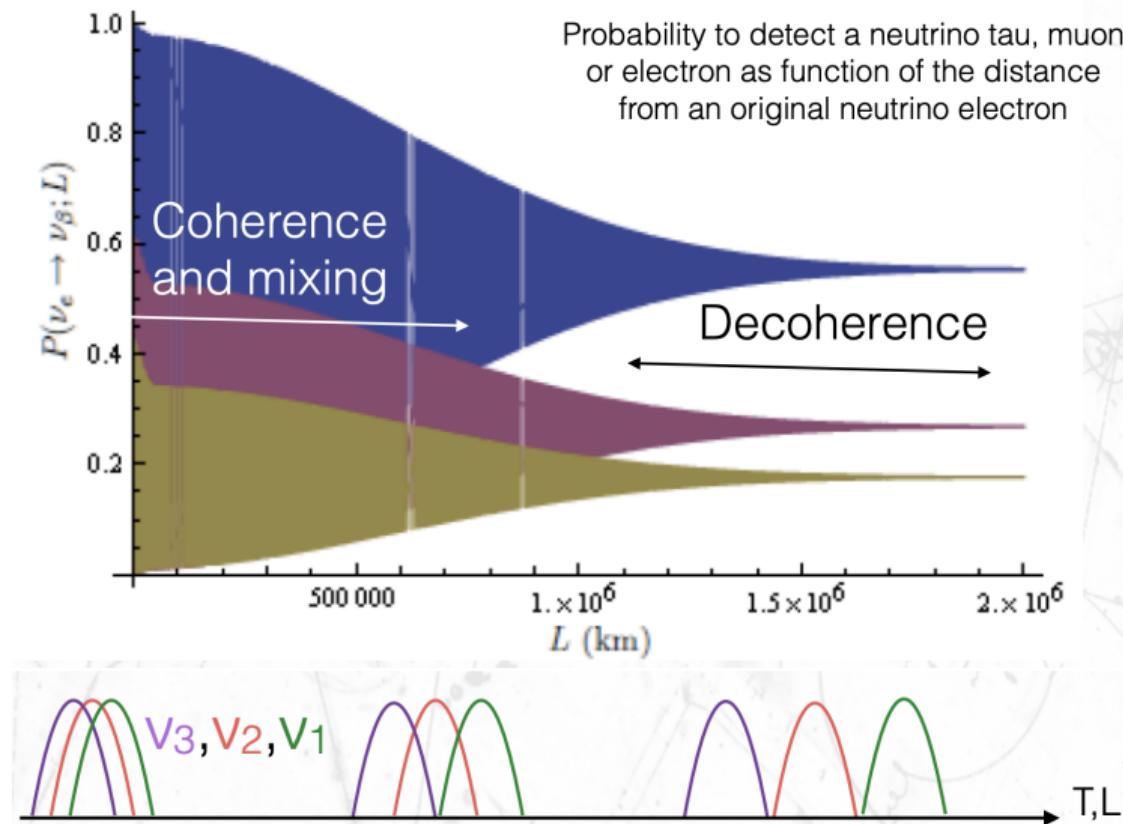
$$\theta_{12} \approx 35^\circ$$

Solar exp.

Reactor LBL

LBL = Long BaseLine – new generation of the long baseline experiments

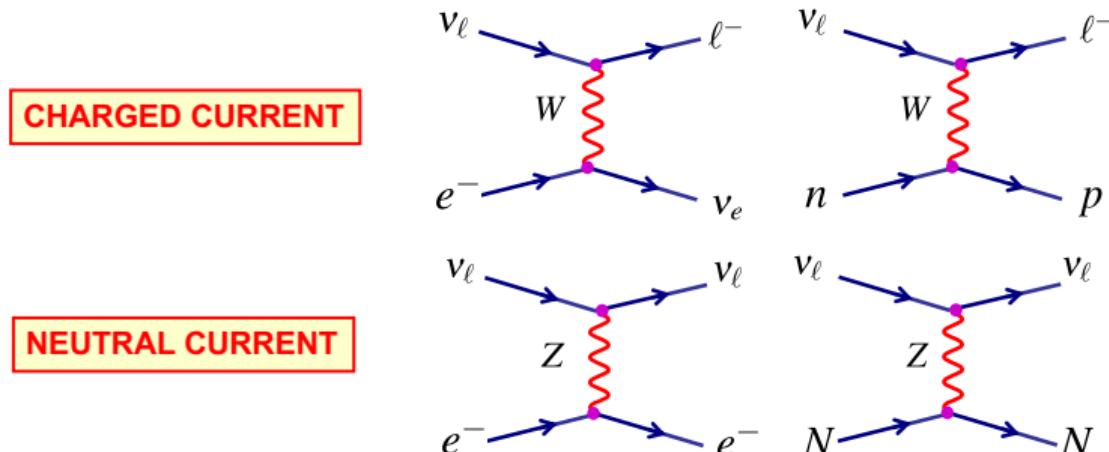
Quantum (de)coherence



Neutrino experiments

Before discussing current experimental data, need to consider how ν interact in matter:

- two processes
 - charged current (CC) interactions (via a W boson) \implies charged lepton
 - neutral current (NC) interactions (via a Z boson)
- two possible “targets”: can have neutrino interactions with
 - atomic electrons
 - nucleons within the nucleus

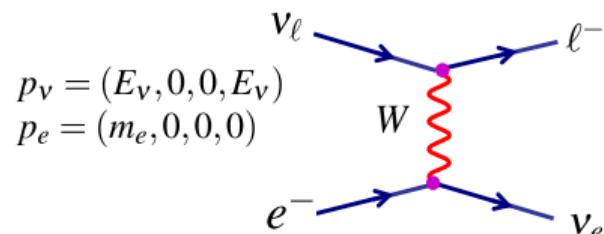


Neutrino interaction thresholds

- neutrino detection method depends on the neutrino energy and (weak) flavor
 - neutrinos from the sun and nuclear reactions have $E_\nu \sim 1 \text{ MeV}$
 - atmospheric neutrinos have $E_\nu \sim 1 \text{ GeV}$
- these energies are relatively low and not all interactions are kinematically allowed, i.e. there is a threshold energy before an interaction can occur \implies need sufficient energy in the centre-of-mass frame to produce final state particles

Neutrino interaction thresholds

1 Charged current interactions on atomic electrons (in lab. frame)



$$s = (p_\nu + p_e)^2 = (E_\nu + m_e)^2 - E_\nu^2$$

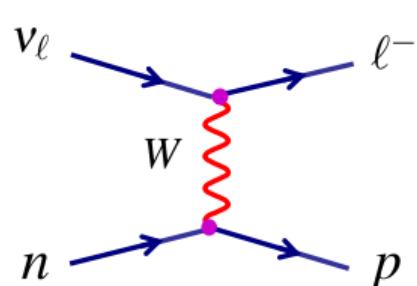
Require: $s > m_\ell^2$

$$\Rightarrow E_\nu > \left[\left(\frac{m_\ell}{m_e} \right)^2 - 1 \right] \frac{m_e}{2}$$

- putting in the numbers, for CC interactions with atomic electrons require:
 $E_{\nu_e} > 0$, $E_{\nu_\mu} > 11 \text{ GeV}$, $E_{\nu_\tau} > 3090 \text{ GeV}$
- for ν_μ , ν_τ high energy thresholds compared to typical energies considered here

Neutrino interaction thresholds

② **Charged current** interactions on nucleons (in lab. frame):



$$s = (p_\nu + p_n)^2 = (E_\nu + m_n)^2 - E_\nu^2$$

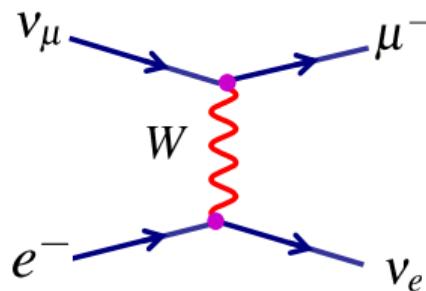
Require: $s > (m_\ell + m_p)^2$

$$\Rightarrow E_\nu > \frac{(m_p^2 - m_n^2) + m_\ell^2 + 2m_p m_\ell}{2m_n}$$

- for CC interactions with neutrons: $E_{\nu_e} > 0$, $E_{\nu_\mu} > 110$ MeV, $E_{\nu_\tau} > 3.5$ GeV
- ν_e from the sun and nuclear reactors $E_\nu \sim 1$ MeV which oscillate into ν_μ and ν_τ cannot interact via charged current interactions: “**they effectively disappear**”
- atmospheric ν_μ $E_\nu \sim 1$ GeV which oscillate into ν_τ cannot interact via charged current interactions: “**disappear**”
- to date, most experimental signatures for neutrino oscillation are a deficit of neutrino interactions (with the exception of SNO and OPERA) because below threshold for producing lepton of different flavor from original neutrino

Neutrino interaction thresholds

- previously derived CC νq cross sections in ultra-relativistic limit (neglecting $m(\nu/q)$)
- for **high energy ν_μ** can directly use previous results:



$$\sigma_{\nu_\mu e^-} = \frac{G_F^2 s}{\pi}$$

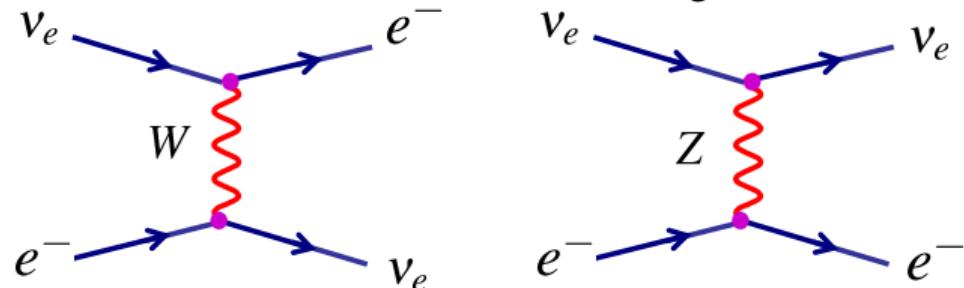
with $s = (E_\nu + m_e)^2 - E_\nu^2 \approx 2m_e E_\nu$

$$\sigma_{\nu_\mu e^-} = \frac{2m_e G_F^2 E_\nu}{\pi}$$

Cross section increases linearly with lab. frame neutrino energy

Neutrino interaction thresholds

- for ν_e there is another lowest order diagram with the same final state:

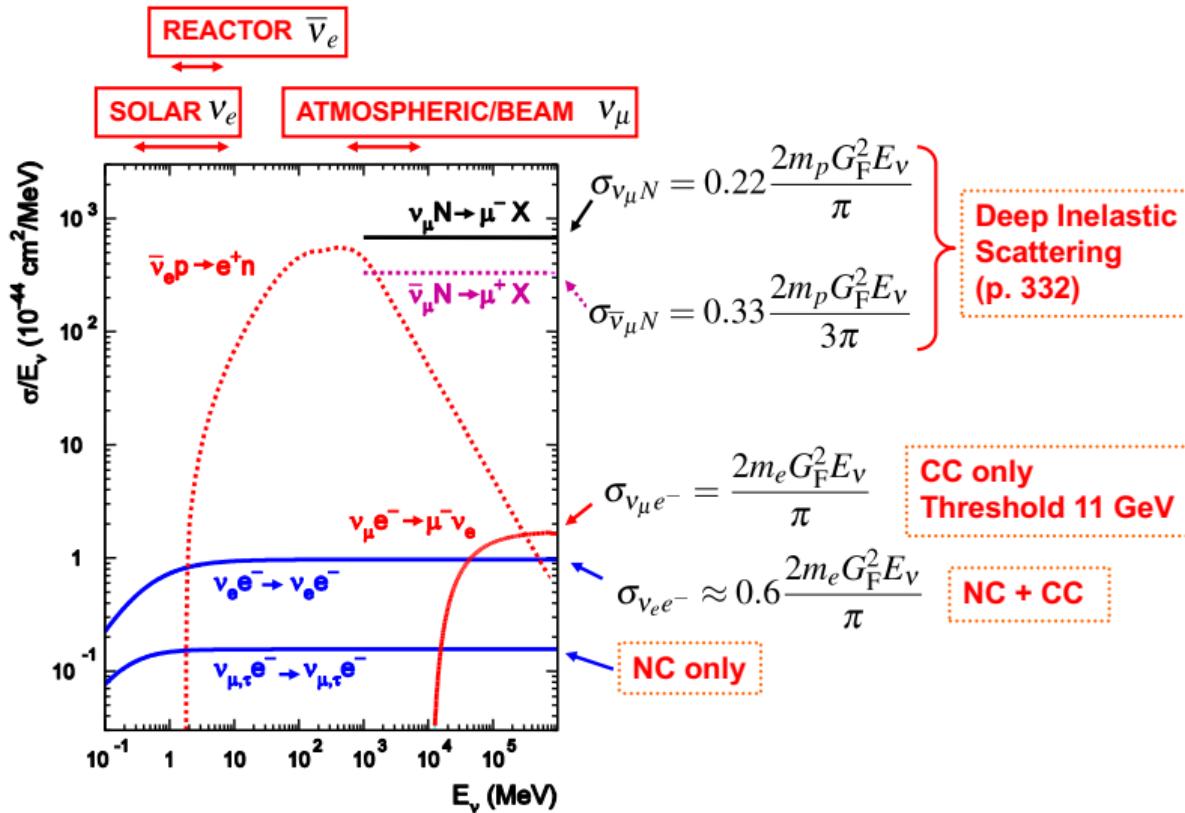


Total cross section is lower than the pure CC cross section due to negative interference $|M_{CC} + M_{NC}|^2 < |M_{CC}|^2$: $\sigma_{\nu_e e} \approx 0.6\sigma_{\nu_e e}^{CC}$

- in the high energy limit, the CC νN cross sections are larger due to the higher center-of-mass energy: $s = (E_\nu + m_n)^2 - E_\nu^2 \approx 2m_n E_\nu$

Neutrino detection

The detector technology/interaction process depends on neutrino type and energy:



Atmospheric/beam neutrinos

$\nu_e, \nu_\mu, \bar{\nu}_e, \bar{\nu}_\mu$: $E_\nu > 1 \text{ GeV}$

- 1 water Cherenkov: e.g. Super Kamiokande
- 2 Iron Calorimeters: e.g. MINOS, CDHS

Produce high energy charged lepton: relatively easy to detect

ν_e : $E_\nu < 20$ MeV

1 water Cherenkov: e.g. Super Kamiokande

- detect Cherenkov light from electron produced in $\nu_e + e^- \rightarrow \nu_e + e^-$
- because of background from natural radioactivity limited to $E_\nu > 5$ MeV
- because Oxygen is a doubly magic nucleus don't get $\nu_e + n \rightarrow e^- + p$

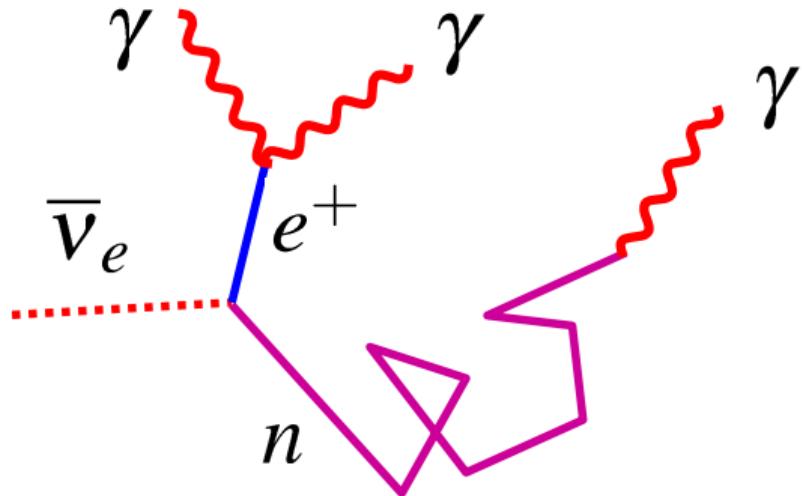
2 Radio-Chemical: e.g. Homestake, SAGE, GALLEX

- use inverse β -decay process, e.g. $\nu_e + {}^{71}\text{Ga} \rightarrow e^- + {}^{71}\text{Ge}$
- chemically extract produced isotope and count decays (only gives a rate)

$\bar{\nu}_e$: $E_{\bar{\nu}} < 5$ MeV

1 liquid scintillator: e.g. KamLAND

- low energies \implies large radioactive background
- dominant interaction: $\bar{\nu}_e + p \rightarrow e^+ + n$
- **prompt** positron annihilation signal + **delayed** signal from n (space/time correlation reduces background)
- electrons produced by photons excite the scintillator which produces light



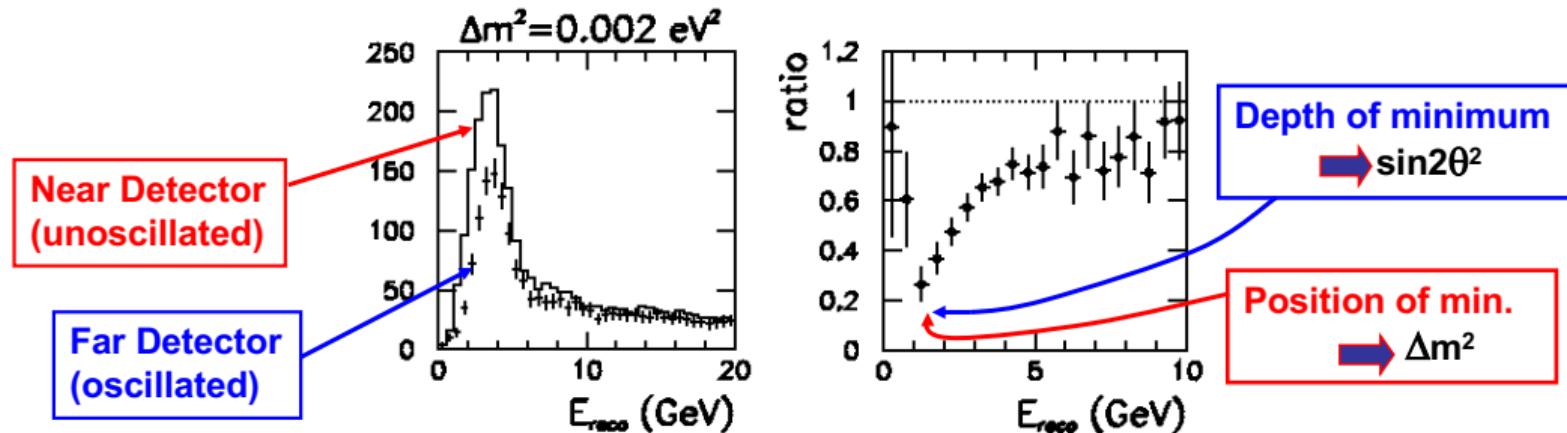
Long baseline neutrino experiments

- initial studies of ν oscillations done with atmospheric and solar ν
- now the emphasis is on neutrino beam experiments
- allows to take control: design an experiment with specific goals
- many long baseline ν oscillation experiments were taking data:
 - K2K in Japan, MINOS in the US, CNGS in Europe
- and currently taking data:
 - T2K in Japan, NOvA in the US
- new ultimate long baseline experiments are currently under construction:
 - HyperK in Japan and DUNE in the US

Long baseline neutrino experiments

Basic idea:

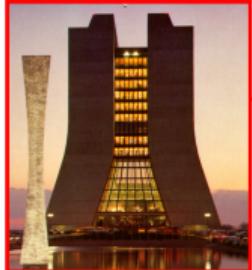
- intense ν beam
- two detectors: one close to beam, the other hundreds of km away
- measure ratio of the neutrino energy spectrum in the far detector (oscillated) to that in the near detector (unoscillated)
- partial cancellation of systematic biases



MINOS (2005 – 2016)

- 120 GeV protons extracted from the Main injector at Fermilab
- 2.5×10^{13} p/pulse hit target \Rightarrow very intense beam 0.3 MW on target

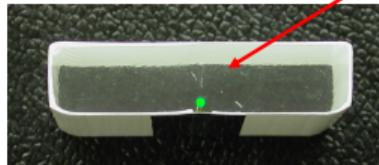
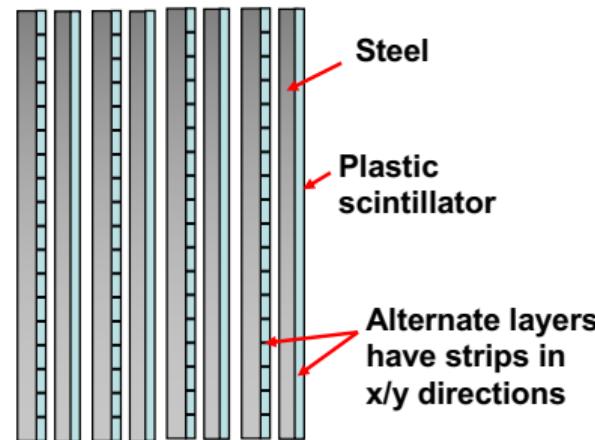
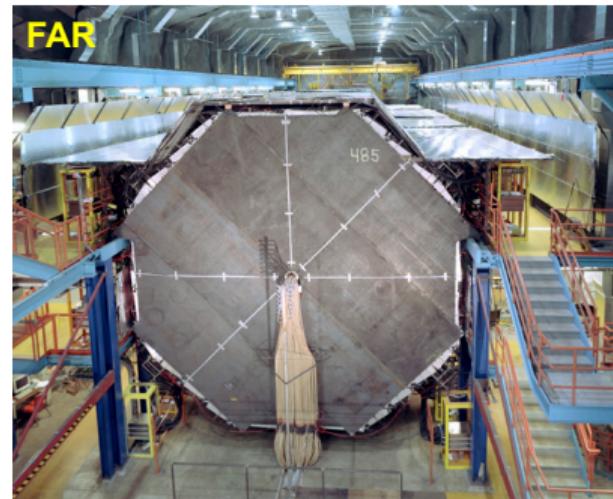
Two detectors:



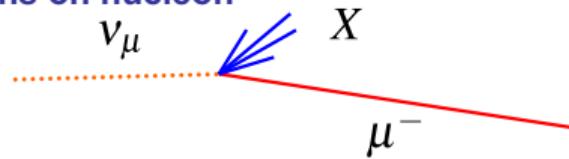
- ★ 1000 ton, NEAR Detector at Fermilab : 1 km from beam
- ★ 5400 ton FAR Detector, 720m underground in Soudan mine, N. Minnesota: 735 km from beam

The MINOS Detectors:

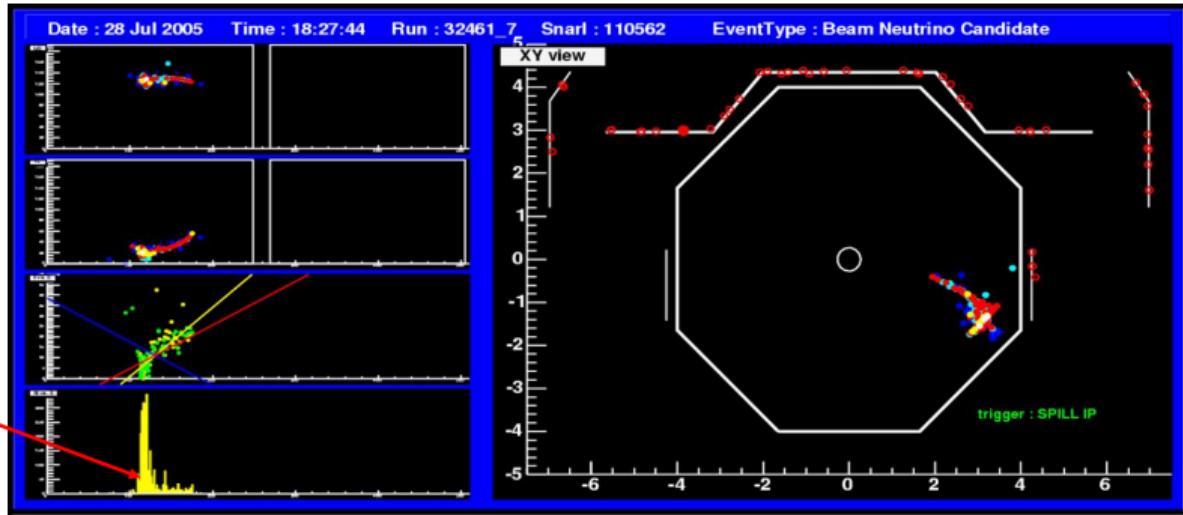
- Dealing with high energy neutrinos $E_\nu > 1 \text{ GeV}$
- The muons produced by ν_μ interactions travel several metres
- Steel-Scintillator sampling calorimeter
- Each plane: 2.54 cm steel + 1 cm scintillator
- A charged particle crossing the scintillator produces light – detect with PMTs



- Neutrino detection via CC interactions on nucleon



Example event:



Signal from
hadronic
shower

- The main feature of the MINOS detector is the very good neutrino energy resolution

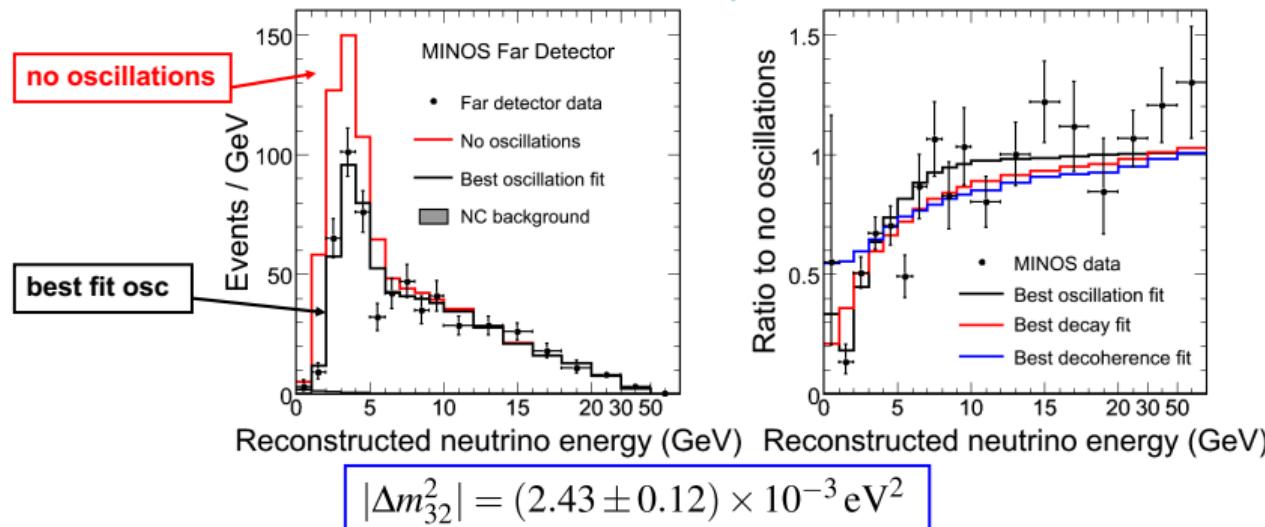
$$E_\nu = E_\mu + E_X$$

- Muon energy from range/curvature in B-field
- Hadronic energy from amount of light observed

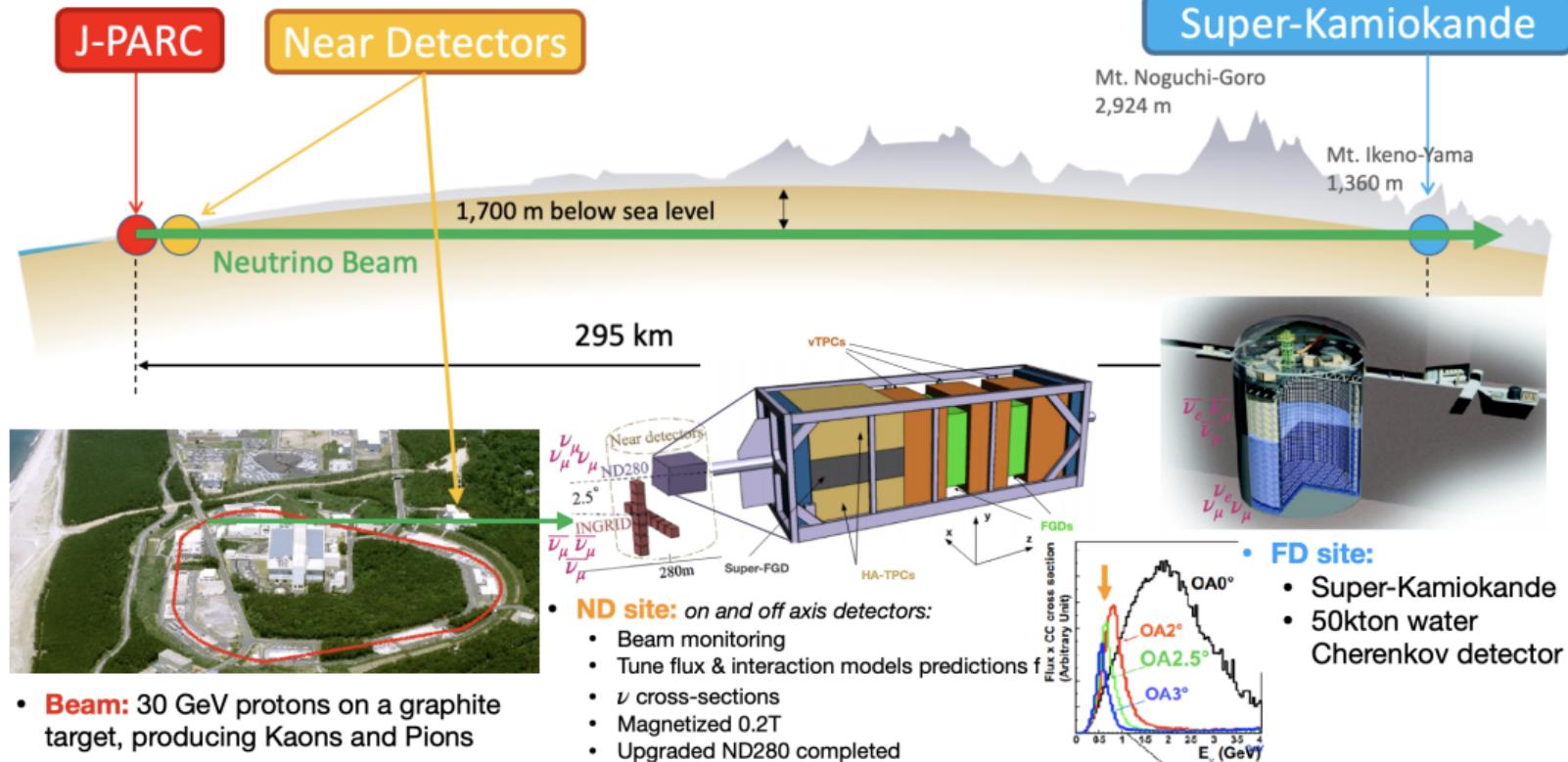
MINOS results

- for the MINOS experiment, L is fixed and observe oscillations as function of E_ν
- for $|\Delta m_{32}^2| \sim 2.5 \times 10^{-3} \text{ eV}^2$ first oscillation minimum at $E_\nu = 1.5 \text{ GeV}$
- to a very good approximation can use 2-flavor case as oscillations corresponding to $|\Delta m_{21}^2| \sim 8 \times 10^{-5} \text{ eV}^2$ occur at $E_\nu = 50 \text{ MeV}$, beam contains very few neutrinos at this energy + well below detection threshold

MINOS Collaboration, Phys. Rev. Lett. 101, 131802, 2008



T2K experiment

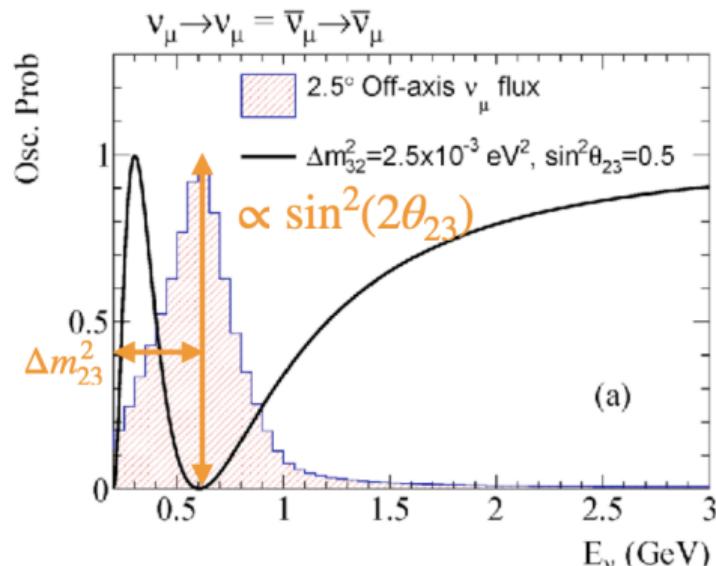


Oscillation at long baseline

Main idea: produce $\nu_\mu/\bar{\nu}_\mu$ beam and perform the measurement of rate, energy and flavor before and after oscillation

- Disappearance channel

$$P(\nu_\mu \rightarrow \nu_\mu) = P\left(\frac{L}{E}, \theta_{23}, \Delta m_{23}^2\right)$$

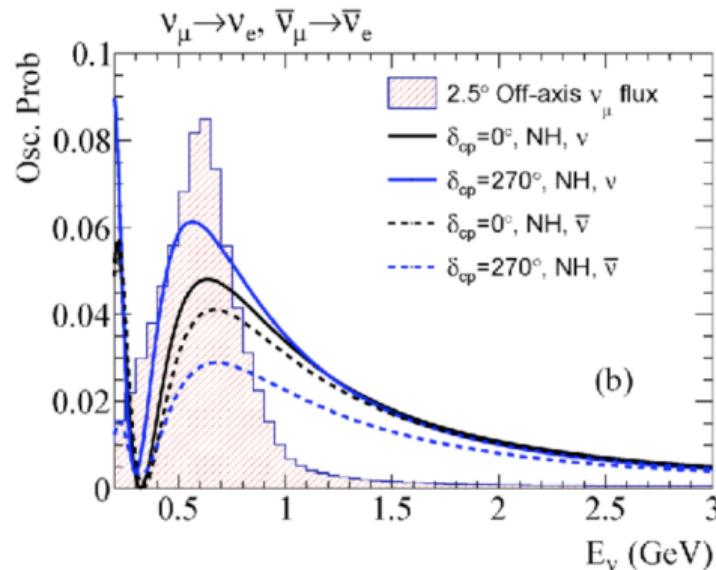


Oscillation at long baseline

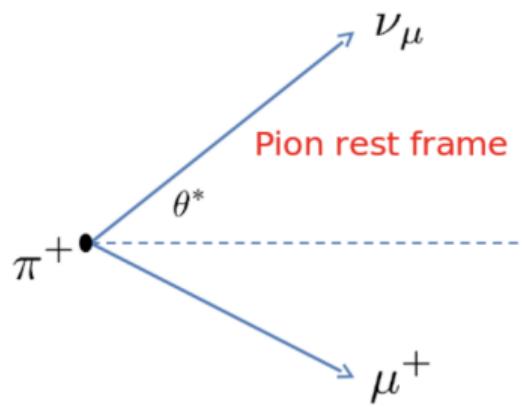
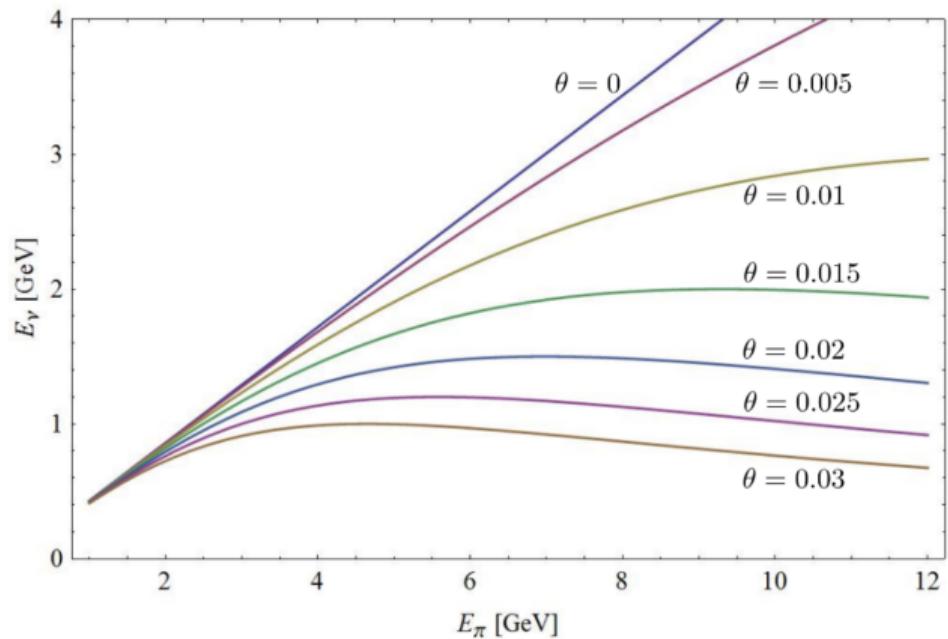
Main idea: produce $\nu_\mu/\bar{\nu}_\mu$ beam and perform the measurement of rate, energy and flavor before and after oscillation

- Appearance channel

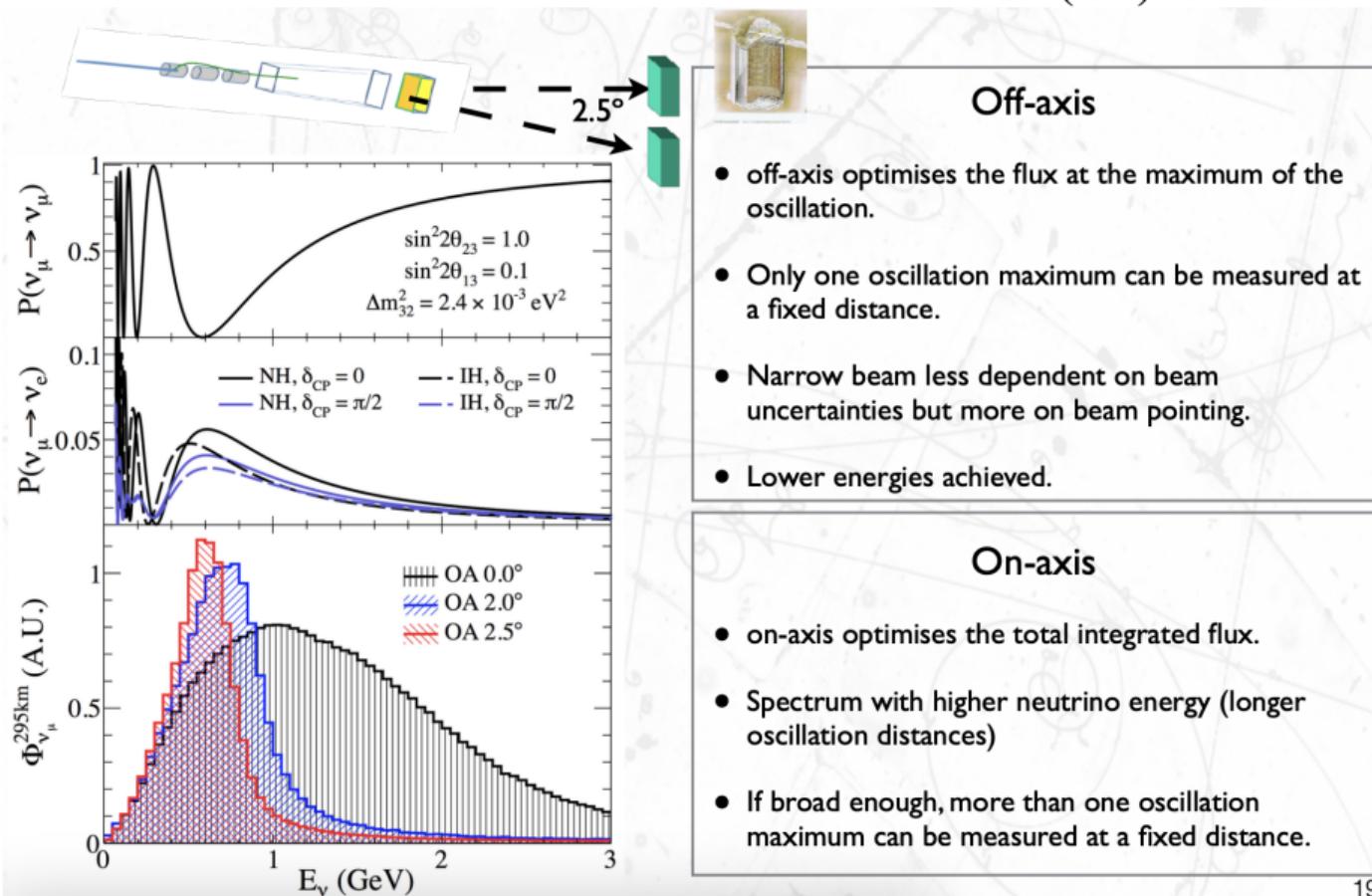
$$P(\nu_\mu \rightarrow \nu_e/\bar{\nu}_\mu \rightarrow \bar{\nu}_e) = P\left(\frac{L}{E}, \theta_{23}, \theta_{13}, \Delta m_{21}^2, \Delta m_{23}^2, \pm \sin \delta_{CP}\right)$$



Off(On)-axis beam



Off(On)-axis beam



T2K-only oscillation results

First presented at Neutrino 2024 : <https://doi.org/10.5281/zenodo.12704703>

δ_{CP} :

- Preference for $\delta_{CP} \approx -\frac{\pi}{2}$
- Jarlskog-invariant gives a parametrized independent way to measure CP violation
- CP conservation excluded at $>2\sigma$ in case of IO and $<2\sigma$ for NO

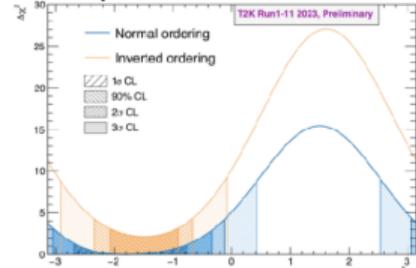
θ_{23} and mass ordering:

- Preference for NO and upper octant but not significant

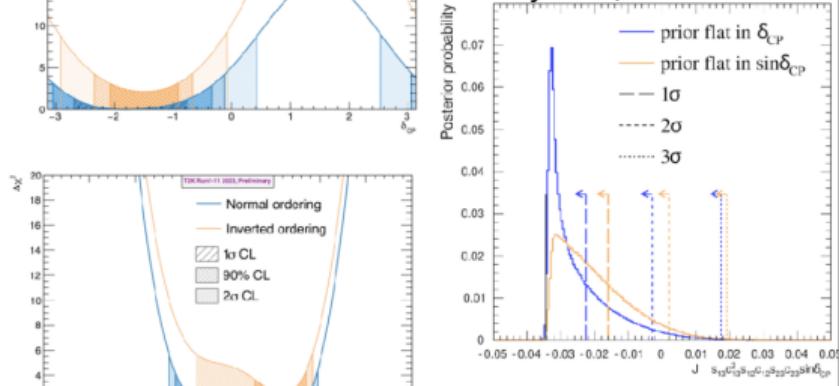
Best fit:

	Normal ordering	Inverted ordering
$\sin^2(\theta_{13})/10^{-3}$	$(21.9^{+0.9}_{-0.5})$	$(22.0^{+1.0}_{-0.4})$
δ_{CP}	$-2.08^{+1.33}_{-0.61}$	$-1.41^{+0.64}_{-0.82}$
Δm_{32}^2 (NO)/ Δm_{31}^2 (IO)	$(2.521^{+0.037}_{-0.050})10^{-3}\text{eV}^2/\text{c}^4$	$(-2.486^{+0.043}_{-0.044})10^{-3}\text{eV}^2/\text{c}^4$
$\sin^2(\theta_{23})$	$0.568^{+0.024}_{-0.125}$ (90%)	$0.567^{+0.021}_{-0.048}$ (90%)

Frequentist



Bayesian, both MO



T2K-NOvA joint fit

Challenges :

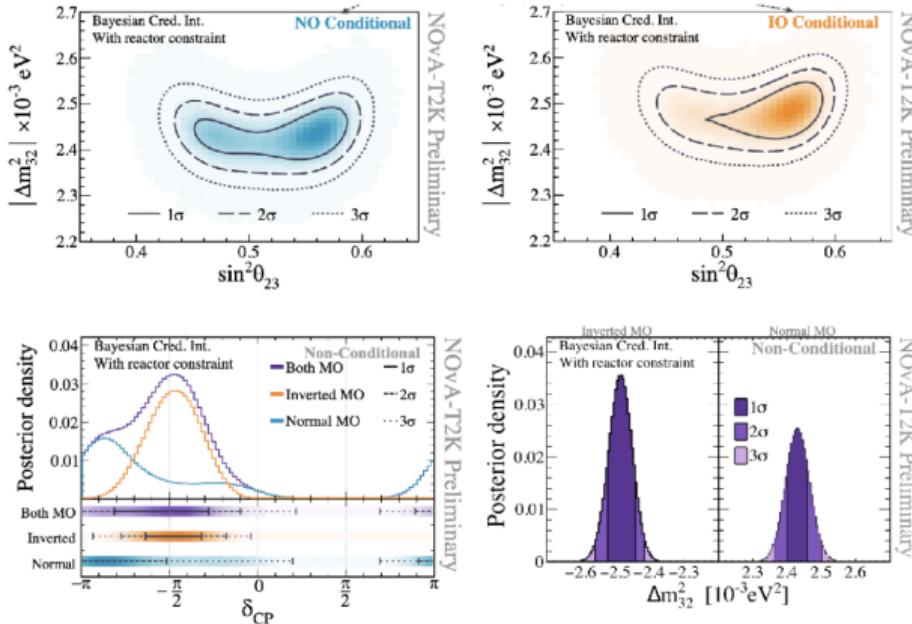
- Main source of correlations: Cross-section model
 - Studied artificial scenarios to see possible correlations
 - Evaluate the robustness of the fit against various models
 - Cross-experiment models after ND constraint

θ_{23} and $|\Delta m_{32}^2|$:

- Results still consistent with maximal mixing of θ_{23}

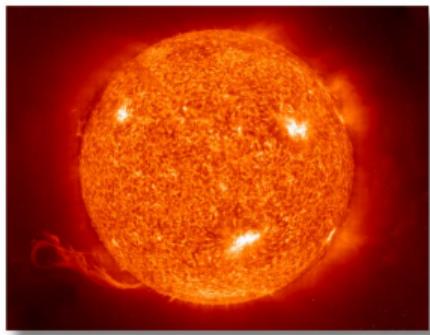
δ_{CP} :

- $\delta_{CP} = \frac{\pi}{2}$ excluded at 3σ for both mass ordering
- In case of IO, CP-conservation is excluded at 3σ

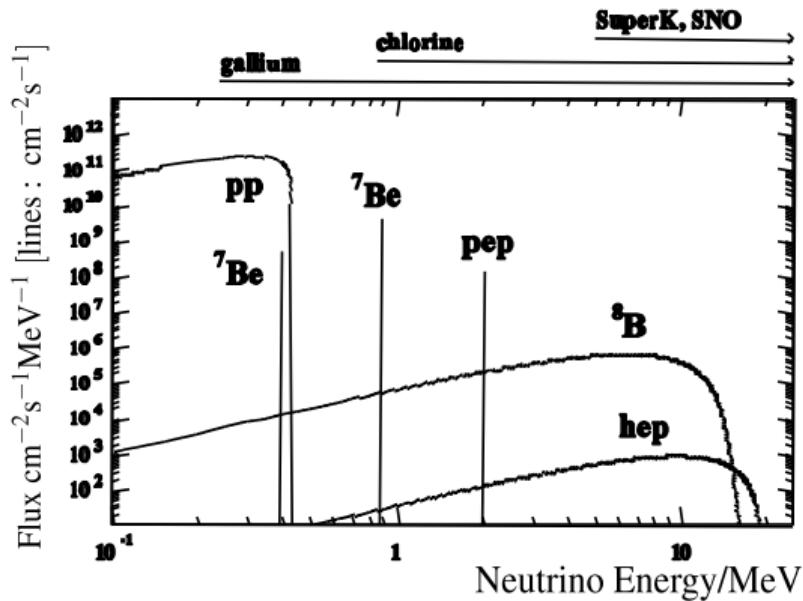


First presented at Fermilab on February, 16th, 2024 :
https://indico.fnal.gov/event/62062/contributions/279004/attachments/175258/237774/021624_NOvAT2K_JointFitResults_ZV.pdf

Solar neutrinos

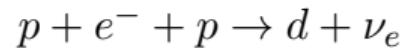
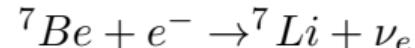
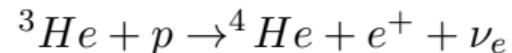


The Sun is powered by the weak interaction:
producing a very large flux of ν_e
 $2 \times 10^{38} \nu_e s^{-1}$



Solar neutrinos

- different nuclear reactions in the sun \implies complex E_ν spectrum

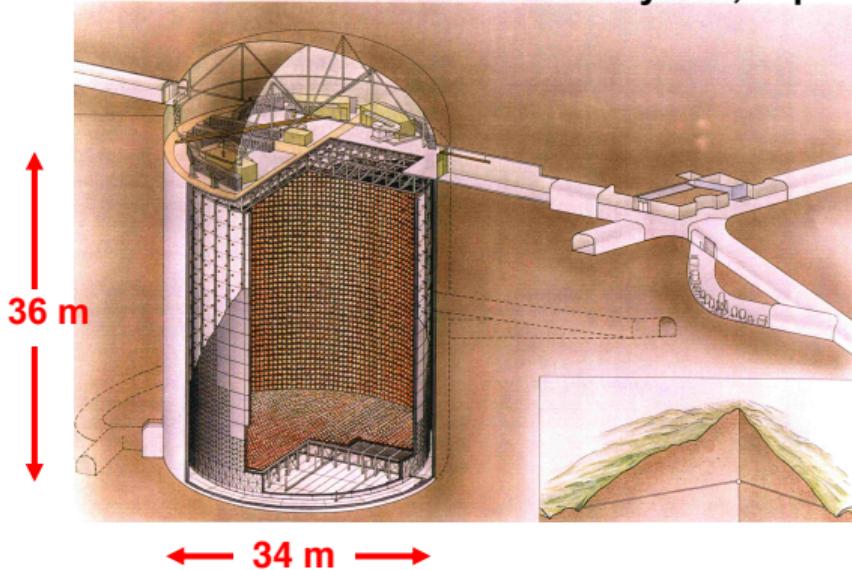
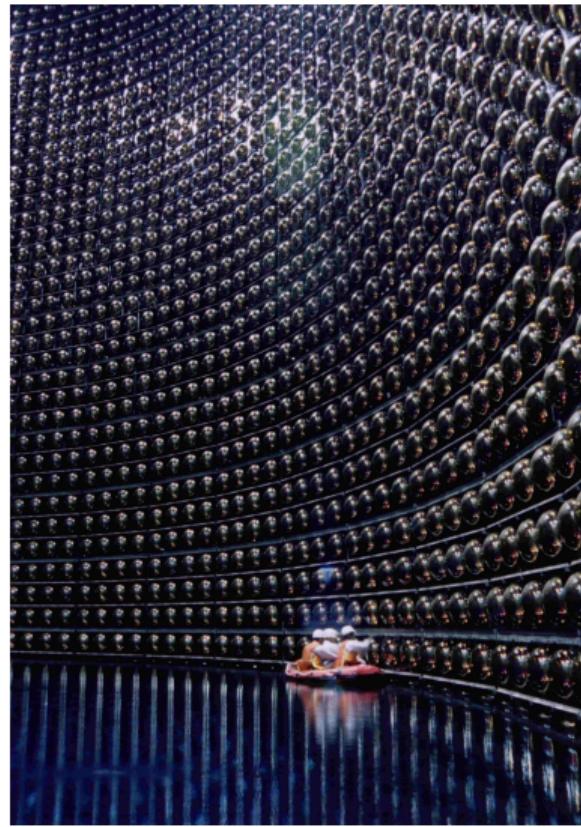


- all experiments saw a deficit of ν_e compared to prediction: **the solar neutrino problem**

Solar neutrinos I: Super Kamiokande

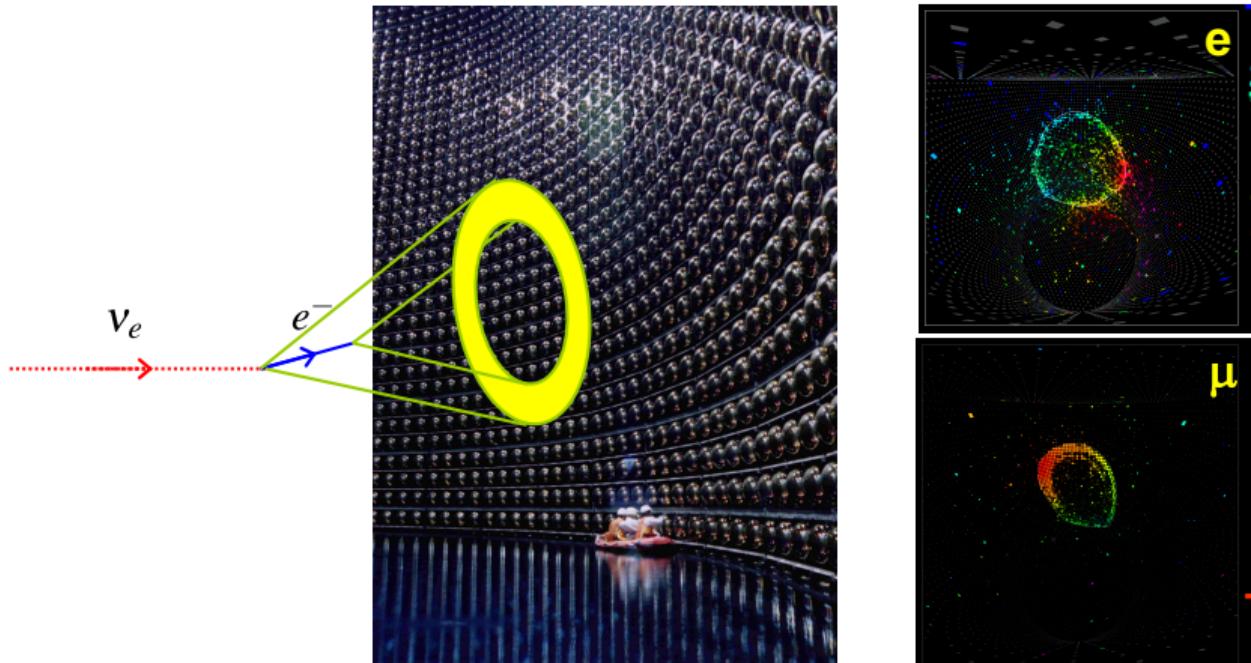
- 50 kton water Cherenkov detector
- water viewed by 11146 PMT
- deep underground to filter out cosmic rays otherwise too much background

Mt. Ikenoyama, Japan



Solar neutrinos I: Super Kamiokande

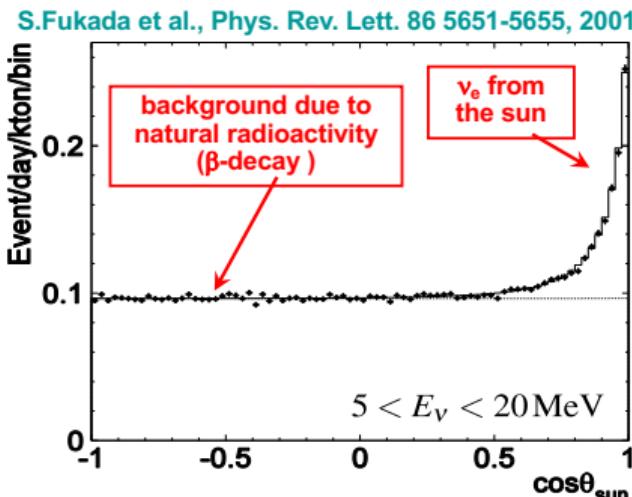
- detect neutrinos by observing Cherenkov radiation from charged particles which travel faster than speed of light in water c/n



- can distinguish electrons from muons from pattern of light: muons produce clean rings whereas electrons produce more diffuse “fuzzy” rings

Solar neutrinos I: Super Kamiokande

- sensitive to solar neutrinos with $E_\nu > 5$ MeV
- for lower energies too much background from natural radioactivity (β -decays)
- hence detect mostly neutrinos from ${}^8B \rightarrow {}^8Be^* + e^+ + \nu_e$
- detect electron Cherenkov rings from $\nu_e + e^- \rightarrow \nu_e + e^-$
- in lab frame the e^- is produced preferentially along the ν_e direction



Results:

- clear signal of ν from the sun
- too few neutrinos:

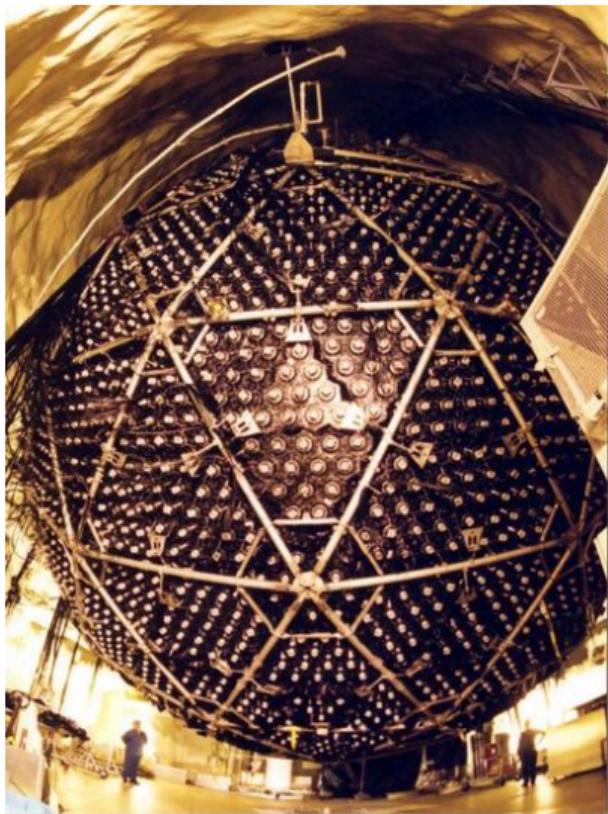
$$\text{Data/SSM} = 0.45 \pm 0.02$$

SSM = “Standard Solar Model” prediction

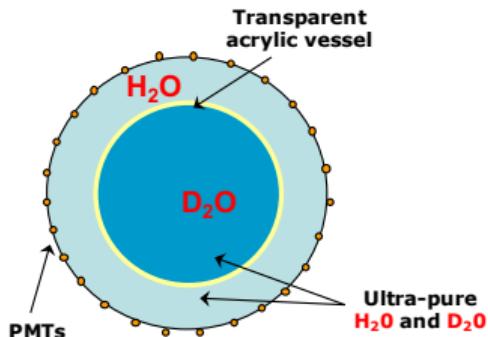
The solar Neutrino “Problem”

Solar neutrinos II: SNO

Sudbury Neutrino Observatory located in a deep mine in Ontario, Canada



- 1 kton heavy water (D_2O) Cherenkov detector
- D_2O inside a 12m diameter acrylic vessel
- surrounded by 3 kton of H_2O
- main experimental challenge: need for very low background from radioactivity
- ultra-pure H_2O and D_2O
- surrounded by 9546 PMTs



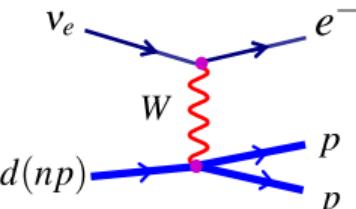
Solar neutrinos II: SNO

Detect Cherenkov light from three different reactions:

CHARGE CURRENT

- Detect Čerenkov light from electron
- Only sensitive to ν_e (thresholds)
- Gives a measure of ν_e flux

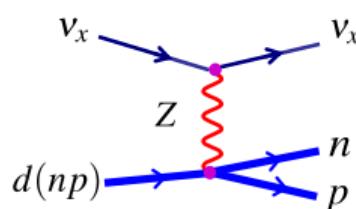
$$\text{CC Rate} \propto \phi(\nu_e)$$



NEUTRAL CURRENT

- Neutron capture on a deuteron gives 6.25 MeV
- Detect Čerenkov light from electrons scattered by γ
- Measures total neutrino flux

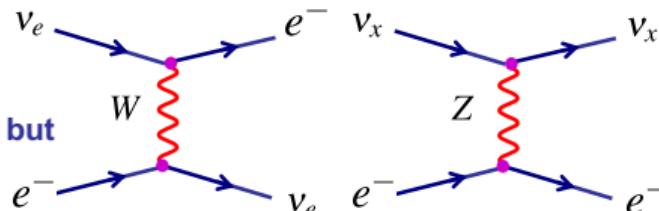
$$\text{NC Rate} \propto \phi(\nu_e) + \phi(\nu_\mu) + \phi(\nu_\tau)$$



ELASTIC SCATTERING

- Detect Čerenkov light from electron
- Sensitive to all neutrinos (NC part) – but larger cross section for ν_e

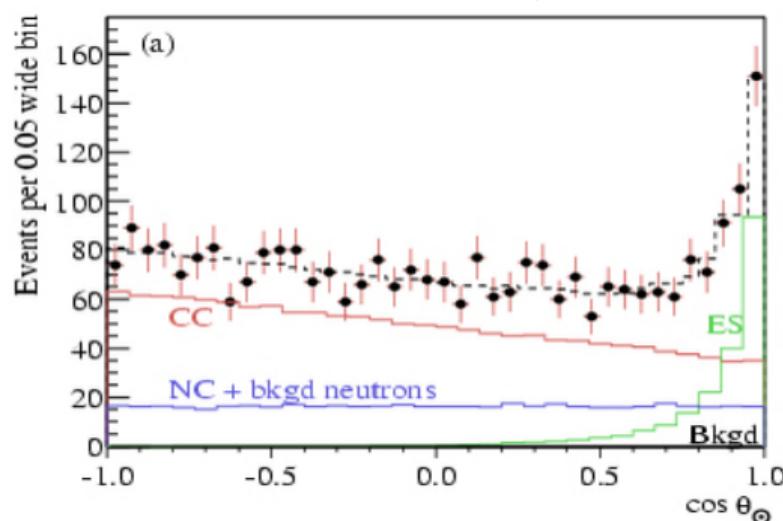
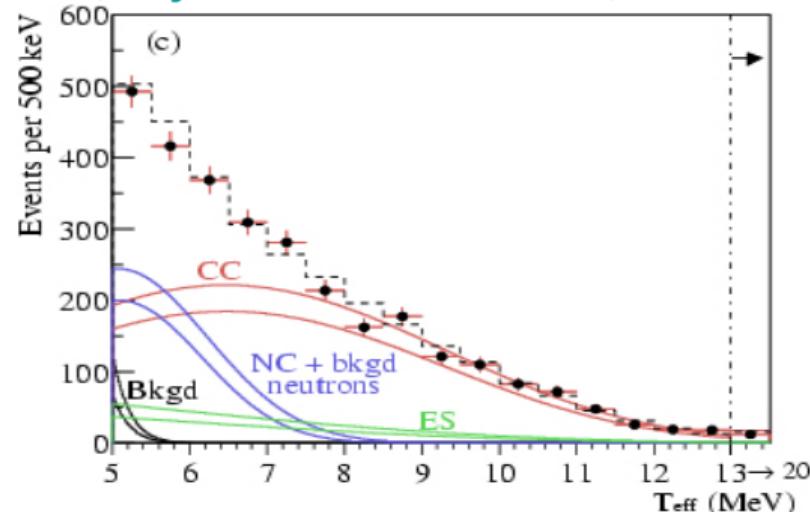
$$\text{ES Rate} \propto \phi(\nu_e) + 0.154(\phi(\nu_\mu) + \phi(\nu_\tau))$$



Solar neutrinos II: SNO

- experimentally can determine rates for different interactions from:
 - angle with respect to sun: electrons from ES point back to sun
 - energy: NC events have lower energy – 6.25 MeV γ from n capture
 - radius from center of detector: gives a measure of background from neutrinos

SNO Collaboration, Q.R. Ahmad et al., Phys. Rev. Lett. 89:011301, 2002



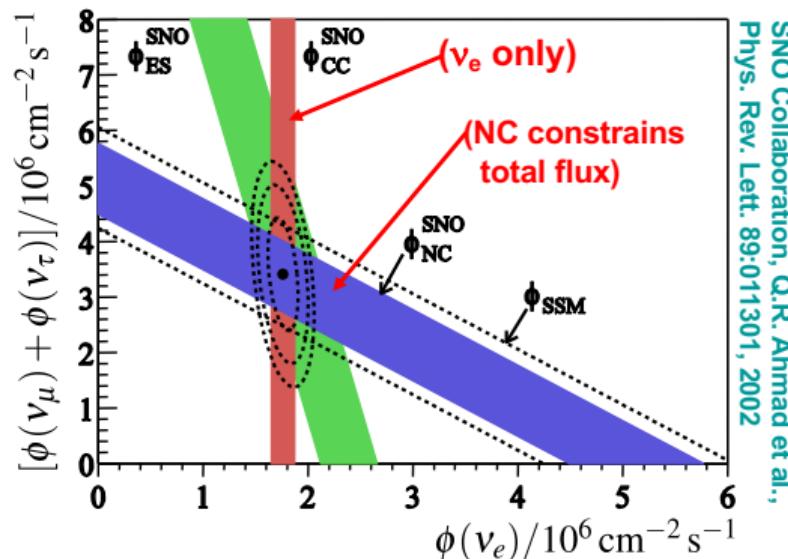
Solar neutrinos II: SNO

- using different distributions measure number of events of each type:
 - CC: $1968 \pm 61 \propto \phi(\nu_e)$
 - ES: $264 \pm 26 \propto \phi(\nu_e) + 0.154[\phi(\nu_\mu) + \phi(\nu_\tau)]$
 - NC: $576 \pm 50 \propto \phi(\nu_e) + \phi(\nu_\mu) + \phi(\nu_\tau)$

⇒ Measure of electron neutrino flux + total flux!

Solar neutrinos II: SNO

- using known cross sections can convert observed number of events into fluxes
- the different processes impose different constraints
- where constraints meet gives separate measurements of ν_e and $\nu_\mu + \nu_\tau$ fluxes



Solar neutrinos II: SNO

SNO results:

$$\phi(\nu_e) = (1.8 \pm 0.1) \times 10^{-6} \text{ cm}^{-2}\text{s}^{-1}$$

$$\phi(\nu_\mu) + \phi(\nu_\tau) = (3.4 \pm 0.6) \times 10^{-6} \text{ cm}^{-2}\text{s}^{-1}$$

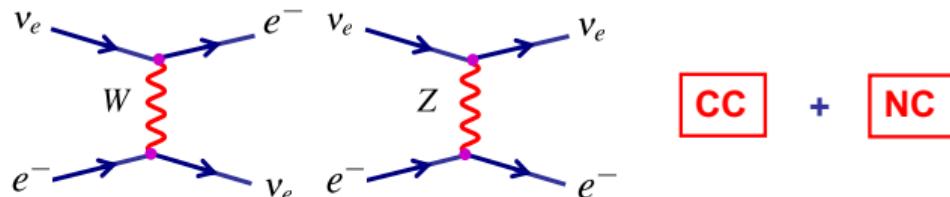
SSM prediction:

$$\phi(\nu_e) = 5.1 \times 10^{-6} \text{ cm}^{-2}\text{s}^{-1}$$

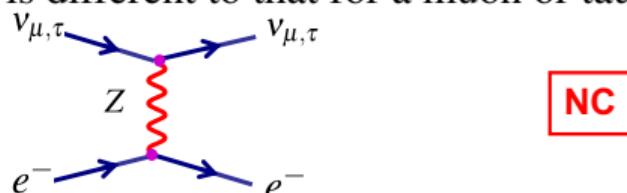
- clear evidence for a flux of ν_μ and/or ν_τ from the sun
- total neutrino flux is consistent with expectation from SSM
- clear evidence of $\nu_e \rightarrow \nu_\mu$ and/or $\nu_e \rightarrow \nu_\tau$ neutrino transitions

Interpretation of solar neutrino data

- the interpretation of the solar neutrino data is complicated by **matter effects**
 - the quantitative treatment is nontrivial and is not discussed
 - basic idea is that as ν leaves the sun it crosses a region of high electron density
 - the coherent forward scattering process ($\nu_e \rightarrow \nu_e$) for an electron neutrino



is different to that for a muon or tau neutrino



- can enhance oscillations - “MSW effect”
- a combined analysis of all solar neutrino data gives:

$$\Delta m_{\text{solar}}^2 \approx 8 \times 10^{-5} \text{ eV}^2, \sin^2 2\theta_{\text{solar}} \approx 0.85$$

Reactor experiments

- to explain reactor neutrino experiments we need full three neutrino expression for the **electron neutrino survival probability** which depends on U_{e1}, U_{e2}, U_{e3}
- substituting these PMNS matrix elements in the expression:

$$P(\nu_e \rightarrow \nu_e) \approx 1 - 4U_{e1}^2 U_{e2}^2 \sin^2 \Delta_{21} - 4(1 - U_{e3}^2)U_{e3}^2 \sin^2 \Delta_{32} \quad (57)$$

$$= 1 - 4(c_{12}c_{13})^2(s_{12}c_{13})^2 \sin^2 \Delta_{21} - 4(1 - s_{13}^2)s_{13}^2 \sin^2 \Delta_{32} \quad (58)$$

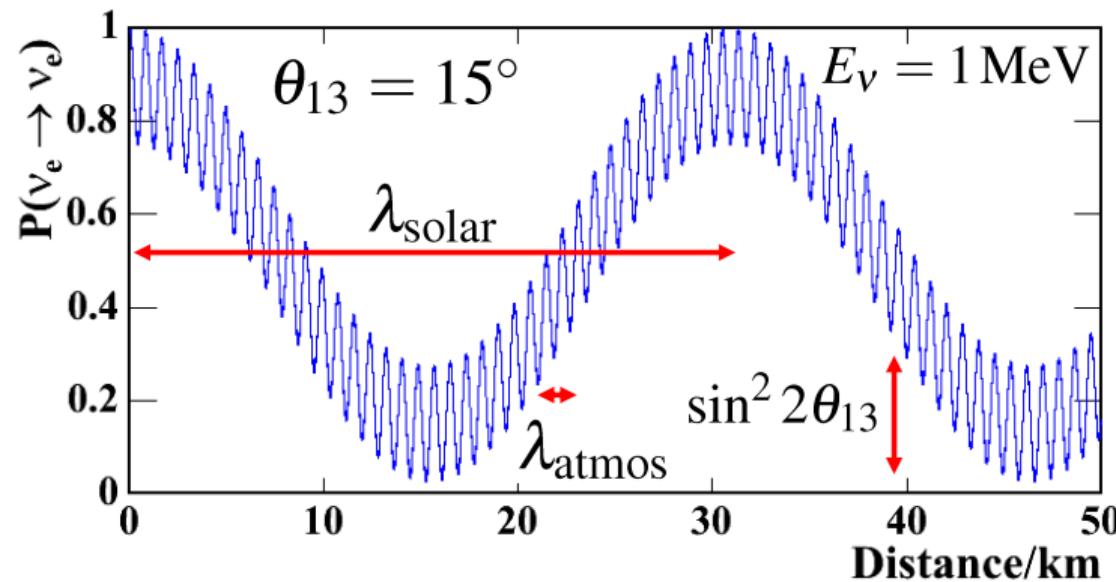
$$= 1 - c_{13}^4(2s_{12}c_{12})^2 \sin^2 \Delta_{21} - (2c_{13}s_{13})^2 \sin^2 \Delta_{32} \quad (59)$$

$$= 1 - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21} - \sin^2 2\theta_{13} \sin^2 \Delta_{32} \quad (60)$$

- contributions with short (atmospheric) and long (solar) wavelengths

Reactor experiments

For a 1 MeV neutrino:

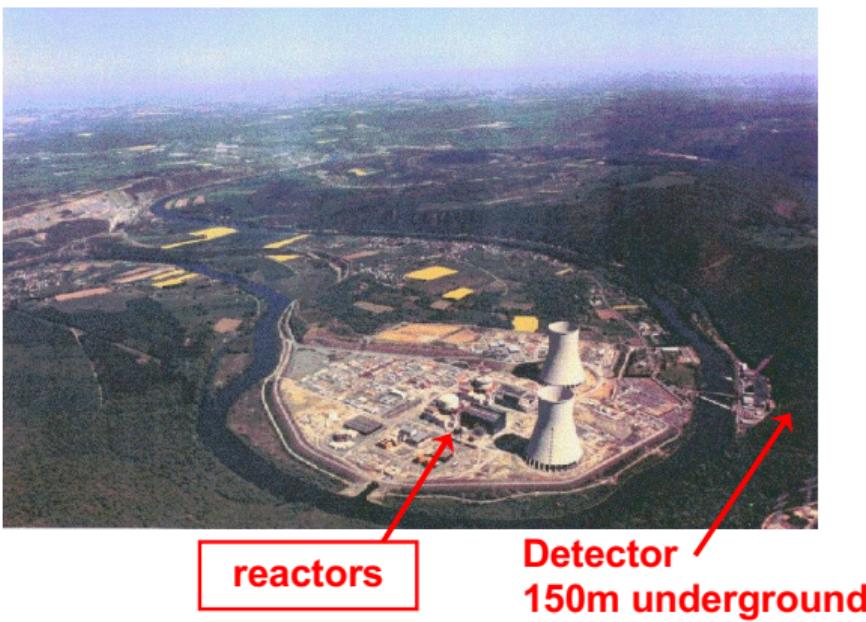
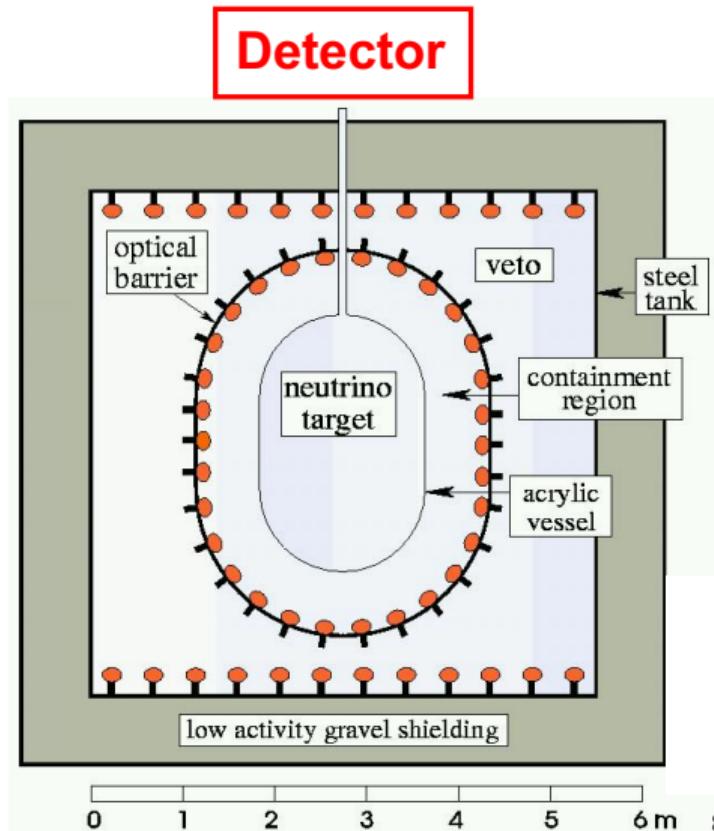


$$\lambda_{\text{osc}}(\text{km}) = 2.47 \frac{E(\text{GeV})}{\Delta m^2(\text{eV}^2)} \implies \lambda_{21} = 30.0 \text{ km}, \lambda_{32} = 0.8 \text{ km}$$

Amplitude of short wavelength oscillations given by $\sin^2 2\theta_{13}$

Reactor experiments I: CHOOZ France

- two nuclear reactors, each 4.2 GW
- detector is 1 km from reactor cores
- reactors produce intense flux of $\bar{\nu}_e$



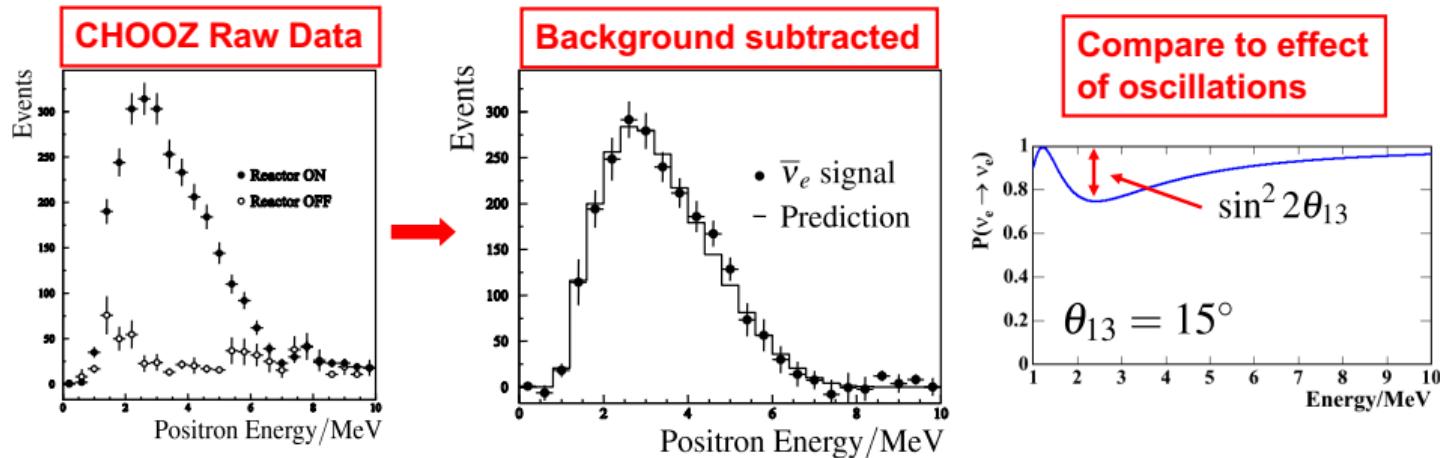
Reactor experiments I: CHOOZ

- antineutrinos interact via inverse β -decay: $\bar{\nu}_e + p \rightarrow e^+ + n$
- detector: liquid scintillator with Gd (large n capture cross section)
- detect γ from e^+ annihilation and a delayed signal from γ from n capture on Gd:
 $e^+ + e^- \rightarrow \gamma + \gamma$, $n + Gd \rightarrow Gd^* \rightarrow Gd + \gamma + \gamma + \dots$

Reactor experiments I: CHOOZ

- at 1km and energies > 1 MeV, only short wavelength component matters:

$$P(\nu_e \rightarrow \nu_e) = 1 - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21} - \sin^2 2\theta_{13} \sin^2 \Delta_{32} \approx 1 - \sin^2 2\theta_{13} \sin^2 \Delta_{32}$$



- data agree with unoscillated prediction both in terms of rate and energy spectrum:

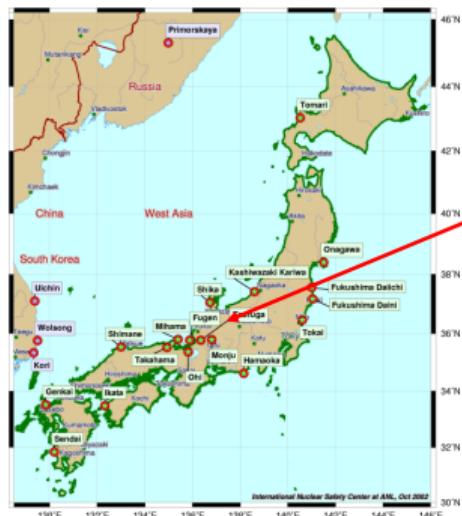
$$N_{\text{data}}/N_{\text{expect}} = 1.01 \pm 0.04$$

Reactor experiments I: CHOOZ

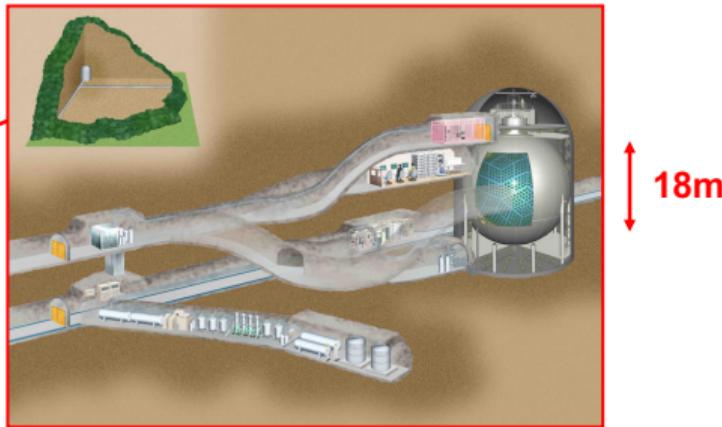
- hence $\sin^2 2\theta_{13}$ must be small: $\implies \sin^2 2\theta_{13} < 0.12 - 0.2$ (exact limit depends on $|\Delta m_{32}^2|$)
- from atmospheric neutrinos can exclude $\theta_{13} \sim \frac{\pi}{2}$
- hence the CHOOZ limit $\sin^2 2\theta_{13} < 0.2$ can be interpreted as $\sin^2 \theta_{13} < 0.05$

Reactor experiments II: KamLAND

- 70 GW from nuclear power (7% of World total) from reactors within 130-240 km

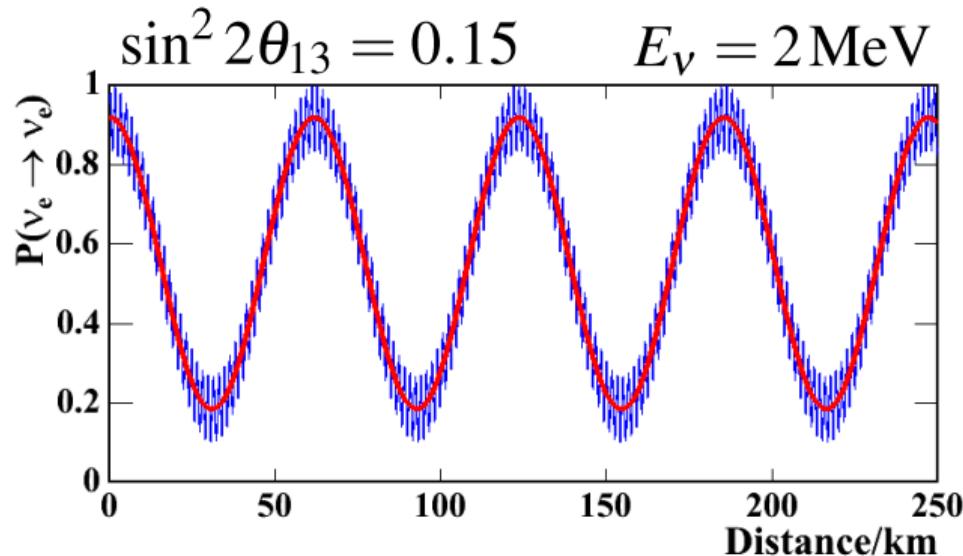


• Detector located in same mine as Super Kamiokande



- liquid scintillator detector, 1789 PMTs
- detection via inverse β -decay: $\nu_e + p \rightarrow e^+ + n$ followed by $e^+ = e^- \rightarrow \gamma\gamma$ – prompt
- $n + p \rightarrow d + \gamma(2.2 \text{ MeV})$ – delayed

Reactor experiments II: KamLAND



- for MeV neutrinos at a distance of 130-240 km oscillations due to Δm_{32}^2 are very rapid
- experimentally only see average effect $\langle \sin^2 \Delta_{32} \rangle = 0.5$

Reactor experiments II: KamLAND

$$P(\nu_e \rightarrow \nu_e) = 1 - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21} - \sin^2 2\theta_{13} \sin^2 \Delta_{32} \quad (61)$$

$$\approx 1 - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21} - \frac{1}{2} \sin^2 2\theta_{13} \quad (62)$$

$$= \cos^4 \theta_{13} + \sin^4 \theta_{13} - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21} \quad (63)$$

$$\approx \cos^4 \theta_{13} (1 - \sin^2 2\theta_{12} \sin^2 \Delta_{21}) \quad (64)$$

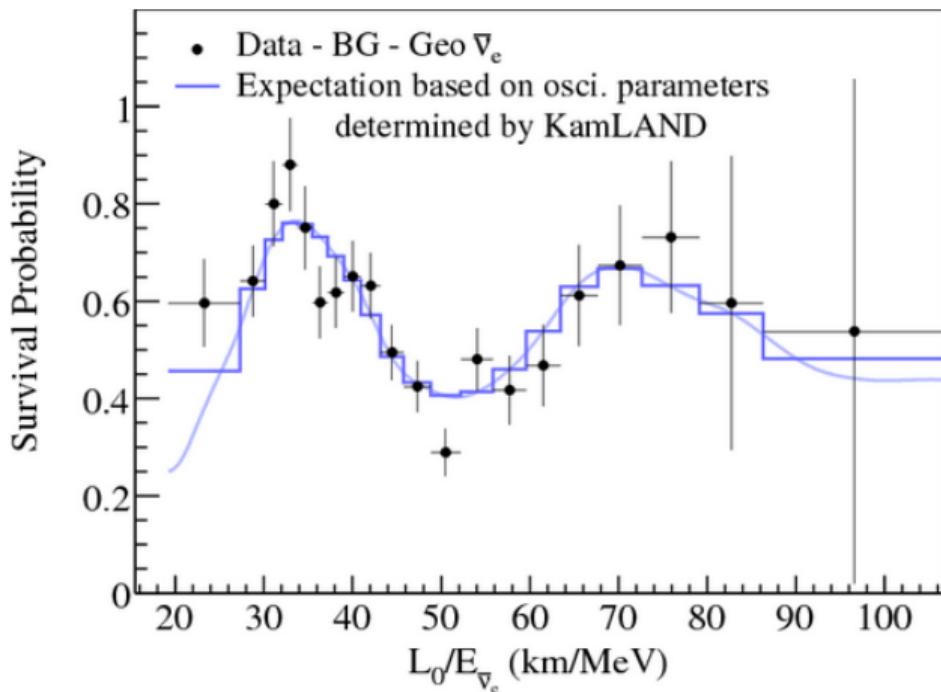
- got two-flavor oscillation formula multiplied by $\cos^4 \theta_{13}$
- from CHOOZ $\cos^4 \theta_{13} > 0.9$

Reactor experiments II: KamLAND results

Observed: 1609 events

Expected: 2179 ± 89 events (if no oscillations)

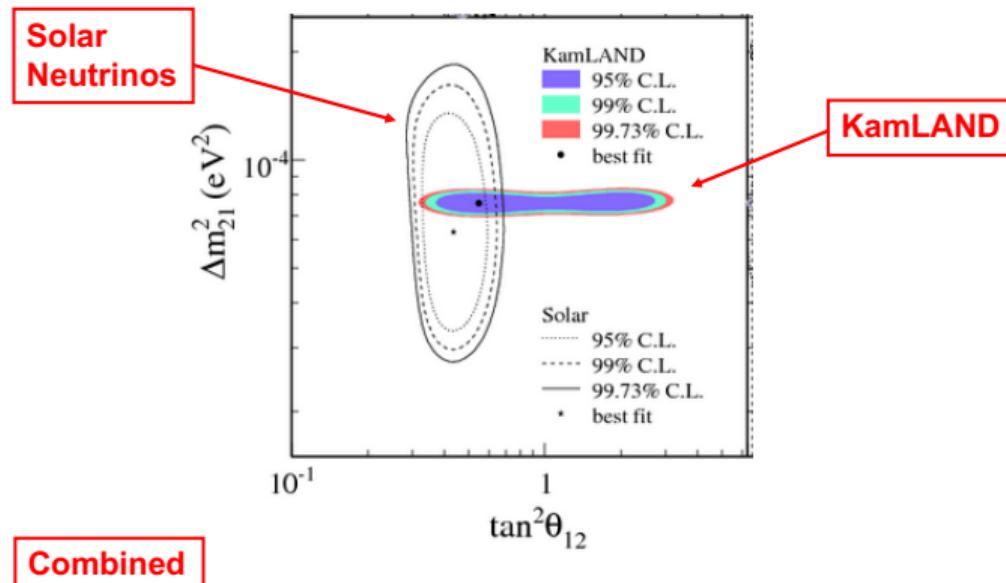
KamLAND Collaboration, Phys. Rev. Lett., 221803, 2008



- clear evidence of $\bar{\nu}_e$ oscillations consistent with the results from solar neutrinos
- oscillatory structure clearly visible
- compare data with expectations for different osc. parameters and perform χ^2 fit to extract measurement

Combined solar neutrino and KamLAND results

- KamLAND data provide strong constraints on $|\Delta m_{21}^2|$
- solar neutrino data (especially SNO) provide a strong constraint on θ_{12}



$$|\Delta m_{21}^2| = (7.59 \pm 0.21) \times 10^{-5} \text{ eV}^2$$

$$\tan^2 \theta_{12} = 0.47^{+0.06}_{-0.05}$$

Summary of current knowledge

Solar neutrinos/KamLAND

- KamLAND + Solar: $|\Delta m_{21}^2| \approx (7.6 \pm 0.2) \times 10^{-5} \text{ eV}^2$
- SNO + KamLAND + Solar: $\tan^2 \theta_{12} \approx 0.47 \pm 0.05$
 $\implies \sin \theta_{12} \approx 0.56; \cos \theta_{12} \approx 0.82$

Atmospheric neutrinos/Long baseline experiments

- MINOS: $|\Delta m_{32}^2| \approx (2.4 \pm 0.1) \times 10^{-3} \text{ eV}^2$
- Super Kamiokande: $\sin^2 \theta_{23} \approx 0.512^{+0.019}_{-0.022}$
- Super Kamiokande: $\delta_{CP} = 1.37^{+0.18}_{-0.16}$

DayaBay, CHOOZ + atmospheric

- $\sin^2 \theta_{13} \approx (2.18 \pm 0.07) \times 10^{-2}$

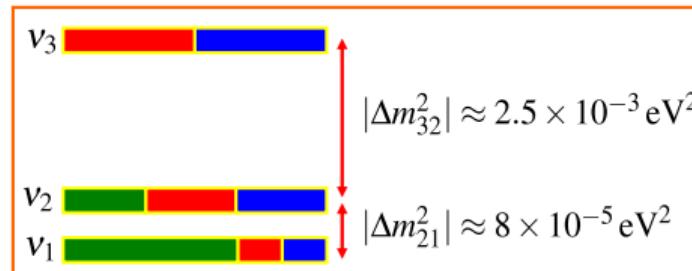
Summary of current knowledge

- have approximate expressions for mass eigenstates in terms of weak eigenstates:

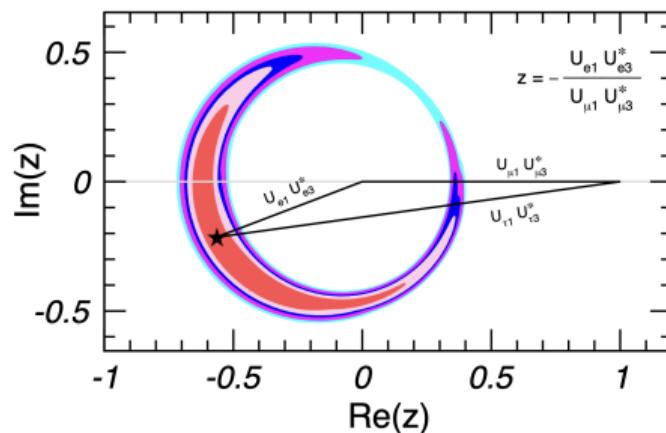
$$|v_3\rangle \approx \frac{1}{\sqrt{2}}(|v_\mu\rangle + |v_\tau\rangle)$$

$$|v_2\rangle \approx 0.53|v_e\rangle + 0.60(|v_\mu\rangle - |v_\tau\rangle)$$

$$|v_1\rangle \approx 0.85|v_e\rangle - 0.37(|v_\mu\rangle - |v_\tau\rangle)$$



- graphic representation of the mixing matrix measurements (unitarity triangle):



Neutrino masses

- neutrino oscillations require non-zero neutrino masses
- but only determine mass-squared differences – not the masses themselves
- no direct measure of neutrino mass – only mass limits:

$$m_\nu(e) < 0.8 \text{ eV}, m_\nu(\mu) < 0.17 \text{ MeV}, m_\nu(\tau) < 18.2 \text{ MeV}$$

Note that e, μ, τ refer to charged lepton flavor in the experiment, e.g. $m_\nu(e) < 2 \text{ eV}$ refers to the limit from tritium β -decay

- also from cosmological evolution infer that the sum

$$\sum_i m_{\nu_i} < \text{few eV}$$

- 20 years ago: assumed massless neutrinos + hints that neutrinos might oscillate
- now, know a lot about massive neutrinos
- but many unknowns: mass hierarchy, absolute values of neutrino masses
- measurement of these SM parameters is the focus of the next generation of experiments