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Fundamental symmetries and SM interactions

reminder: parity transformation

QED, QCD and parity conservation

experimental observation of parity violation: Wu experiment

structure of weak interaction
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Parity

the parity operator performs spatial inversion:

ψ′(~x, t) = P̂ψ(~x, t) = ψ(−~x, t) (1)

applying P̂ twice:
P̂ P̂ψ(~x, t) = P̂ψ(−~x, t) = ψ(~x, t) (2)

so P̂ P̂ = I =⇒ P̂−1 = P̂

to preserve the normalization of the wave-function:

〈ψ|ψ〉 =
〈
ψ′
∣∣ψ′〉 = 〈ψ|P̂ †P̂ |ψ〉 (3)

P̂ †P̂ = I =⇒ P̂ unitary (4)

but since P̂ P̂ = I then also P̂ = P̂ † =⇒ P̂ hermitian

This implies parity is an observable quantity. If the interaction Hamiltonian commutes
with P̂ , parity is an observable conserved quantity.
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Parity

if ψ(~x, t) is an eigenfunction of the parity operator with eigenvalue P :

P̂ψ(~x, t) = Pψ(~x, t) =⇒ P̂ P̂ψ(~x, t) = PP̂ψ(~x, t) = P 2ψ(~x, t) (5)

since P̂ P̂ = I then P 2 = 1

=⇒ Parity has eigenvalues P = ±1

QED and QCD are invariant under parity

experimentally observe that Weak interactions do not conserve parity
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Intrinsic Parities of fundamental particles
Spin-1 Bosons:

from gauge field theory get that gauge bosons have P = −1:

Pγ = Pg = PW+ = PW− = PZ = −1 (6)

Spin-12 Fermions:
from Dirac equation: spin- 1

2 particles have opposite parity to spin- 1
2 antiparticles

convention: spin- 1
2 particles have P = +1:

Pe− = Pµ− = Pτ− = Pν = Pq = +1 (7)

and antiparticles have opposite parity, i.e.:

Pe+ = Pµ+ = Pτ+ = Pν̄ = Pq̄ = −1 (8)

for Dirac spinors the parity operator is

P̂ = γ0 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 (9)
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Parity conservation in QED and QCD

From QED Feynman rules for the QED process e−q → e−q:

−iM = [ūe(p3)ieγ
µue(p1)]

−igµν
q2

[ūq(p4)ieγ
νuq(p2)] (10)

e–e–

q q
which can be expressed in terms of the electron and quark 4-vector currents:

M = −e
2

q2
gµνj

µ
e j

ν
q = −e

2

q2
je · jq (11)

with je = ūe(p3)γ
µue(p1) and jq = ūe(p4)γ

µue(p2)
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Parity conservation in QED and QCD
Under parity transformation:

spinors transform as u P̂−−→ P̂ u = γ0u

adjoint spinors transform as

ū = u†γ0
P̂−−→
(
P̂ u
)†
γ0 = u†γ0†γ0 = u†γ0γ0 = ūγ0 (12)

=⇒ ū
P̂−−→ ūγ0 (13)

hence je = ūe(p3)γ
µue(p1)

P̂−−→ ūe(p3)γ
0γµγ0ue(p1)

its components:

0 :j0e
P̂−−→ ūγ0γ0γ0u = ūγ0u = j0e , since γ0γ0 = 1 (14)

k = 1, 2, 3 :jke
P̂−−→ ūγ0γkγ0u = −ūγkγ0γ0u = −ūγku = −jke , (15)

since γ0γk = −γkγ0 (16)

the time-like component remains unchanged and the space-like components change
sign
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Parity conservation in QED and QCD

similarly for the quark vector current: j0q
P̂−−→ j0q , jkq

P̂−−→ −jkq , k = 1, 2, 3

consequently for the four-vector scalar product:

je · jq = j0e j
0
q − jke jkq

P̂−−→ j0e j
0
q − (−jke )(−jkq ) = je · jq

QED Matrix elements are parity invariant
=⇒ Parity is conserved in QED

The QCD vertex has the same form and thus:

=⇒ Parity is conserved in QCD
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Vectors and axial vectors

the parity operator P̂ corresponds to a discrete transformation x→ −x, etc
under the parity transformation:

1 vectors change sign:

~r
P̂−−→ −~r (17)

~p
P̂−−→ −~p (px =

∂

∂x
) (18)

2 axial vectors remain unchanged

~L
P̂−−→ ~L (~L = ~r × ~p) (19)

~µ
P̂−−→ ~µ (~µ ∝ ~L) (20)

Note that ~B is an axial vector too: d ~B ∝ ~J × ~r d3~r
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Parity violation in β-decay

P -conservation was widely accepted by physicists in
1920-50s, and was experimentally verified in QED and QCD
however, in mid-1950s some kaons decays could not be
explained by a P -conserving theory:

there seemed to be 2 types of K: decaying either to 2π or to 3π
known as τ − θ puzzle (τ and θ referred to types of kaons)

theorists Tsung-Dao Lee and Chen-Ning Yang after a literature
review concluded that there was no experimental evidence
about parity conservation in weak decays

they approached Chien-Shiung Wu, who was an expert on beta
decay spectroscopy, with ideas on an experiment

and finally decided to use 60Co nuclei and carry out an
experiment in a low-temperature laboratory of the National
Bureau of Standards
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Parity violation in β-decay

in 1956 Chien-Shiung Wu et al studied
β-decay of polarized 60Co nuclei:

60Co→60 Ni∗ + e− + ν̄e (21)
60Ni∗ →60 Ni + 2γ (22)

atoms that were aligned by a uniform
magnetic field and cooled to near
absolute zero so that thermal motions
did not ruin the alignment

photons are emitted due to QED =⇒
conserve parity and can be used as a
control!
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Parity violation in β-decay

anisotropy in photons was measured as roughly 40:60

and observed electrons emitted preferentially in direction opposite to applied
magnetic field:

more e- in       c.f. 
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Parity violation in β-decay

if parity were conserved: expect equal rate for producing e− in directions along and
opposite to the nuclear spin

conclude parity is violated in weak interaction

the results shocked the physics community

Wolfgang Pauli: “That’s total nonsense!”, and then “Then it must be repeated!”

the experiment was repeated by other teams, and results were confirmed

=⇒ weak interaction vertex is not of the form ūeγ
µuν
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Bilinear covariants
the requirement of Lorentz invariance of the matrix element severely restricts the
form of the interaction vertex

QED and QCD are vector interactions:

jµ = ψ̄γµφ (23)

This combination transforms as a 4-vector

in general, there are only 5 possible combinations of two spinors and γ-matrices that
form Lorentz-invariant currents, called “bilinear covariants”:

14 / 38



V–A structure of the weak interaction

the most general form for the interaction between a fermion and a boson is a linear
combination of bilinear covariants

for an interaction corresponding to the exchange of a spin-1 particle the most
general form is a linear combination of vector and axial-vector

the form for weak interaction is determined from experiment to be vector –
axial-vector or V–A (V minus A)
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V–A structure of the weak interaction

Can this account for parity violation?

parity transformation of a pure axial-vector current jA = ψ̄γµγ5φ:

jµA
P̂−−→ −jAµ (24)

the space-like components remain unchanged and the time-like components change
sign

this is opposite to the parity properties of a vector current
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V–A structure of the weak interaction
to describe an interaction, one needs to look at the matrix element

consider matrix elements for two currents:

M∝ gµνjµ1 j
ν
2 = j01j

0
2 −

3∑
k=1

jk1 j
k
2 (25)

for the combination of a two axial-vector currents:

jA1 · jA2
P̂−−→
(
−j01

)(
−j02

)
−

3∑
k=1

(
jk1

)(
jk2

)
= jA1 · jA2 (26)

hence parity is conserved for both pure vector and pure axial-vector interactions

but the combination of a vector and an axial-vector currents

jV 1 · jA2
P̂−−→
(
j01
)(
−j02

)
−

3∑
k=1

(
−jk1

)(
jk2

)
= −jV 1 · jA2 (27)

changes sign under parity =⇒ can give parity violation!
17 / 38



V–A structure of the weak interaction

now consider a general linear combination of vector and axial-vector (relevant for the
Z boson vertex)
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V–A structure of the weak interaction

consider the parity transformation of this scalar product:

j1 · j2
P̂−−→ g2V j

V
1 · jV2 + g2Aj

A
1 · jA2 − gV gA

(
jV1 · jA2 + jA1 · jA2

)
(28)

if either gA or gV is zero, parity is conserved, i.e. parity is conserved in pure vector
or pure axial-vector interaction

relative strength of parity violating part ∝ gV gA
g2V + g2A

Maximal parity violation for V–A or for V+A
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Chiral structure of QED

chiral projection operators:

PR =
1

2

(
1 + γ5

)
; PL =

1

2

(
1− γ5

)
(29)

project out chiral right- and left-handed states

in the ultrarelativistic limit, chiral states correspond to helicity states

any spinor can be expressed as:

ψ =
1

2

(
1 + γ5

)
ψ +

1

2

(
1− γ5

)
ψ = PRψ + PLψ = ψR + ψL (30)

the QED vertex ψ̄γµφ in terms of chiral states:

ψ̄γµφ = ψ̄Rγ
µφR + ψ̄Rγ

µφL + ψ̄Lγ
µφR + ψ̄Lγ

µφL (31)

conserves chirality, as ψ̄RγµφL = ψ̄Lγ
µφR = 0
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Chiral structure of QED

in the ultra-relativistic limit only two helicity combinations are non-zero

21 / 38



Helicity structure of the weak interaction

the charged current (W±) weak vertex is:

−igW√
2

1

2
γµ
(
1− γ5

)
(32)
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Helicity structure of the weak interaction

since 1
2

(
1− γ5

)
projects out left-handed chiral particle states:

ψ̄
1

2
γµ
(
1− γ5

)
φ = ψ̄γµφL (33)

writing ψ̄ = ψ̄R + ψ̄L and from discussion of QED, ψ̄RγµφL = 0 gives

ψ̄
1

2
γµ
(
1− γ5

)
φ = ψ̄Lγ

µφL (34)

=⇒ Only the left-handed chiral components of particle spinors and
right-handed chiral components of antiparticle spinors
participate in charged current weak interactions
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Helicity structure of the weak interaction

at very high energy (E � m), the left-handed chiral components are helicity
eigenstates:

=⇒ In the ultra-relativistic limit only left-handed particles and right-handed
antiparticles participate in charged current weak interactions

e.g. in the relativistic limit, the only possible electron - neutrino interactions are:
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Helicity structure of the weak interaction

the helicity dependence of the weak interaction↔ parity violation
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Helicity in pion decay

the decays of charged pions provide a good demonstration of the role of helicity in
the weak interaction

while might’ve expected the decay to electrons to dominate - due to increased phase
space...

the opposite happens, the electron decay is helicity suppressed
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Helicity in pion decay

Consider decay in pion rest frame:

pion is spin 0: so the spins of the ν̄ and µ are opposite

weak interaction only couples to RH chiral antiparticle states

since neutrinos are (almost) massless, they must be in RH helicity state

therefore, to conserve angular momentum, muon is emitted in a RH helicity state:

but only left-handed chiral particle states participate in weak interaction
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Helicity in pion decay

using explicit form of the RH helicity to the Dirac equation, can split it in two parts:
left-handed chiral and right-handed chiral

in the limit E � m, RH helicty = RH chiral

although only LH chiral particles participate in the weak interaction the contribution
from RH helicity states is not necessarily zero!
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Helicity in pion decay

expect matrix element to be proportional to LH chiral component of RH helicity
electron/muon spinor:

hence because the electron mass is much smaller than the pion mass the decay
π− → e−ν̄e is heavily suppressed
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Evidence for V–A

The V–A nature of the charged current weak interaction vertex fits with experiment:

1 Example: charged pion decay

experimentally measure

Γ(π− → e−ν̄e)

Γ(π− → µ−ν̄µ)
= (1.230± 0.004)× 10−4 (35)

theoretical predictions depend on Lorentz structure of the interaction:
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Evidence for V–A
2 Example: muon decay

measure electron energy and angular distributions relative to muon spin direction

results expressed in terms of general S+P+V+A+T form in “Michel Parameters”

e.g. TWIST expt: 6× 1010 µ decays Phys. Rev. D 85 (2012) 092013

measurement: ρ = 0.74977± 0.00012(stat.)± 0.00023(syst.);

V–A prediction: ρ = 0.75
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Weak charged current propagator

the charged-current weak interaction is different from QED and QCD since it’s
mediated by massive W-bosons (80.3 GeV)

this leads to a more complicated form for the propagator:

for the exchange of a massive particle:

1

q2
(massless) → 1

q2 −m2
(massive) (36)

in addition, the sum over W boson polarizations modifies the numerator
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Weak charged current propagator

W boson propagator:

in the limit where q2 is small compared to mW = 80.3 GeV, the interaction takes a
simpler form:

the interaction appears point-like (i.e. no q2 dependence)
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Fermi theory

in 1934, before the discovery of parity violation, Fermi proposed, in analogy with
QED, that the invariant matrix element for β-decay was of the form:

where GF = 1.166× 10−5 GeV−2

Note the absence of a propagator: i.e. this represents an interaction at a point

after the discovery of parity violation in 1957 this was modified to

Mfi =
GF√

2
gµν
[
ψ̄γµ

(
1− γ5

)
ψ
] [
ψ̄γν

(
1− γ5

)
ψ
]

(37)

the factor
√

2 was included so the numerical value of GF did not need to be changed
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Fermi theory

we can compare this to the prediction for W-boson exchange:

which for q2 � m2
W becomes:

Mfi =
g2W

8m2
W

gµν
[
ψ̄γµ

(
1− γ5

)
ψ
] [
ψ̄γν

(
1− γ5

)
ψ
]

(38)

=⇒ GF√
2

=
g2W

8m2
W

still usually use GF to express strength of weak interaction as this is the quantity that
is precisely determined in muon decay
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Strength of weak interaction

strength of weak interaction most precisely measured in muon decay

here q2 < mµ (0.106 GeV)
to a very good approximation the W-boson propagator can be written

−i
[
gµν − qµqν/m2

W

]
q2 −m2

W

≈ igµν
m2
W

(39)

in muon decay measure g2W /m
2
W

in muon decay GF = 1.16639(1)× 10−5 GeV−2
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Strength of weak interaction

to obtain the intrinsic strength of weak interaction need to know mass of W boson
mW = 80.403± 0.029 GeV

=⇒ αW =
g2W
4π

=
8m2

WGF

4
√

2π
=

1

30
(40)

the intrinsic strength of the weak interaction is similar to, but greater than, the EM
interaction!

it is the massive W-boson in the propagator which makes it appear weak

for q2 � m2
W weak interactions are more likely than EM
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Summary
weak interaction is of form Vector – Axial-vector (V–A)

−igµν√
2

1

2
γµ
(
1− γ5

)
(41)

consequently only left-handed chiral particle states and right-handed chiral
antiparticle states participate in the weak interaction

=⇒ maximal parity violation (42)

weak interaction also violates Charge Conjugation symmetry

at low q2 weak interaction is only weak because of the large W-boson mass

GF√
2

=
g2W

8m2
W

(43)

intrinsic strength of weak interaction is similar to that of QED
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