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The Higgs mechanism

o in this lecture we will cover more formal aspects of the Higgs mechanism so that you
see where the main properties of the Higgs bosons are coming from

o the material can be split in three parts each giving an answer to a separate question:

o appearance of mass terms for a scalar field (= Higgs field and Higgs boson mass)

o appearance of mass term for a gauge boson from a broken U(1) local gauge
symmetry

o full Higgs mechanism by breaking the SU(2); xU(1)y local gauge symmetry
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Interacting scalar fields

o start with an example — lagrangian (L =T — V') of QED:

_ _ 1
Lorp = V(i 0, — me)) + 67/)7"”1/)A/1—1FWFW

o here, the kinetic term for electron:
Z'@Z}'Yuau@b
o the kinetic term for photon:

1
4

S

F, FH

o potential term for electron-photon interaction: 1]

61/;7H1/)Au
@ in general, type of interactions and their strength are defined by the terms in
lagrangian mixing the fields, like here ei)y#1 A, defines the QED interaction vertex
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Interacting scalar fields

o a free real (1D) scalar field has a lagrangian:
Ls = 5(8;&5)(3 ¢) — §m ¢
o for a scalar field ¢ with a potential:
1 1
174 — 2,242 A 4
(¢) = gu° "+ 779
o the lagrangian will look like:

£= 3 (0,0)0"9) ~ V(9) n

1 1, 1
= 5((%@5)(8“@ - §/L2</52 - 1)\(/>4 (2
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Interacting scalar fields

@ in this lagrangian:

1
£ = 5(0:6)(9"0) = V(9) )
1 1 5, 1.,
= 5@#@(3“05) - 5/1/2(/)2 - 1)\@4 4)
0 0
N P
o 1(0,0)(0"¢) is the kinetic energy of the scalar particle 2 e
° % 12 ¢? represents the mass of the particle /\.\ J—Mu
N
° i)\qb‘l is a self-interaction of the scalar field e \
\
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Interacting scalar fields
@ the vacuum state of the scalar field ¢ is its lowest energy state
@ corresponds to the minimum of potential V' (¢) = %ugqﬁz + %)\qﬁ‘i
o for V(¢) to have a minimum, it is obligatory that A > 0:

) ®)
@ v(9) v(9)

-0 +v

e a) 1 > 0: one minimum at ¢ = 0,

e b) 2 < 0: two minima at ¢ = +v = i‘ _/’\ﬂ
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Interacting scalar fields

e a)u? > 0:
e vacuum state is when ¢ = 0
o we have a scalar particle with mass u
o self-interaction term proportional to ¢*

e b)u? <0:

o lowest energy state when ¢ = +v or ¢ = —v

o choice of vacuum state breaks the symmetry of lagrangian — spontaneous
symmetry breaking

o to understand the particle interactions need to find excitations of the field around
its minimum, e.g. for ¢ = +wv:

¢(x) = v +n(2),
where 7(z) is the scalar field excitation
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Interacting scalar fields

e we can expand the lagrangian with ¢(z) = v + 7]( ) and 8,@ {J
L(n) = 5(0un)(0"n) = V(n) = 5(0um)(0"n) — 54°(v +n)* - A(v +n)t
@ now use the fact that 2 = —\v?:

1 1 1
L(n) = 5(((9#77)(8“7)) — X = dvp® — 1/\774 + Z)\U4

2,2

o term “—A\v“n~” is equivalent to the mass term “— %m2¢2” of Lg

= my = Vo2 = /=242

o it means that this lagrangian describes a massive scalar field n
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Interacting scalar fields

e terms 7)° and 7 represent triple (Av) and quartic (i)\) interaction vertices

/TI n /77
/ AN P
/ N
/ N /'(
Nn=-===--= Q Av /\.\ zl
\ RN
\ / N
\ .7 N
n n n

o term i)\v“ is a const and does not have physical implications
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Symmetry breaking for a complex scalar field

@ can apply the same logic to a complex scalar field:

¢ = 7(% + i)

o the corresponding lagrangian is:
L= (9,0)"(0"¢) — V(¢) with V(¢) = u*(¢"¢) + \(¢"¢)?

@ can express the same in terms of two real scalar fields ¢; and ¢2:
1 1 1 1
L= 2(0u01)(9" 1) + 5 (0u62) (9" 02) — S (67 + 63) — LA (61 + 63)°
@ again, for a potential to have a minimum, we need A\ > 0
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Symmetry breaking for a complex scalar field
o the lagrangian is invariant under ¢ — ¢’ = €'®¢, since ¢*¢/ = ¢* ¢
o — ithas aglobal U(1) symmetry
o the shape of potential again depends on the sign of %
o a) ;2 > 0: one minimum with ¢y = ¢ = 0
o b) 2 < 0: infinite set of minima with ¢2 4 ¢3 = _ffz =2

@ Vo) ® o)

The physical vacuum state would be one point on this dashed circle breaking the
global U(1) symmetry, e.g. (¢1,¢2) = (v,0)
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Symmetry breaking for a complex scalar field

@ again, can expand the field around the vacuum state:
¢1(x) = n(x) + v and ¢y(z) = £(x)
1
=—=Mm+tv+1
¢ 7 (n §)
o need to rewrite lagrangian in terms of 7 and &:

£ = 500" (0" + 5(0,6)"(06) = V(1.),
V(n, &) = n2¢? + Ao with ¢? = ¢¢* = % [(v +n)° + 52}

o rewriting potential using p? = —A\v?:
V(n,€) = p?¢* + Ao (5)
1 1 2
= —5)\112 [(v+n)?+&] + 1 [(v+n)? + &7 (6)

1 1 1 1
- _Zw + 20%0? + don? + 1”74 + ng‘* + Aone? + 5”7252 (7)
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Symmetry breaking for a complex scalar field

o V(n,¢ = —%)\04 + 202 + don? + At 4+ I+ Aong? + %)\7]252

o term “Av”n*” is a mass term for field n: m, = v2\v?
o terms “/\77'773”., “%/\77%”, “%)\54”, “Aoné?”, and “%)\ngf%’ are three- and
four-particle interaction terms

@ lagrangian:

1 1 1
£ = @) (0n) — 5m3n’ + 5(0,6)(0") = Vina(1,€)
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Symmetry breaking for a complex scalar field

o this lagrangian contains two fields:

o a massive scalar field  with mass m,, = v/2Av?
o a massless scalar field £

o excitations of the massive field 7 in the direction where the potential is quadratic

o excitations of £ are in the direction of a constant potential — a Goldstone boson

g

n(x)
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The Higgs mechanism

@ in the Higgs mechanism one more difference is that this spontaneous symmetry
breaking happens in a theory with a local gauge symmetry

(]

local gauge transformation definition: ¢(z) — ¢ (z) = e9X(®) ()
L = (0,0)*(0*¢) — V(¢) is not invariant because of the derivatives
this is fixed by replacing 0,, — D,, = 0,, + igB,,
L = (Du¢)*(D'¢) — V(¢) is gauge invariant if

B, — B, = B, — d,x(x)

(]

(]

leading to the existence of a new gauge field B with gauge transformation properties:

1 *
L= —F"Fuy + (Do) (D'6) — 6% = Ao,

where F'*V F),,, is the kinetic term for the new field with
F¥ = g BY — 9V B

the field B is massless: the term %m%B#B“ breaks gauge invariance
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The Higgs mechanism

o lagrangian will get additional terms when expanding “long” derivatives:

(Dpop)* (D*¢) = (0 — igBu)d* (0" +igB")¢ (8)
= (0,9)*(0"¢) — igB,¢* (0"9) +ig(0,0*) B¢ + g° B, B"¢*¢  (9)

o the full lagrangian would be:

L= _EFMVFHV +(0,0)"(0"9) — p*¢* — A" (10)
(11)

o now need to repeat the same exercise of potential expansion around vacuum
state taking into account in the lagrangian
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The Higgs mechanism
o go directly to the case of x> < 0 and choose ¢1 + iy = v:

o(z) = ;5(” T n(e) +i€(x))

o after all the transformations and algebra get:

1
£ = 5(0,m)(0"n) = \n® (12)
mas;irve'r]

1

+ 5(0:6)(2"¢) (13)

less £

1 % 1 2,2 L

- ZF’L“/F + ig (% B.“B (14)

massive gauge field
— Vint + guBu(9") (15)

where V., (n. €. B) contains 3- and 4-point interaction terms of the fields n, £ and B 17/34



The Higgs mechanism
o we managed to provide a mass mp = gv to the field B, and retained local gauge
invariance of the theory

o with doing this we acquired new particles: massive scalar field 7 and massless
Goldstone boson &

@ at the same time have two new issues:

o number of degrees of freedom: had 4 (one of ¢1, one of ¢, two polarizations
of B), now have 5 (massive state B has one more polarization — longitudinal)?

o spin-1 to spin-0 particle transition: term gv B, (0*¢) leads to such direct
coupling

gu
B ~N~ANANe-—-—-=—-=¢
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The Higgs mechanism

o these “problems” can be resolved by eliminating Goldstone field £ with an
appropriate gauge transformation:

1
5(04€)(9") + guBL(0"€) + g “v? B, B" (16)
L 1 2
= 2 [13 %_ ( ﬁlg)] (]‘7)
o can make gauge transformation:

Bu(x) = Bl(x) = By(x) + ; £ ()
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The Higgs mechanism

o then the lagrangian simplifies as:

1
£ = 5(0u)(9"n) = v*n® (18)
massive 7
1 v 1 2,20/ !
— ZFWF“ + §g v BMB“ (19)

massive gauge field

int (20)
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The Higgs mechanism

o the original lagrangian was invariant under local U(1) gauge transformations —-
physical predictions should be unchanged

o with the appropriate choice of gauge x(x) = —&(x)/gv we do not have the
Goldstone field £

o effect of this gauge on the scalar field qu:

d(x) = ¢'(x) =

o after the symmetry breaking we had:

( )

w p(a) = e D)

1 . 1 &)
r)=—W+nx)t+ig(xr)) =~ —=vt+tnlr)e~
¢(z) \/i( n(x) +i(x)) \/i[ n(z)]
o effect of the gauge transformation on this field:
8(z) = /() = Z5e T k@] € = (v + (@)
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The Higgs mechanism

o so the effect of this gauge — Unitary gauge — is to choose the complex scalar field
¢(z) to be real:

1 1
z)=—7=@W+n(z)=—=w+h(
¢(z) ﬂ( n(x)) \/i( ()
o the field n(z) is now denoted as the Higgs field h(z) to show that it’s the physical
field in the unitary gauge

e unphysical term with £(x) has disappeared

o extra degree of freedom disappeared with the Goldstone field {(z): this boson was
“eaten” by the massive gauge field B
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The Higgs mechanism

@ with all this the final lagrangian can be rewritten as (also ignoring a constant Av? /4):

L= %(auh)(aﬂh) — \?h? (21)

Vv
massive h scalar

1 1
= P+ 5 g*v*B,B" (22)

massive gauge boson

1
+ g*vB,B"h + §QQBMB“h2 (23)

h,B interactions

1
— \h? — ZAh4 (24)
| —

h self-interactions
@ mass of the gauge boson mp = gv

o mass of the Higgs boson my = v/2\v 23734



@ interaction terms in the lagrangian:

correspond to the following four diagrams:

[

g-v

The Higgs mechanism

1
+ g*vB,B"h + §g2BMB“h2

— h? —

Vv
h, B interactions

Y
4

h self-interactions

9

/
/

/
h ——--& Av
\
\

(25)

(26)
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The standard model Higgs boson

the last step is to extend previous considerations from local gauge U(1) symmetry to
local gauge U(1)y xSU(2);, symmetry

three Goldstone bosons will be needed to provide longitudinal polarizations to W,
W™ and Z bosons

as before, after symmetry breaking there will be (at least) one massive scalar particle

the simplest Higgs model with the necessary four degrees of freedom consists of two
complex scalar fields

to give masses to Z and W™ one of the scalar fields must be neutral: ¢°; another one
charged: ¢ for W and (¢1)* = ¢~ for W~

minimal Higgs model has two complex scalar fields in a weak isospin doublet:

o= ()= L(r)
¢° V2 \ 93+ iga

(upper and lower components of doublet differ by one unit of charge)
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The standard model Higgs boson

o the lagrangian for this doublet is:

£=(0,0)"(0"9) ~V(9)
with the Higgs potential V (¢) = p2¢T¢ + \(oT¢)?
e for ;12 < 0 the potential has an infinite set of minima with:

1 2 2
6lo = (01 + 03+ 63+ d) = 5 = -5

o after symmetry breaking, the neutral photon remains massless = minimum of the
potential corresponds to a non-zero vacuum expectation value only for the neutral

scalar field ¢°:
10
wlolo) = ()
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The standard model Higgs boson

the fields are expanded around this minimum:

o(x) = NG <v +n(z) + i¢4(az)>

we will get three Goldstone bosons, which would be absorbed by W+ and Z in the
unitary gauge

in this gauge Higgs doublet looks like:

6@ =750+ h)

we need to identify masses of gauge bosons and interaction terms
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The standard model Higgs boson

o for the SU(2)r, xU(1)y local gauge symmetry, the covariant derivatives would be:
. = T . }/
Oy — Dy =0, +igwT - W, +1ig 53;“

where T' = %5 — the three generators of the SU(2) symmetry

o Higgs doublet hypercharge:

Y:2(Q—I§’V):2(O+%):1

@ hence for acting on the Higgs doublet ¢ the covariant derivative looks like:
1 R .
D,¢ = 3 [28“ + (zgwa W+ zg’BH)} o

e the term in the lagrangian generating masses of the gauge bosons is (D,@)T(D“qﬁ)
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The standard model Higgs boson

o for determining the masses, need to expand the (Duqﬁ)T(D”qﬁ) expression in the
unitary gauge

@ as aresult, for terms quadratic in the gauge bosons fields will get:

1

gvz e (WE)WW n Wf)w(zm) 27)
1 2 3 3

+gv (gWW[L ) — g/BM> (gw AOL g’B“) (28)

o the mass terms for W1 and W2 fields would be %m%ﬁ,Wﬁi)W(i)“

@ — mass of the W boson is myy = %ng
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The standard model Higgs boson
o the terms containing neutral W (%) and B fields can be written as:
3 2 3 W3k
%Uz <9WvV/S ) - Q,Bu) (QWW(g)M - g/BM) =% (ng )Bu)M< BH )7
where M is the non-diagonal mass matrix:
2 o /
M= <_9W . owy )
agwg g
o off-diagonal matrix elements lead to mixing between 1 (3) and B

o to determine physical fields and their masses need to find M eigenvalues and
eigenvectors leading to:

1, 0 0 An
gv (Au Zu) (0 912/‘/ + g/2) <Z“)

with ms = Oand my = 2o./g3, + g
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The standard model Higgs boson

@ we got the physical fields for a massless photon A, and for massive boson Z,,:

_ gW + gwB,
oW —¢B 1
7, - \/ﬂi  with myy = oy [af + 97 (30)
/

A, withmy4 =0 (29)

iy + 9"

@ by introducing

= tan Oy
aw

we get:
A, = cos Oy B, +sin GWW/S?’)

Zﬂ = —sin ewBH + cos QWW;SS)
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(4]

The standard model Higgs boson

for a mass of a Z boson can also write:

1 ogw

= — )
2 cos Oy

mz

the relation between W and Z masses:

mw
—— = cos by
mz

resulting model of Glashow-Salam-Weinberg (GSW) is described by 4 parameters:
gw, gla 122 A
boson masses can be expressed through these parameters:
2
2

vt = and m3 = 2\v?

from W mass and H mass measurements:

v = 246 GeV and myg = 125 GeV
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e 6 o

e o

The standard model Higgs boson

the gauge bosons in the expansion of the (DM<;5)T(D“¢) appear as V'V (v + h)?
VV? terms lead to masses of gauge bosons

the terms V'V h and V'V hh lead to triple and quartic couplings between one or two H
and gauge bosons

by expanding all can find the following expression:
Ly o 1 _ 1 3
LW W 4 §g%vaM Wt + Zgéku WHHtRA
leading to ggww = %g%vv = gwmw
similarly, gyzz = gzmz
W+ z
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(7]

(]

Summary

we have seen how a scalar field leads to the Higgs boson appearance
derived Higgs boson mass and its interactions

derived mass terms for the gauge bosons

derived interactions of the Higgs boson with gauge bosons

what is left: how fermions acquire their mass when interaction with the Higgs field
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