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The Higgs mechanism

in this lecture we will cover more formal aspects of the Higgs mechanism so that you
see where the main properties of the Higgs bosons are coming from
the material can be split in three parts each giving an answer to a separate question:

appearance of mass terms for a scalar field (= Higgs field and Higgs boson mass)
appearance of mass term for a gauge boson from a broken U(1) local gauge
symmetry
full Higgs mechanism by breaking the SU(2)L×U(1)Y local gauge symmetry
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Interacting scalar fields
start with an example – lagrangian (L = T − V ) of QED:

LQED = ψ̄(iγµ∂µ −me)ψ + eψ̄γµψAµ−
1

4
FµνF

µν

here, the kinetic term for electron:

iψ̄γµ∂µψ

the kinetic term for photon:

−1

4
FµνF

µν

potential term for electron-photon interaction:

eψ̄γµψAµ

in general, type of interactions and their strength are defined by the terms in
lagrangian mixing the fields, like here eψ̄γµψAµ defines the QED interaction vertex 3 / 34



Interacting scalar fields

a free real (1D) scalar field has a lagrangian:

LS =
1

2
(∂µφ)(∂µφ)− 1

2
m2φ2

for a scalar field φ with a potential:

V (φ) =
1

2
µ2φ2 +

1

4
λφ4

the lagrangian will look like:

L =
1

2
(∂µφ)(∂µφ)− V (φ) (1)

=
1

2
(∂µφ)(∂µφ)− 1

2
µ2φ2 − 1

4
λφ4 (2)
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Interacting scalar fields

in this lagrangian:

L =
1

2
(∂µφ)(∂µφ)− V (φ) (3)

=
1

2
(∂µφ)(∂µφ)− 1

2
µ2φ2 − 1

4
λφ4 (4)

1
2(∂µφ)(∂µφ) is the kinetic energy of the scalar particle
1
2µ

2φ2 represents the mass of the particle
1
4λφ

4 is a self-interaction of the scalar field
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Interacting scalar fields
the vacuum state of the scalar field φ is its lowest energy state

corresponds to the minimum of potential V (φ) = 1
2µ

2φ2 + 1
4λφ

4

for V (φ) to have a minimum, it is obligatory that λ > 0:

a) µ2 > 0: one minimum at φ = 0,

b) µ2 < 0: two minima at φ = ±v = ±
∣∣∣∣√−µ2

λ

∣∣∣∣
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Interacting scalar fields

a) µ2 > 0:

vacuum state is when φ = 0

we have a scalar particle with mass µ
self-interaction term proportional to φ4

b) µ2 < 0:

lowest energy state when φ = +v or φ = −v
choice of vacuum state breaks the symmetry of lagrangian – spontaneous
symmetry breaking
to understand the particle interactions need to find excitations of the field around
its minimum, e.g. for φ = +v:

φ(x) = v + η(x),

where η(x) is the scalar field excitation
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Interacting scalar fields

we can expand the lagrangian with φ(x) = v + η(x) and ∂µφ = ∂µη:
L(η) = 1

2(∂µη)(∂µη)− V (η) = 1
2(∂µη)(∂µη)− 1

2µ
2(v + η)2 − 1

4λ(v + η)4

now use the fact that µ2 = −λv2:

L(η) =
1

2
(∂µη)(∂µη)− λv2η2 − λvη3 − 1

4
λη4 +

1

4
λv4

term “−λv2η2” is equivalent to the mass term “−1
2m

2φ2” of LS

=⇒ mη =
√

2λv2 =
√
−2µ2

it means that this lagrangian describes a massive scalar field η
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Interacting scalar fields

terms η3 and η4 represent triple (λv) and quartic (14λ) interaction vertices

term 1
4λv

4 is a const and does not have physical implications
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Symmetry breaking for a complex scalar field

can apply the same logic to a complex scalar field:

φ =
1√
2

(φ1 + iφ2)

the corresponding lagrangian is:

L = (∂µφ)∗(∂µφ)− V (φ) with V (φ) = µ2(φ∗φ) + λ(φ∗φ)2

can express the same in terms of two real scalar fields φ1 and φ2:

L =
1

2
(∂µφ1)(∂

µφ1) +
1

2
(∂µφ2)(∂

µφ2)−
1

2
µ2(φ21 + φ22)−

1

4
λ(φ21 + φ22)

2

again, for a potential to have a minimum, we need λ > 0
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Symmetry breaking for a complex scalar field
the lagrangian is invariant under φ→ φ′ = eiαφ, since φ′∗φ′ = φ∗φ

=⇒ it has a global U(1) symmetry
the shape of potential again depends on the sign of µ2:

a) µ2 > 0: one minimum with φ1 = φ2 = 0

b) µ2 < 0: infinite set of minima with φ21 + φ22 = −µ2

λ = v2

The physical vacuum state would be one point on this dashed circle breaking the
global U(1) symmetry, e.g. (φ1, φ2) = (v, 0)
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Symmetry breaking for a complex scalar field
again, can expand the field around the vacuum state:

φ1(x) = η(x) + v and φ2(x) = ξ(x)

φ =
1√
2

(η + v + iξ)

need to rewrite lagrangian in terms of η and ξ:

L =
1

2
(∂µη)∗(∂µη) +

1

2
(∂µξ)

∗(∂µξ)− V (η, ξ),

V (η, ξ) = µ2φ2 + λφ4 with φ2 = φφ∗ =
1

2

[
(v + η)2 + ξ2

]
rewriting potential using µ2 = −λv2:

V (η, ξ) = µ2φ2 + λφ4 (5)

= −1

2
λv2

[
(v + η)2 + ξ2

]
+

1

4

[
(v + η)2 + ξ2

]2 (6)

= −1

4
λv4 + λv2η2 + λvη3 +

1

4
λη4 +

1

4
λξ4 + λvηξ2 +

1

2
λη2ξ2 (7)
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Symmetry breaking for a complex scalar field

V (η, ξ) = −1
4λv

4 + λv2η2 + λvη3 + 1
4λη

4 + 1
4λξ

4 + λvηξ2 + 1
2λη

2ξ2

term “λv2η2” is a mass term for field η: mη =
√

2λv2

terms “λvη3”, “1
4λη

4”, “1
4λξ

4”, “λvηξ2”, and “1
2λη

2ξ2” are three- and
four-particle interaction terms

lagrangian:

L =
1

2
(∂µη)∗(∂µη)− 1

2
m2
ηη

2 +
1

2
(∂µξ)

∗(∂µξ)− Vint(η, ξ)
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Symmetry breaking for a complex scalar field

this lagrangian contains two fields:

a massive scalar field η with mass mη =
√

2λv2

a massless scalar field ξ

excitations of the massive field η in the direction where the potential is quadratic

excitations of ξ are in the direction of a constant potential – a Goldstone boson
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The Higgs mechanism
in the Higgs mechanism one more difference is that this spontaneous symmetry
breaking happens in a theory with a local gauge symmetry

local gauge transformation definition: φ(x)→ φ′(x) = eigχ(x)φ(x)

L = (∂µφ)∗(∂µφ)− V (φ) is not invariant because of the derivatives

this is fixed by replacing ∂µ → Dµ = ∂µ + igBµ

L = (Dµφ)∗(Dµφ)− V (φ) is gauge invariant if

Bµ → B′µ = Bµ − ∂µχ(x)

leading to the existence of a new gauge field B with gauge transformation properties:

L = −1

4
FµνFµν + (Dµφ)∗(Dµφ)− µ2φ2 − λφ4,

where FµνFµν is the kinetic term for the new field with

Fµν = ∂µBν − ∂νBµ

the field B is massless: the term 1
2m

2
BBµB

µ breaks gauge invariance
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The Higgs mechanism

lagrangian will get additional terms when expanding “long” derivatives:

(Dµφ)∗(Dµφ) = (∂µ − igBµ)φ∗(∂µ + igBµ)φ (8)

= (∂µφ)∗(∂µφ)− igBµφ∗(∂µφ) + ig(∂µφ
∗)Bµφ+ g2BµB

µφ∗φ (9)

the full lagrangian would be:

L = −1

4
FµνFµν + (∂µφ)∗(∂µφ)− µ2φ2 − λφ4 (10)

−igBµφ∗(∂µφ) + ig(∂µφ
∗)Bµφ+ g2BµB

µφ∗φ (11)

now need to repeat the same exercise of potential expansion around vacuum
state taking into account additional terms in the lagrangian
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The Higgs mechanism
go directly to the case of µ2 < 0 and choose φ1 + iφ2 = v:

φ(x) =
1√
2

(v + η(x) + iξ(x))

after all the transformations and algebra get:

L =
1

2
(∂µη)(∂µη)− λv2η2︸ ︷︷ ︸

massive η

(12)

+
1

2
(∂µξ)(∂

µξ)︸ ︷︷ ︸
massless ξ

(13)

− 1

4
FµνF

µν +
1

2
g2v2BµB

µ︸ ︷︷ ︸
massive gauge field

(14)

− Vint + gvBµ(∂µξ) (15)

where Vint(η, ξ, B) contains 3- and 4-point interaction terms of the fields η, ξ and B 17 / 34



The Higgs mechanism

we managed to provide a mass mB = gv to the field B, and retained local gauge
invariance of the theory

with doing this we acquired new particles: massive scalar field η and massless
Goldstone boson ξ
at the same time have two new issues:

number of degrees of freedom: had 4 (one of φ1, one of φ2, two polarizations
of B), now have 5 (massive state B has one more polarization – longitudinal)?
spin-1 to spin-0 particle transition: term gvBµ(∂µξ) leads to such direct
coupling
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The Higgs mechanism

these “problems” can be resolved by eliminating Goldstone field ξ with an
appropriate gauge transformation:

1

2
(∂µξ)(∂

µξ) + gvBµ(∂µξ) +
1

2
g2v2BµB

µ (16)

=
1

2
g2v2

[
Bµ +

1

gv
(∂µξ)

]2
(17)

can make gauge transformation:

Bµ(x)→ B′µ(x) = Bµ(x) +
1

gv
∂µξ(x)
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The Higgs mechanism

then the lagrangian simplifies as:

L =
1

2
(∂µη)(∂µη)− λv2η2︸ ︷︷ ︸

massive η

(18)

− 1

4
FµνF

µν +
1

2
g2v2B′µB

µ′︸ ︷︷ ︸
massive gauge field

(19)

− Vint (20)
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The Higgs mechanism
the original lagrangian was invariant under local U(1) gauge transformations =⇒
physical predictions should be unchanged

with the appropriate choice of gauge χ(x) = −ξ(x)/gv we do not have the
Goldstone field ξ

effect of this gauge on the scalar field φ:

φ(x)→ φ′(x) = e−ig
ξ(x)

gv φ(x) = e−iξ(x)/vφ(x)

after the symmetry breaking we had:

φ(x) =
1√
2

(v + η(x) + iξ(x)) ≈ 1√
2

[v + η(x)] e
iξ(x)

v

effect of the gauge transformation on this field:

φ(x)→ φ′(x) =
1√
2
e−ig

ξ(x)

gv [v + η(x)] e
iξ(x)

v =
1√
2

(v + η(x))
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The Higgs mechanism

so the effect of this gauge – Unitary gauge – is to choose the complex scalar field
φ(x) to be real:

φ(x) =
1√
2

(v + η(x)) ≡ 1√
2

(v + h(x))

the field η(x) is now denoted as the Higgs field h(x) to show that it’s the physical
field in the unitary gauge

unphysical term with ξ(x) has disappeared

extra degree of freedom disappeared with the Goldstone field ξ(x): this boson was
“eaten” by the massive gauge field B
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The Higgs mechanism
with all this the final lagrangian can be rewritten as (also ignoring a constant λv4/4):

L =
1

2
(∂µh)(∂µh)− λv2h2︸ ︷︷ ︸

massive h scalar

(21)

− 1

4
FµνF

µν +
1

2
g2v2BµB

µ︸ ︷︷ ︸
massive gauge boson

(22)

+ g2vBµB
µh+

1

2
g2BµB

µh2︸ ︷︷ ︸
h,B interactions

(23)

− λvh3 − 1

4
λh4︸ ︷︷ ︸

h self-interactions

(24)

mass of the gauge boson mB = gv

mass of the Higgs boson mH =
√

2λv 23 / 34



The Higgs mechanism
interaction terms in the lagrangian:

+ g2vBµB
µh+

1

2
g2BµB

µh2︸ ︷︷ ︸
h,B interactions

(25)

− λvh3 − 1

4
λh4︸ ︷︷ ︸

h self-interactions

(26)

correspond to the following four diagrams:
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The standard model Higgs boson
the last step is to extend previous considerations from local gauge U(1) symmetry to
local gauge U(1)Y×SU(2)L symmetry

three Goldstone bosons will be needed to provide longitudinal polarizations to W+,
W− and Z bosons

as before, after symmetry breaking there will be (at least) one massive scalar particle

the simplest Higgs model with the necessary four degrees of freedom consists of two
complex scalar fields

to give masses to Z and W± one of the scalar fields must be neutral: φ0; another one
charged: φ+ for W+ and (φ+)∗ = φ− for W−

minimal Higgs model has two complex scalar fields in a weak isospin doublet:

φ =

(
φ+

φ0

)
=

1√
2

(
φ1 + iφ2
φ3 + iφ4

)
(upper and lower components of doublet differ by one unit of charge)
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The standard model Higgs boson

the lagrangian for this doublet is:

L = (∂µφ)†(∂µφ)− V (φ)

with the Higgs potential V (φ) = µ2φ†φ+ λ(φ†φ)2

for µ2 < 0 the potential has an infinite set of minima with:

φ†φ =
1

2
(φ21 + φ22 + φ23 + φ24) =

v2

2
= −µ

2

2λ

after symmetry breaking, the neutral photon remains massless =⇒ minimum of the
potential corresponds to a non-zero vacuum expectation value only for the neutral
scalar field φ0:

〈0|φ|0〉 =
1√
2

(
0
v

)
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The standard model Higgs boson

the fields are expanded around this minimum:

φ(x) =
1√
2

(
φ1(x) + iφ2(x)
v + η(x) + iφ4(x)

)
we will get three Goldstone bosons, which would be absorbed by W± and Z in the
unitary gauge

in this gauge Higgs doublet looks like:

φ(x) =
1√
2

(
0

v + h(x)

)
we need to identify masses of gauge bosons and interaction terms
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The standard model Higgs boson

for the SU(2)L×U(1)Y local gauge symmetry, the covariant derivatives would be:

∂µ → Dµ = ∂µ + igW ~T · ~Wµ + ig′
Y

2
Bµ,

where ~T = 1
2~σ – the three generators of the SU(2) symmetry

Higgs doublet hypercharge:

Y = 2(Q− I3W ) = 2(0 +
1

2
) = 1

hence for acting on the Higgs doublet φ the covariant derivative looks like:

Dµφ =
1

2

[
2∂µ +

(
igW~σ · ~Wµ + ig′Bµ

)]
φ

the term in the lagrangian generating masses of the gauge bosons is (Dµφ)†(Dµφ)
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The standard model Higgs boson

for determining the masses, need to expand the (Dµφ)†(Dµφ) expression in the
unitary gauge

as a result, for terms quadratic in the gauge bosons fields will get:

1

8
v2g2W

(
W (1)
µ W (1)µ +W (2)

µ W (2)µ
)

(27)

+
1

8
v2
(
gWW

(3)
µ − g′Bµ

)(
gWW

(3)µ − g′Bµ
)

(28)

the mass terms for W (1) and W (2) fields would be 1
2m

2
WW

(i)
µ W (i)µ

=⇒ mass of the W boson is mW = 1
2gW v
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The standard model Higgs boson
the terms containing neutral W (3) and B fields can be written as:
1
8v

2
(
gWW

(3)
µ − g′Bµ

)(
gWW

(3)µ − g′Bµ
)

= v2

8

(
W

(3)
µ Bµ

)
M

(
W (3)µ

Bµ

)
,

where M is the non-diagonal mass matrix:

M =

(
g2W −gW g′
−gW g′ g′2

)
off-diagonal matrix elements lead to mixing between W (3) and B

to determine physical fields and their masses need to find M eigenvalues and
eigenvectors leading to:

1

8
v2
(
Aµ Zµ

)(0 0
0 g2W + g′2

)(
Aµ

Zµ

)
with mA = 0 and mZ = 1

2v
√
g2W + g′2
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The standard model Higgs boson

we got the physical fields for a massless photon Aµ and for massive boson Zµ:

Aµ =
g′W

(3)
µ + gWBµ√
g2W + g′2

with mA = 0 (29)

Zµ =
gWW

(3)
µ − g′Bµ√
g2W + g′2

with mZ =
1

2
v
√
g2W + g′2 (30)

by introducing
g′

gW
= tan θW

we get:
Aµ = cos θWBµ + sin θWW

(3)
µ

Zµ = − sin θWBµ + cos θWW
(3)
µ
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The standard model Higgs boson
for a mass of a Z boson can also write:

mZ =
1

2

gW
cos θW

v

the relation between W and Z masses:
mW

mZ
= cos θW

resulting model of Glashow-Salam-Weinberg (GSW) is described by 4 parameters:

gW , g
′, µ, λ

boson masses can be expressed through these parameters:

v2 =
−µ2

λ
and m2

H = 2λv2

from W mass and H mass measurements:

v = 246 GeV and mH = 125 GeV
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The standard model Higgs boson
the gauge bosons in the expansion of the (Dµφ)†(Dµφ) appear as V V (v + h)2

V V v2 terms lead to masses of gauge bosons
the terms V V h and V V hh lead to triple and quartic couplings between one or two H
and gauge bosons
by expanding all can find the following expression:

1

4
g2W v

2W−µ W
+µ +

1

2
g2W vW

−
µ W

+µh+
1

4
g2WW

−
µ W

+µhh

leading to gHWW = 1
2g

2
W v ≡ gWmW

similarly, gHZZ = gZmZ
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Summary

we have seen how a scalar field leads to the Higgs boson appearance

derived Higgs boson mass and its interactions

derived mass terms for the gauge bosons

derived interactions of the Higgs boson with gauge bosons

what is left: how fermions acquire their mass when interaction with the Higgs field
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