
Particle Physics 2 : Exercise 9

1) Z decay rates
a) The cross section at

√
s = mZ is given in the lecture :

σ0
f̄f = 12π

m2
Z

ΓeeΓff

Γ2
Z

,

which can be inverted to give

ΓeeΓff =
σ0

f̄fm
2
ZΓ2

Z

12π

Assuming lepton universality, whereby Γµµ = Γℓℓ

Γ2
ee =

σ0
µµm2

ZΓ2
Z

12π

Converting the measured peak cross section of σ0(e+e− → Z → µ+µ−) = 1.9993 nb into
natural units gives

σ0(e+e− → Z → µ+µ−) = 1.9993 × 10−37 m2 · (ℏc)−2

= 1.9993 × 10−37 m2 1
(0.197 GeV × 10−15m)2

= 5.152 × 10−6 GeV−2.

(1)

Using mZ = 91.1875 GeV

Γ2
ee =

σ0
µµm2

ZΓ2
Z

12π

= 5.152 × 10−6 · 91.18752

12π
Γ2

Z

− 1.136 × 10−3Γ2
Z

⇒ Γee = 0.03371ΓZ

(2)

Similarly,

ΓeeΓhad = σ0
hadm2

ZΓ2
Z

12π

= 106.88 × 10−6 · 91.18752

12π
Γ2

Z

= 2.357 × 102Γ2
Z

⇒ 0.0337ΓZΓhadrons = 2.357 × 102Γ2
Z

⇒ Γhadrons = 0.6992ΓZ

(3)

b) The total width of the Z is given by :

ΓZ = 3Γℓℓ + Γhadrons + NνΓνν

From the results of part a) :

NνΓνν = ΓZ − 3Γℓℓ − Γhadrons

= 0.1997ΓZ = 498 MeV.
(4)
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Given the partial decay width for Z → νeνe is 167 MeV

Nν = 498
167 = 2.98,

consistent with the claim that there are three light neutrino generations.

2) Z cross section
The e+e− → Z → f̄f differential cross section can be written as

dσ

dΩ = κ
[
a(1 + cos2 θ) + 2b cos θ

]
,

where a and b are constants related to the couplings to the Z, and κ is a normalisation factor.
Writing cos θ = x, then dΩ = 2πd(cos θ) = 2πdx and the number of events produced in the
forward and backwards hemispheres can be written :

NF = 2πκ
∫ 1

0
a(1 + x2) + 2bxdx

= 2πκ
[4
3a + b

]
,

NB = 2πκ
∫ 0

−1
a(1 + x2) + 2bxdx

= 2πκ
[4
3a − b

]
.

(5)

Therefore the forward-backward asymmetry is

AFB = NF − NB

NF + NB

= 3b

4a
⇒ b = 4aAFB

3 .

Substituting this back into the original equation gives :

dσ

dΩ = κ
[
a(1 + cos2 θ) + 8

3aAFB cos θ
]
,

∝ (1 + cos2 θ) + 8
3AFB cos θ.

3) Muon asymmetry
The muon asymmetry parameter is related to the couplings of the Z to muons by

Aµ = (cµ
L)2 − (cµ

R)2

(cµ
L)2 + (cµ

R)2 ≡ 2cµ
V cµ

A

(cµ
V )2 + (cµ

A)2

= 2cµ
V /cµ

A

(cµ
V /cµ

A)2 + 1

= 2x

x2 + 1

(6)

where x = cµ
V /cµ

A. Hence the measured value gives the quadratic equation

(0.1456 ± 0.0091) = 2x

x2 + 1
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⇒ x2 − (13.74 ± 0.85)x + 1 = 0,

⇒ x = 0.0732 ± 0.0046 or x = 13.7 ± 0.8.

In the Standard Model
x = cµ

V

cµ
A

= 1 − 4 sin2 θW

and therefore the measurement can be interpreted as

1 − 4 sin2 θW = 0.0732 ± 0.0046
4 sin2 θW = 0.9268 ± 0.0046

sin2 θW = 0.2317 ± 0.0012.

(7)

4) Feynman diagrams
The first three diagrams (CC03) involve the production of two W bosons, either through the s-
channel production of a Z or γ, or through the t-channel exchange of a neutrino. The remaining

seven diagrams, all arise from pair production of quarks or leptons through Z or γ exchange
with a W radiated from one of the final state particles.
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5) Top quark decay
a) In the rest frame of the top, the momenta of the two daughter particles are equal and

conservation of energy implies mt = Eb +EW. Writing this as mt −Eb = EW and squaring
gives

m2
t − 2mtEb + E2

b = E2
W

m2
t − 2mtEb + m2

b + p∗2 = m2
W + p∗2

⇒ m2
t + (m2

b − m2
W) = 2mtEb

(8)

Squaring again to eliminate Eb leads to

m4
t + 2m2

t (m2
b − m2

W) + (m2
b − m2

W)2 = 4m2
t (m2

b + p∗2)
m4

t − 2m2
t (m2

b + m2
W) + (mW − mb)2(mW + mb)2 = 4m2

t p
∗2

m4
t − m2

t

[
(mW + mb)2 + (mW − mb)2

]
+ (mW − mb)2(mW + mb)2 = 4m2

t p
∗2[

m2
t − (mW + mb)2

][
m2

t − (mW − mb)2
]

= 4m2
t p

∗2,

(9)

Thus showing that

p∗ = 1
2mt

√[
m2

t − (mW + mb)2
][

m2
t − (mW − mb)2

]
.

Since mb ≪ mW the term inside the square root can be approximated to

[
m2

t − (mW + mb)2
][

m2
t − (mW − mb)2

]
=

m2
t − m2

W

1 + mb

mW

2m2
t − m2

W

1 − mb

mW

2
≈

[
m2

t − m2
W − 2mWmb

][
m2

t − m2
W + 2mWmb

]
=

[
m2

t − m2
W

]2
− 4m2

Wm2
b

≈
[
m2

t − m2
W

]2
.

(10)

Hence to a good approximation
p∗ ≈ m2

t − m2
W

2mt

The same result could have been obtained much more quickly by simply neglecting the
b-quark mass.
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6) τ polarisation

a) Consider the decay in the tau rest frame with the angle θ∗ defined with respect to the spin
of the τ−, as shown in the left-hand plot above. Since the neutrino will be left-handed,
conservation of angular moment (just spin-half here) implies

dN

d cos θ∗ ∝ cos2 θ∗

2 ∝ 1 + cos θ∗.

b) Consider the decay of a RH-helicity τ− as shown in the left-hand plot above. With

dΓ
d cos θ∗ ∝ (p∗)2

mτ

(1 + cos θ∗).

In the laboratory frame the system will be boosted along the direction of the τ− momen-
tum and the laboratory-frame energy of the π− will be

Eπ = γτ E∗ + γτ βτ p∗
z

= γτ E∗ + γτ βτ p∗ cos θ∗.
(11)

The energy distribution of the pion in the laboratory frame is related to the angular
distribution in the tau rest frame by

dΓ
dEπ

= dΓ
d cos θ∗

d cos θ∗

dEπ

∝ (p∗)2

mτ

(1 + cos θ∗) · 1
γτ βτ p∗

∝ (p∗)2

βτ Eτ

(1 + cos θ∗).

(12)

This can be expressed in terms of the pion energy using

Eπ = γτ E∗ + γτ βτ p∗ cos θ∗,

⇒ cos θ∗ = Eπ − γτ E∗

γτ βτ p∗ ,
(13)

thus
dΓ

dEπ

∝ 1
β2

τ γτ Eτ

(Eπ + γτ βτ p∗ − γτ E∗). (14)

In the laboratory frame the energy of the τ− is just mZ/2 and therefore γτ = mZ/2mτ =
25.7 and βτ = 0.9992. The momentum of the pion in the tau rest frame is easily shown
to be

p∗ = m2
τ − m2

π

2mτ

= 0.88 GeV ≈ mτ /2

⇒ E∗ = 0.89 GeV ≈ mτ /2.

(15)
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Consequently βτ p∗ − E∗ < 0.02 GeV and to a good approximation (Eq. 14) can be
approximated as

dΓ
dEπ

∝ 1
β2

τ γτ Eτ

(Eπ + γτ βτ p∗ − γτ E∗)

≈ 1
β2

τ γτ

Eπ

Eτ

(16)

c) The case of the decay of a LH-helicity τ− (as shown on the right in the above plot), the
decay distribution in the tau rest frame can be obtained by replacing θ∗ in the original
decay distribution by π − θ∗

dΓ
dEπ

∝ (p∗)2

mτ

(1 + cos [π − θ∗])

= (p∗)2

mτ

(1 − cos θ∗).
(17)

Following the previous calculation the energy distribution of the decay pion will be

dΓ
dEπ

= dΓ
d cos θ∗

d cos θ∗

dEπ

∝ (p∗)2

βτ Eτ

(1 − cos θ∗).
(18)

where, as before, cos θ∗ is given by

Eπ = γτ E∗ + γτ βτ p∗ cos θ∗,

⇒ cos θ∗ = Eπ − γτ E∗

γτ βτ p∗ ,
(19)

and this
dΓ

dEπ

∝ 1
β2

τ γτ Eτ

(γτ βτ p∗ + γτ E∗ − Eπ)

≈ 1
β2

τ γτ Eτ

(γτ mτ /2 + γτ mτ /2 − Eπ)

≈ 1
β2

τ γτ

(
1 − Eπ

Eτ

) (20)

where the following relations were used βτ p∗ ≈ E∗ ≈ mτ /2 and γτ mτ = Eτ .
d) From parts b) and c) the τ− → π−ντ decays of RH and LH tau leptons give very

different pion energy distributions, reflecting the different angular distributions of the
decay relative to the tau line of flight :

dΓR

dEπ

∝ x and dΓL

dEπ

∝ (1 − x).

where x = Eπ/Eτ = 2Eπ/mZ. If the average τ− polarisation is

Pτ = N↑ − N↓

N↑ + N↓
,

and there are a total of N = N↑ + N↓ decays, then

N↑ = (1 + Pτ )N/2 and N↓ = (1 − Pτ )N/2.
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The corresponding pion energy distribution, which is correctly normalised, will be

dN

dx
= 2N↑x + 2N↓(1 − x)

= N(1 + Pτ )x + N(1 − Pτ )(1 − x)
= N [(1 − Pτ ) + 2Pτ x]

(21)

The observed distribution (shown schematically above) of

dΓ
dx

∝ 1.14 − 0.28x ≡ 0.86x + 1.14(1 − x),

has contributions from LH and RH τ− → π−ντ decays and implies that Pτ = −0.14 and
therefore (from the previous question)

Aτ = −Pτ = 0.14.

The tau asymmetry parameter is related to the couplings of the Z to tau leptons by

Aτ = (cτ
L)2 − (cτ

R)2

(cτ
L)2 + (cτ

R)2 ≡ 2cτ
V cτ

A

(cτ
V )2 + (cτ

A)2

= 2cτ
V /cτ

A

(cτ
V /cτ

A)2 + 1

= 2x

x2 + 1

(22)

where x = cτ
V /cτ

A. Hence the measured value gives the quadratic equation

0.14 = 2x

x2 + 1
⇒ x2 − 14.28x + 1 = 0,

⇒ x = 0.067.

(23)

In the Standard Model
x = cτ

V

cτ
A

= 1 − 4 sin2 θW

and therefore the measurement can be interpreted as

1 − 4 sin2 θW = 0.067
4 sin2 θW = 0.933

sin2 θW = 0.233.

(24)

7 Updated: 25 avril 2024


